簡易檢索 / 詳目顯示

研究生: 游鎮嘉
Yu, Cheng-Chia
論文名稱: 利用蝶豆花開發機能性膨發米點心之研究
Study on the development of functional puffed rice snack by Clitoria ternatea
指導教授: 林貞信
Lin, Jenshinn
余旭勝
Yu, Hsu-Sheng
學位類別: 碩士
Master
系所名稱: 農學院 - 食品科學系所
Department of Food Science
畢業學年度: 107
語文別: 中文
論文頁數: 111
中文關鍵詞: 蝶豆花擠壓技術膨發點心抗氧化
外文關鍵詞: Clitoria ternatea, rice, extrusion technology, puffed snack, antioxidant
DOI URL: http://doi.org/10.6346/NPUST201900305
相關次數: 點閱:61下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統
  • 蝶豆花富含許多機能性成分包含: 酚酸、類黃酮、花青素、三帖類化合物以及類固醇等,而蝶豆花的花青素能夠提供鮮豔色彩且具有良好清除自由基的能力,可作為一種天然色素及抗氧化素材。多項研究表明蝶豆花花青素具較高的熱穩定性,可承受一般食品工業上之熱加工處理。而擠壓膨發食品為一相當普遍且受歡迎的休閒點心食品,具有口感脆,呈多孔狀組織,且輕巧及同重量下具有較大體積等特性。擠壓膨發技術,具有高效能、高品質、多樣化等優點。因此,本研究目的為利用蝶豆花良好的熱穩定性、顏色多樣性及良好的抗氧化性質,添加於糙米中,並搭配膨發擠壓之高溫短時加工技術,欲保留較佳的色素及抗氧化性質,進行(3x3x3)複因子膨發擠壓試驗,以不同比例蝶豆花(0、5、10 %)、螺軸轉速(320、350、380 rpm)與模具溫度(110、120、130℃)探討最佳加工條件。研究結果顯示,蝶豆花添加比例的增加會使擠出物的水溶性指標及徑向膨發率顯著下降,同時顯著(p<0.05)提升擠出物之假密度、吸水性指標及抗氧化性質,且其抗氧化性質能夠因適當的提升模具溫度而顯著(p<0.05)上升,在添加10%蝶豆花下,模具溫度120℃及螺軸轉速350 rpm時,擠出物有最高的總酚含量537.32 ppm;而在相同的模具溫度下,提升螺軸轉速至380 rpm有最高的DPPH清除自由基能力77.16%及還原力0.140。
    經最佳操作條件之選定與評估後,在0%、5%及10%蝶豆花添加下各挑選一組擠出物進行感官品評試驗,研究結果顯示,添加5%蝶豆花之擠出物雖具有最好的接受度但卻與10%蝶豆花添加之擠出物無顯著差異,且10%蝶豆花添加之擠出物具有最佳的抗氧化性質,因此,在10%蝶豆花添加、模具溫度120℃、螺軸轉速380 rpm為本研究之最佳研究結果。

    Clitoria ternatea is rich in many functional ingredients including: phenolic acid, flavonoids, anthocyanins, triterpenoids and steroids. The anthocyanin of Clitoria ternatea can provide bright colors and good antioxidant capacity which can be the natural pigments and antioxidant materials. A number of studies have shown that the anthocyanins of Clitoria ternatea have good thermal stability that can withstand the thermal processing in the general food industry. Extrusion food is a common and popular snack food, which has crisp texture, porous structure, light and has a large volume under the same weight. The advantages of extrusion technology are high efficiency, high quality and variety. Therefore, the purpose of this study is to develop a brown rice snack added with Clitoria ternatea. And processing by collet extruder which is a high temperature low time (HTST) techonology to protect the color and antioxidant properties. The study is designed by (3x3x3) complex factor with different proportion of Clitoria ternatea (0%、5%、10%), screw speed (320, 350, 380 rpm) and die temperature (110, 120, 130°C). The results showed that when the proportion of Clitoria ternatea increased, the water soluble index (WSI), and the radial expansion ratio would be decreased, whereas the bulk density, water absorption index (WAI) and antioxidant properties would be significantly increased. The antioxidant properties could be appropriately raised up significantly while the die temperature was increased. Under the addition of 10% Clitoria ternatea, the highest total phenols content was 537.32 ppm at die temperature 120°C and screw speed 350 rpm. At the same die temperature, when screw speed was increased to 380 rpm, the extrudates has the highest DPPH scavenging ability 77.16% and reducing power 0.140.

    After optimum operating conditions of selection and evaluation, the extrudates were selected for each of the 0%, 5%, and 10% Clitoria ternatea addition for sensory evaluation test. The results showed that the extrudates of 5% Clitoria ternatea addition are the most acceptable but not significantly different with the extrudates of 10% Clitoria ternatea addition which have the best antioxidant properties. When the die temperature 120°C and screw speed 380 rpm is the optimum processing conditions for the extrudates of 10 % Clitoria ternatea addition.

    摘要 I
    Abstract III
    謝誌 V
    目錄 VI
    圖目錄 IX
    表目錄 X
    第 1 章 前言 1
    第 2 章 文獻回顧 2
    2.1 蝶豆花 2
    2.1.1 蝶豆花之簡介 2
    2.1.2 蝶豆花之可食用性 2
    2.1.3 蝶豆花之機能性 3
    2.1.3.1 促進學習與記憶能力 3
    2.1.3.2 促智與抗焦慮 4
    2.1.3.3 抗菌活性 4
    2.1.3.4 抗憂鬱與鎮靜 4
    2.1.3.5 抗癲癇與抗應激 4
    2.1.3.6 抗發炎、止痛與解熱 5
    2.1.3.7 抗糖尿病 5
    2.1.3.8 局部麻醉 5
    2.1.3.9 抑制血小板凝集 5
    2.1.4 蝶豆花之花青素 5
    2.1.4.1 熱穩定性 7
    2.1.4.2 自由基與活性氧 11
    2.1.4.3 抗氧化機制 15
    2.2 稻米 18
    2.2.1 稻米之種類 23
    2.2.2 稻米之結構 25
    2.2.2.1 稻殼 25
    2.2.2.2 米糠 27
    2.2.2.3 胚芽 27
    2.2.2.4 胚乳 27
    2.2.3 糙米之營養價值 27
    2.3 擠壓技術 29
    2.3.1 擠壓技術簡介 29
    2.3.2 擠壓機之優點 32
    2.3.3 擠壓機種類 33
    2.3.3.1 單軸擠壓機 33
    2.3.3.2 雙軸擠壓機 36
    2.3.4 擠壓點心食品 36
    第 3 章 材料與方法 38
    3.1 實驗原料 38
    3.2 實驗設計 38
    3.3 實驗流程 38
    3.4 實驗設備 42
    3.5 測定項目及分析方法 43
    3.5.1 原料一般組成分分析 43
    3.5.1.1 水分含量 43
    3.5.1.2 灰分含量 43
    3.5.1.3 粗蛋白含量 44
    3.5.1.4 粗脂肪含量 44
    3.5.2 擠出物理化性質分析 45
    3.5.2.1 色澤 45
    3.5.2.2 水溶性指標與吸水性指標 45
    3.5.2.3 假密度 46
    3.5.2.4 徑向膨發率 46
    3.5.2.5 硬度 46
    3.5.2.6 總膳食纖維含量 47
    3.5.3 抗氧化性質分析 48
    3.5.3.1 樣品前處理 48
    3.5.3.2 總酚含量 48
    3.5.3.3 總花青素含量 48
    3.5.3.4 清除DPPH自由基能力 49
    3.5.3.5 還原力 49
    3.6 感官品評試驗 50
    3.7 統計分析 50
    第 4 章 結果與討論 52
    4.1 基本成分分析 52
    4.2 理化性質分析 52
    4.2.1 水溶性指標 52
    4.2.2 吸水性指標 57
    4.2.3 假密度 61
    4.2.4 徑向膨發率 64
    4.2.5 總膳食纖維 67
    4.2.6 硬度 70
    4.2.7 色澤 73
    4.3 抗氧化性質分析 82
    4.3.1 總酚含量 82
    4.3.2 總花青素含量 85
    4.3.3 清除DPPH自由基能力 88
    4.3.4 還原力 91
    4.4 感官品評 94
    4.4.1 最佳操作條件之選定與評估 94
    4.4.2 品評結果 94
    第 5 章 結論與建議 101
    參考文獻 103
    作者簡介 110

    1. 田雲生。2000。擠壓機之介紹與應用。台中區農業改良場八十九年度試驗研究暨推廣學術研討會報告摘要,特刊第49號。
    2. 江佩錚。2007。不同成熟度金柑抗氧化活性及其有效成分之研究。國立宜蘭大學食品科學系碩士學位論文。
    3. 行政院農業委員會。2007。稻米歷史。稻米主題館 - 農業知識入口網。
    4. 行政院農業委員會。2007。稻米營養成分。稻米主題館 - 農業知識入口網。
    5. 行政院農業委員會林務局。2006。台灣的自然資源與生態資料庫III [農林漁牧],06-13。
    6. 宋國祥,彭錦樵,莊世昌。2000。添加綠茶粉於米食膨發休閒食品最適操作條件之研究。農業機械學刊,9(2):27-38。
    7. 周孟嫻、許嘉伊。2013。國內外稻米產業結構與發展趨勢。農業生技產業季刊糧食安全與生技。
    8. 林貞信。2017。生活中的休閒食品—擠壓加工技術原理與應用。科學月刊第570期。
    9. 洪聖杰。2018。焙炒與擠壓加工對米糠品質影響之研究。國立屏東科技大學食品科學系碩士學位論文。
    10. 洪福良。2017。南瓜擠壓產品之開發及其產品之抗氧化與護肝功能之研究。國立中興大學生物產業機電工程學系博士學位論文。
    11. 張嘉滿。2004。乙烯誘導芥藍葉片老化過程中之抗氧化反應。國立台灣大學園藝學系碩士學位論文。
    12. 張學琨、侯福分。2006。稻米產銷對環境及健康之影響。生物技術與綠色農業研討會專刊,117-155。
    13. 莊淑雅。2012。酵素水解對龍鬚菜萃取物抗氧化活性之影響。國立臺灣海洋大學食品科學系碩士學位論文。
    14. 莊朝琪。2011。真空烘烤與微波加熱對機能性第三代點心食品理化性質之影響(III)。行政院國家科學委員會專題研究計畫成果報告。
    15. 彭孃慧。2014。紫心甘藷擠壓休閒食品之開發及其抗氧化特性之研究。國立中興大學生物產業機電工程學系碩士學位論文。
    16. 經濟部標準檢驗局。2017。中華民國國家標準總號13446稻米詞彙。
    17. 趙亮瑜。2018。添加不同膠對組織化大豆蛋白之理化性質的影響。國立屏東科技大學食品科學系碩士學位論文。
    18. 趙錦珠。2011。低蛋白膨發米點心之開發。國立屏東科技大學食品科學系碩士學位論文。
    19. 潘柏守。2015。糙米、玉米及大麥混和物膨發擠壓之研究。國立屏東科技大學食品科學系碩士學位論文。
    20. 黎孝韻、曾國慶。2008。自由基及抗氧化物功能的探討。藥學雜誌,95期,95-103。
    21. 環境科學大辭典。2002。名詞解釋–單重態氧。
    22. 羅正宗。2010。台灣最佳糙米品種 - 「臺南14號」。行政院農業委員會臺南區農業改良場,台南區農情月刊,165期。
    23. Adisakwattana S., Ruengsamran T., Kampa P., & Sompong W. (2012). In vitro inhibitory effects of plant-based foods and their combinations on intestinal α-glucosidase and pancreatic α-amylase. BMC Complementary and Alternative Medicine 12: 110.
    24. Australian Pesticides and Veterinary Medicines Authority. (2016). on the evaluation of the new active clitoria ternatea in the product Sero-X Insecticide.
    25. Bedekar A., Shah K., & Koffas M. (2010). Natural products for type II diabetes treatment. Advances in Applied Microbiology 71: 21-73.
    26. Camire M. E. (1991). Extrusion cooking. In: Henry, C. J. K. and Chapman C, eds. The Nutrition Handbook for Food Processors. CRC Press LLC, Boca Raton, Florida, USA, 314-330.
    27. Cho D. H., & Lim S. T. (2016). Germinated brown rice and its bio-functional compounds. Journal of Food Chemistry 196: 259-271.
    28. Dehghan-Shoar Z., Hardacre A. K., & Brennan C. S. (2010). The physico-chemical characteristics of extruded snacks enriched with tomato lycopene. Food Chemistry 123: 1117-1122.
    29. Ding QB., Ainsworth P., Tucker G., & Marson H. (2005). The effect of extrusion conditions on the physicochemical properties and sensory characteristics of rice-based expanded snacks. Journal of Food Engineering 66: 283-289.
    30. Diplock A. T., Charleux J. L., Crozier-Willi G., Kok F. J., Rice-Evans C., Roberfroid M., Stahl W., & Viña-Ribes J. (1998). Functional food science and defence against reactive oxidative species. British Journal of Nutrition 80: 77-112.
    31. Florence T M. (1995). The role of free radicals in disease. Australian and New Zealand Journal of Ophthalmology 23: 3-7.
    32. Food and Agriculture Organization. (2018). Biannual report on global food markets. Food Outlook.
    33. Gul K., Yousuf B., Singh A.K., Singh P., & Wani A. A. (2015). Rice bran: Nutritional values and its emerging potential for development of functional food—A review. Bioactive Carbohydrates and Dietary Fibre 6: 24-30.
    34. Gunjan M., Ravindran M., Sengamalam R., jana G.K., & Jha A.K. (2010). Pharmacognostic and antidiabetic study of Clitoria ternatea. International Journal of Phytomedicine 2: 373-378.
    35. Harper J. M. (1978). Extrusion processing of food. Food Technol 32: 67-72.
    36. Harper J.M. (1994). The technology of extrusion cooling. Trends in Food Science & Technology 5: 209-210.
    37. Harper JM. (1981). Extrusion of food. Vol I andΠ. CRC press, Inc., Boca Raton,Florida, U.S.A .
    38. Honda T., Saito N., Kusano T., Ishisone H., Funayama N., Kubota T., & Araogi S. (1991). Isolation of anthocyanins (Ternatin A1, A2, B1, B2, D1, and D2) from Clitoria ternatea cv. (double blue) having blood platelet aggregation-inhibiting and vascular smooth muscle relaxing activities. Japan Kokai Tokyo Koho, 7.
    39. Jain N.N., Ohal C.C., Shroff S.K., Bhutada R.H., Somani R.S., Kasture V.S., & Kasture S.B. (2003). Clitoria ternatea and the CNS. Pharmacology Biochemistry and Behaviour 75: 529–536.
    40. Kaisoon O., Siriamornpun S., Weerapreeyakul N., & Meeso N. (2011). Phenolic compounds and antioxidant activities of edible flowers from Thailand. Journal of functional foods 3: 88-99.
    41. Kelemu S., Cardona C., & Segura G. (2004). Antimicrobial and insecticidal protein isolated from seeds of Clitoria ternatea, a tropical forage legume. Plant Physiology and Biochemistry 42: 867–873.
    42. Khoo H. E., Azlan A., Tang S. T., & Lim S. M. (2017). Anthocyanidins and anthocyanins: colored pigments as food, pharmaceutical ingredients, and the potential health benefits. Food & Nutrition Research 61: 1-21.
    43. Komaraiah K., & Rao B.R. R. (2010). Morphological comparison between blue and white flower morphotypes of butterfly pea (Clttoria Ternatea L., Family: Fabaceae). Medicinal Plants - Cultivation & Conservation Post - Harvest Technologies : Marketing and Trade, Aug: 18-20.
    44. Kulkarni C., Pattanshetty J.R., & Amruthraj G., (1988). Effect of alcoholic extract of Clitoria ternatea Linn. on central nervous system in rodents. Indian Journal of Experimental Biology 26: 957–960.
    45. Kungsuwan K., Singh K., Phetkao S., & Utama-ang N. (2014). Effects of pH and anthocyanin concentration on color and antioxidant activity of Clitoria ternatea extract. Journal of Food and Applied Bioscience 2: 31-46.
    46. Lee J., Barnes K. W., Eisele T., Giusti M. M., Haché J., Hofsommer H., Koswig S., Krueger D. A., Kupina S., Martin S. K., Martinsen B. K., Miller T. C., Paquette F., Ryabkova A., Skrede G., Trenn U., & Wightman J. D. (2005). Determination of total monomeric anthocyanin pigment content of fruit juices, beverages, natural colorants, andwines by the ph differential method: collaborative study. Journal of aoac international 88: 1269-1278.
    47. Lee P. M., Abdullah R., & Lee K. H. (2011). Thermal degradation of blue anthocyanin extract of Clitoria ternatea flower. 2nd International Conference on Biotechnology and Food Science, Singapore, IPCBEE 7: 49-53.
    48. Marpaung A. M., Andarwulan N., Hariyadi P., & Faridah D. N. (2017). Thermal Degradation of Anthocyanins in Butterfly Pea (Clitoria ternatea L.) Flower Extract at pH 7. Journal of Food Science and Technology 5: 199-203.
    49. Marpaung A. M., Andarwulan N., & Prangdimurti E. (2013). The optimization of anthocyanin pigment extraction from butterfly pea (Clitoria ternatea l.) petal using response surface methodology. II Asia pacific symposium on postharvest research education and extension, 205-212.
    50. Martin F. W., Ruberte R. M., & Meitzner L. S. (1998). Edible leaves of the tropics. Appropriate Technology 41: 42-43.
    51. Martinez-Cayuela M. (1995). Oxygen free radicals and human disease. Biochimie 77:147-161.
    52. Masatcioglu M. T., Yalcin E., Hwan P. J., Ryu G.H., & Koksel H. (2014). Innovative Food Science and Emerging Technologies 26: 302-309.
    53. Mccaskill D., & Zhang F. (1999). Use of rice bran oil in foods. Food Technology 53: 50-51.
    54. Mehmood A., Ishaq M., Zhao L., Yaqoob S., Bushra S., Nadeem M., Munir M., & Wang C. (2019). Journal of Ultrasonics – Sonochemistry 51: 12-19.
    55. Mirończuk-Chodakowska I., Witkowska A. M., & Zujko M. E. (2018). Endogenous non-enzymatic antioxidants in the human body. Advances in Medical Sciences 63: 68-78.
    56. Mohamad M.F., Nasir S.N.S., & Sarmidi M.R. (2011). Degradation kinetics and colour of anthocyanins in aqueous extracts of butterfly pea. Asian Journal of Food and Agro-Industry 4: 306-315.
    57. Moraru C. I., & Kokini J. L. (2003). Nucleation and expansion during extrusion and microwave heating of cereal foods. Comprehensive Reviews in Food Science and Food Safety 2: 147–165.
    58. Parimala Devi B., Boominathan R., & Mandal S. C. (2003). Anti-inflammatory, analgesic and antipyretic properties of Clitoria ternatea root. Journal of Fitoterapia 74: 345-349.
    59. Rai, K.S., Murthy, K.D., Karanth, K.S., Nalini, K., Rao, M.S., & Srinivasan, K.K. (2002). Clitoria ternatea root extract enhances acetylcholine content in rat hippocampus. Fitoterapia 73: 685–689.
    60. Riaz M. (2000). Extruders in Food Applications.
    61. Saptarini N.M., Suryasaputra D., & Nurmalia H. (2015). Application of Butterfly Pea (Clitoria ternatea Linn) extract as an indicator of acid-base titration. Journal of Chemical and Pharmaceutical Research 7: 275-280.
    62. Sharma P., Ramchiary M., Samyor D., & Das A. B. (2016). Study on the phytochemical properties of pineapple fruit leather processed by extrusion cooking. Food Science and Technology 72: 534-543.
    63. Smith O. B. (1969). History and status of specific protein rich foods. Extrusion processed cereal foods. Protein-Enriched Cereal Foods for World Needs. 140.
    64. Terahara N., Saito N., Honda T., Toki K., & Osajima Y. (1990). Acylated anthocyanins of Clitoria ternatea flowers and their acyl moieties. Phytochemistry 29: 949-953.
    65. Valko M., Leibfritz D., Moncol J., Cronin M. T.D., Mazur M., & Telser J. (2007). Free radicals and antioxidants in normal physiological functions and human disease. Journal of Biochemistry & Cell Biology 39: 44–84.
    66. Wetwitayaklung P., Phaechamud T., Limmatvapirat C., & Keokitichai S. (2008). The Study of Antioxidant Activities of Edible Flower Extracts. International Workshop on Medicinal and Aromatic Plants. Acta Horticulturae 786: 107-114.
    67. Yadava, R.N., & Verma, V. (2003). Antimicrobial activity of a novel flavonol glycoside isolated from the roots of Clitoria ternatea Linn. Asian Journal of Chemistry 15: 842–846.
    68. Yang R. Y., Tsou S. CS., Lee T. C., Wu W. J., Hanson P. M., Kuo G., Engle L. M., & Lai P. Y. (2006). Distribution of 127 edible plant species for antioxidant activities by two assays. Journal of the Science of Food and Agriculture 86: 2395-2403.
    69. Zingare M. L., Zingare P. L., Dubey A. K., & Ansari Md. A. (2013). Clitoria ternatea (Aparajita): a review of the antioxidant, antidiabetic and hepatoprotective potentials. International Journal of Pharmacy and Biological Sciences 3: 203-213.
    70. พิชานันท์ ลีแก้ว. (2017). “อัญชัน” คุณค่าที่มากกว่าสีสัน. MED HERB GURU รอบรู้เรื่องสมุนไพร, Dec: 1-3.

    無法下載圖示 校外公開
    2024/08/04
    QR CODE