簡易檢索 / 詳目顯示

研究生: 安格瑞
Raudha Anggraini Tarigan
論文名稱: Bacillus aryabhattai 菌株對於促進水稻生長上的應用
Application of Bacillus aryabhattai in Growth Promotion of Oryza sativa
指導教授: 周映孜
Ying, Tzy-Jou
Cahyo Prayogo
學位類別: 碩士
Master
系所名稱: 國際學院 - 土壤與水工程國際碩士學位學程
International Master Program in Soil and Water Engineering
畢業學年度: 107
語文別: 英文
論文頁數: 73
中文關鍵詞: B. aryabhattai水稻微生物菌叢可吸收性氮
外文關鍵詞: B. aryabhattai, Oryza sativa, N-available, microbial community
DOI URL: http://doi.org/10.6346/NPUST201900361
相關次數: 點閱:13下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統
  • 由於近幾十年來化學肥料使用量增加,導致台灣土壤質量下降破壞
    土壤生態系統,因此需要找尋一種替代方案來改善土壤質量。而本研究
    透過促進根圈使植物生長 (Plant Growth of Promote Rhizosphere ,
    簡稱PGPR) 的方式,以此做為生物性肥料。本研究位於台灣南投縣塔塔
    加山發現B. aryabhattai 菌株,並用此菌株作為PGPR。因此,本研究
    的目的為討論B. aryabhattai 對水稻生長、菌叢豐富度和多樣性以及其
    對氮素有效性的影響。本實驗於一至四月在NPUST 生物科技系館進行實
    驗操作,並通過比較施用B. aryabhattai 菌株前後的結果來做T 檢定。
    結果顯示此菌株對水稻的生長期和開花期間並沒有顯著性,推測氮
    肥不能直接被植物吸收,所以無法促進植物生長。由於土壤中存在豐富
    的厚壁菌門和藍細菌門等菌種,導致土壤中的氮素對於植株來說無法攝
    取也不足量。然而,B. aryabhattai 的施用結果表明,根長和總生物量
    有顯著性影響。因此,B. aryabhattai 在水稻栽種中可作為生物肥料,
    並且通過作為PGPR 的厚壁菌門和藍細菌門等菌叢的豐富度和多樣性,來
    ii
    增加固氮的潛力。為了進一步研究,將B. aryabhattai 與其他幾種PGPR
    結合使用,以便更清楚地了解PGPR 的作用、土壤中可利用的氮素以及水
    稻生長的關係。

    Because of the increase in chemical fertilizers over the past few years resulting in a decrease in soil quality in Taiwan which can damage soil ecosystems, so an alternative is needed to improve soil quality. One alternative that is used to improve soil quality is to use the Plant Growth of Promote Rhizosphere (PGPR) application which acts as a biological fertilizer. This study used B. arybhattai bacteria found in Mount Tataka, Taiwan as PGPR. Therefore, the purpose of this study is to determine the effects of B. aryabhattai on rice growth, the soil chemical particularly in N available and soil biology which related to the abundance and diversity of bacteria. This research was conducted at the Biotechnology department at NPUST from January to April. This study used a T-test by comparing the results before the application of B.
    aryabhattai and after the B. aryabhattai application. The results of this study indicate that the application of B. aryabhattai is not significant in the vegetative
    and generative phases of rice growth. Because, the N is not available in the soil into be absorbed by plants, thus it is not sufficient for plant growth. N is not available and sufficient for plants due to the presence of abundant Firmicutes and Cyanobacteria phyla. However, the application of B. aryabhattai in rice fields showed a significant difference in yield on root length and total rice biomass. Therefore, the application of B. aryabhattai to rice can be used as biofertilizer and might have the potential to fix N through to increasing the abundance of phylum Firmicutes and Cyanobacteria acting as PGPR. For further studies, the application of B. aryabhatai can be combined with several other PGPR thus it can be more clearly known the role of PGPR and the Nmechanism available in the soil and also the relationship to rice growth.

    摘要 .................................................................................................................... i
    Abstract ............................................................................................................ iii
    Acknowledgments ............................................................................................. v
    Table of Content ............................................................................................... vi
    List of Table ............................................................................................................................... viii
    List of Figure .................................................................................................... ix
    List of Appendix ......................................................................................................................... xi
    Chapter 1. Introduction ..................................................................................... 1
    1.1 Background of This Study .......................................................................................... 1
    1.2 Research Objectives ...................................................................................................... 4
    1.3 Research Frame Work .................................................................................................. 5
    Chapter 2. Literature Review ........................................................................... 6
    2.1 Rice ...................................................................................................................................... 6
    2.2 Nitrogen Cycle in Rice ................................................................................................ 7
    a. Nitrification in Rice ................................................................................................ 9
    b. Denitrification in Rice .........................................................................................11
    c. Nitrogen Fixation ...................................................................................................12
    2.3 Plant Growth Promoting Rhizobacteria ..............................................................13
    2.4 Mechanism of Plant Growth Promoting Rhizobacteria ..............................14
    2.4.1 Direct Mechanism .............................................................................................14
    2.4.2 Indirect Mechanism ..........................................................................................16
    2.5 Bacillus as PGPR .........................................................................................................17
    Chapter 3. Material and Method ..................................................................... 20
    3.1 Site Description ..........................................................................................................20
    3.2 Isolation, Identification, and Inoculation of Bacteria .................................20
    3.2.1 Inoculation of B. aryabhattai ........................................................................21
    3.3 Rice Cultural Practice ...............................................................................................22
    3.3.1 Seedling Transplanting ...................................................................................22
    3.3.2 Design and Treatment of Pot Experiment ...............................................22
    vii
    3.3.3 Plant Growth Parameters ...............................................................................23
    3.4 Analysis of Microbial Community ......................................................................24
    3.5 Soil Sampling and Analysis ...................................................................................26
    3.5.1 Soil Sampling .....................................................................................................26
    3.5.2 Soil Analysis by Ion Chromatographic .................................................26
    Chapter 4. Result and Discussion .................................................................... 27
    4.1. Results ..............................................................................................................................27
    4.1.1. Identification of B. aryabhattai ................................................................27
    4.1.2. Effect of B. aryabhattai on Rice Growth Parameters .....................28
    4.1.3. Effect of B. aryabhattai on Rice Yield Parameters .........................30
    4.1.4. Effect of B. Aryabhattai on Soil Nutrient ............................................32
    4.1.5. Effect of B. aryabhattai on Microbial Community on Rice .........34
    4.2 Discussion ........................................................................................................................41
    Chapter 5. Conclusion and Recommendation ................................................. 48
    5.1 Conclusion .......................................................................................................................48
    5.2 Recommendation ..........................................................................................................48
    References ....................................................................................................... 49
    Appendix ......................................................................................................... 67
    Documentation ................................................................................................ 70
    Biographical Sketch of the Author .................................................................. 73

    References
    Aguirre, A.M., Rosario, A.,Juan, M. R.L.,Ricardo, A. 2008. Differential Effects of a Bacillus megaterium Strain on Lactuca sativa Plant Growth Depending on the Origin of the Arbuscular Mycorrhizal Fungus Coinoculated: Physiologic and Biochemical Traits. Journal of Plant Growth Regular. 27:10–18.
    Ali, S., Sohail, H.Asma, I., Mazhar, I.,and George, L. 2014. Genetic, Physiological and Biochemical Characterization of Bacillus Sp. Strain RMB7 Exhibiting Plant Growth Promoting and Broad Spectrum Antifungal Activities. Microbial Cell Factories. 13:144.
    Anderson, C.R., Michelle, E.P., Rebekah, A. F., Simon, R.B., Sandi, K., and Denis, C. 2018. Rapid Increases in Soil pH Solubilize Organic Matter, Dramatically Increase Denitrification Potential and Strongly Stimulate Microorganisms From The firmicutes Phylum. PeerJ. 6:6090.
    Arif, M., Muhammd, T., Fiaz, B., Ghulham, Y., and Rana, M. 2014. Effect Of Integrated Use of Organic Manures and Inorganic Fertilizers on Yield and Yield Components of Rice. Journal Agriculture Research. 52(2).
    Awodun, S., Segun, O., Adebayo, A. 2017. Efficient Nutrient Use and Plant Probiotic Microbes Interaction. Probiotics in Agroecosystem. Springer. Singapore. 217 – 232.
    Banning, N.C., Linda, D. M., Louise, M.F and Daniel, V.M. 2015. Ammonia-Oxidising Bacteria Not Archaea Dominate Nitrification Activity in Semi-Arid Agricultural Soil. Scientific Reports. 5:11146.
    Barker, A.V. 2019. Reference Module in Chemistry, Molecular Sciences and Chemical Engineering: Fertilizer. Encyclopedia of Analytical Science (Third Edition). 133- 134.
    50
    Basyouni, A.A., and Abou, K. 2012. Evaluation of Some Rice Varieties under Different Nitrogen Levels. Pelagia Research Library. 3 (2):1144-1149.
    Beneduzi, A., Adriana, A., and Luciane, M.P.P. 2012. Plant growth-promoting Rhizobacteria (PGPR): Their Potential as Antagonists and Bio-control Agents. Genetics and Molecular Biology. 35(4): 1044-1051.
    Berthrong, S.T., Chris, M.Y., Laverne G.G., Blaire, S., Stephanie, A.E., Robert, B.J., and Cheryl, R.K. 2014. Nitrogen Fertilization Has a Stronger Effect on Soil Nitrogen-Fixing Bacterial Communities than Elevated Atmospheric CO2. Applied and Environment Microbiology. 80(10): 3103–3112.
    Bhattacharyya, P., Amaresh, K., N., Muhammad, S., Rahul, T., Sangita, M., Anjani, K., Rajagounder, R., Bipin, B. P. Banhari, L., Priyanka, G., Chinmaya, K. S., Koushik, S.R., Pradeep, K.D. 2015. Effects of 42-Year Long-Term Fertilizer Management on Soil Phosphorus Availability, Fractionation, Adsorption–Desorption Isotherm and Plant Uptake in Flooded Tropical Rice. The Crop Journal. 3 (5):387 – 395.
    Bhattacharyya, P.N., and Jha, D.K. 2012. Plant Growth-Promoting Rhizobacteria (PGPR): Emergence in Agriculture. World Journal Microbiol Biotechnol. 28(4):1327-50. Doi: 10.1007/s11274-011-0979-9.
    Bhatttaharyya, D., Swarnalee, D., Sang-Mi, Y., Sang, C. J., and Yong H.L. 2018. Taxonomic and Functional Changes of Bacterial Communities in the Rhizosphere of Kimchi Cabbage after Seed Bacterization with Proteus vulgaris JBLS202. The Plant Pathology Journal. 34 (4): 286 – 296.
    Bhuvaneshwarin, K., and Pawan, K.S. 2015. Response of Nitrogen-Fixing Water Fern Azolla Biofertilization to Rice Crop. 3 Biotech. 5(4): 523–529.
    51
    Borriss, R. 2011.Use of Plant-Associated Bacillus Strains as Biofertilizers and Biocontrol Agents in Agriculture. Bacteria in Agrobiology: Plant Growth Responses. Borriss, R., 2015. Bacillus, A Plant-Beneficial Bacterium. In book: Principles of plant-microbe interactions. Microbes for sustainable agriculture, Edition: 1, Chapter: 40, Publisher: Springer Cham Heidelberg New York Dordrecht London, Editors: Ben Lugtenberg, pp.379 – 391.
    Bucio, J.L., Juan, C.C.C., Erasto, H.C., Crisanto, V.B., Rodolfo, F.R., Lourdes, I.M.R., and Eduardo, V.C. 2007.Bacillus megaterium Rhizobacteria Promote Growth and Alter Root-System Architecture Through an Auxin- and Ethylene-Independent Signaling Mechanism in Arabidopsis thaliana. Mol Plant Microbe Interact. 20(2):207-17.
    Castro, R.O. Hexon, A. C., Lourdes, M.R., and Jose, L. 2009. The Role of Microbial Signals in Plant Growth and Development. Plant Signaling & Behavior. 4:8: 701-712.
    Chao, A. Nonparametric Estimation of the Numbers of Classes in a Population. Scand. J. Stat. 1984, 11, 265–270 Choudhury, A.T.M.A and Kenedy, I.R. 2005. Nitrogen Fertilizer Losses from Rice Soils and Control of Environmental Pollution Problems. Journal Communications in Soil Science and Plant Analysis. 36:11-112.
    Chung, R.S., Shun-Fa, Tai, Chiu, S.L., Chong-Ho, W., 2013. Nitrogen Use Efficiency Of The Long-Term Crop Rotation System In Taiwan. Food and Fertilizer Technology Center. Taiwan.
    Dandeniya, W.S., and Thies J.E. 2015. Rhizosphere Nitrification and Nitrogen Nutrition of Rice Plants as Affected by Water Management. Tropical Agricultural Research. 24(1): 1 – 11.
    52
    Dasgupta, D., Amit, G., Abhijit, S., Chandan, S., and Goutan, P. 2015. Application of Plant Growth Promoting Rhizobacteria (PGPR) Isolated from the Rhizosphere of Sesbania bispinosa on the Growth of Chickpea (Cicer arietinum L.). International Journal Current Microbiology and Applied Sciences. 4(5): 1033-1042. Deng, M.H., Xiao-Jun, S., Yu-Hua, T., Shao-Lin, Z., Zhao-Liang, Z., S.D. Kimura. 2012. Optimizing Nitrogen Fertilizer Application for Rice Production in the Taihu Lake Region, China. Pedosphore. 22(1):48-57.
    Drogue, B., Hugo, D., Ste ́phanie, B., Florence, W.D., Claire, P.C. 2012. Which Specificity in Cooperation Between Phytostimulating Rhizobacteria and Plants?. Research in Microbiology. 163 (8): 500 – 510.
    Edgar, R.C. 2013. UPARSE: Highly accurate OTU sequences from microbial amplicon reads. Nature Methods. 10(10):996-8.
    Elekhtyar, N. 2016. Influence of different plant growth promoting rhizobacteria (PGPR) strains on rice promising line. Proceedings, The Sixth Field Crops Conference, FCRI, ARC, Giza. Egypt. 22 – 23.
    Elekhtyar, N.M. 2015. Impact of three strains of Bacillus as bio NPK fertilizers an three levels of mineral NPK fertilizers on growth, chemical compositions and yield of Sakha 106 rice cultivar. International Journal of ChemTech Research. 8(4): 2150-2156.
    Elshaghabee, F. M. F., Namita, R., Rohini, D. G., Chetan S., and Harsh, P. 2017. Bacillus As Potential Probiotics: Status, Concerns, and Future Perspectives. Front Microbiol. 8: 1490.
    FAO, 2000. Bridging the Rice Yield Gap in the Asia-Pacific Region. Bangkok. http://www.fao.org/3/x6905e/x6905e04.htm. Accessed on 29 July 2019.
    Farah, G.A., Yassin, M.I.D., Samia, O. Y. 2014. Effect of Different Fertilizers (Bio, Organic and Inorganic Fertilizers) on Some Yield Components of
    53
    Rice (Oryza Sativa L.). Universal Journal of Agricultural Research. 2(2): 67-70.
    Feng, H., Guoxing, C., Lizhong, X., Qian, L., and Wanneng, Y. 2017. Accurate Digitization of the Chlorophyll Distribution of Individual Rice Leaves Using Hyperspectral Imaging and an Integrated Image Analysis Pipeline. Front Plant Science. 8: 1238.
    Fierer, N., Christian, L.L., Kelly, S.R., Jessem Z., Mark, A. B., and Rob, K. 2012. Comparative Metagenomic, Phylogenetic and Physiological Analyses of Soil Microbial Communities across Nitrogen Gradients. The ISME Journal. 6(5):1007 - 1017 Figueira, C., Helena, S., Maria, J. F., Angela, C. 2019. Improved germination efficiency of Salicornia ramosissima seeds inoculated with Bacillus aryabhattai SP1016‐20. Annals of Applied Biology 174(3).
    Flores-Núñez, Angelica, R., Enriqueta, A., Juan, A.C. 2018. Comparison of Plant Growth-Promoting Rhizobacteria in a Pine Forest Soil and an Agricultural Soil. Soil Research. 6(4).
    Franco-Correa, M., and Vanessa, C.A. 2015. Basics and Bioltechnological Applications: Actinobacteria as Plant Growth-Promoting Rhizobacteria.
    Geisseler, D., Kate, S. 2014. Long-term effects of mineral fertilizers on soil microorganisms – A review. Soil in Biology and Biochemistry. 75: 54 – 63.
    Ghosh, P.K.,Tushar, K.M., Krishnendu, P, Sudip K. G., Soumik, M.,Tarun, K.D. 2018. The Role of Arsenic Resistant Bacillus aryabhattai MCC3374 in Promotion of Rice Seedlings Growth and Alleviation of Arsenic Phytotoxicity. Chemosphere. 211: 407 – 419.
    Glick, B.R. 2012. Plant Growth-Promoting Bacteria: Mechanisms and Applications. Scientifica. 2012: 15.
    54
    Gray, E.J., and Smith, D.L. 2005. Intracellular and Extracellular PGPR: Commonalities and Distinctions in the Plant–Bacterium Signaling Processes. Soil Biology and Chemistry. 37: 395 – 412. Doi:10.1016/j.soilbio.2004.08.030
    Green, R.E. Stephen, J.C. Jorn, P.W.S., Dan Andrew, B. 2005. Farming and the Fate of Wild Nature. Science 307.
    Gulnas, Y. Fathima, P.S., Denesh, G.R., Akhilesh, K.K., and Shivrajkumar, H.S. 2017. Effect of Plant Growth Promoting Rhizobacteria (PGPR) and PSB on Root Parameters, Nutrient Uptake and Nutrient Use Efficiency of Irrigated Maize under Varying Levels Of Phosphorus. Journal of Entomology and Zoology Studies. 5(6): 166-169
    Gupta, A., Avishek, D., Javeeta, S., Mruganka, K.P., and Pinaki, S. 2018. Low-Abundance Members of the Firmicutes Facilitate Bioremediation of Soil Impacted by Highly Acidic Mine Drainage From the Malanjkhand Copper Project, India. Frontiers in Mircrobilogy. 9:2882
    Hasan, M., Asghari, B., Shahbaz, G.H., Javed, I., Umer, A., Dai, R., and Khurshied, A.K. 2014. Enhancement of Rice Growth and Production of Growth-Promoting Phytohormones by Inoculation with Rhizobium and Other Rhizobacteria. World Applied Sciences Journal. 31 (10): 1734-1743.
    Hasanuzzaman, M., Masayuki, F., Hirosuke, O., Mohammad, T.I. 2019. Plant Tolerance to Environmental Stress: Role of Phytoprotectants. Taylor & Francis group, LCC. Borca Roto, London, Newyork. Ebook : 392.
    Hayat, R., Iftikhar, A., Rizwan A.S. 2012. An Overview of Plant Growth Promoting Rhizobacteria (PGPR) for Sustainable Agriculture. Crop Production for Agricultural Improvement : 557-579.
    Hayatsi, M., Kanako, T., Masanori, S. 2008. Various Players in The Nitrogen Cycle: Diversity and Functions Of The Microorganisms Involved in
    55
    Nitrification And Denitrification. Soil Science Plant Nutrition. 54 (1): 33 – 45.
    Hofman, G., and Oswald, V.C. 2004. Soil and Plant Nitrogen. Industrial Fertilizer Industry Association. France. 14 – 34
    Hsing, Y.I.C. 2014. Encyclopedia of the History of Science, Technology, and Medicine in Non-Western Cultures: Rice in Taiwan. Springer. 1-3
    Huang, S., Chunfang, Z., Yali, Z., and Cailin, W. 2018. Nitrogen Use Efficiency in Rice. Nitrogen in Agriculture.
    IRRI. 2009. http://www.knowledgebank.irri.org/training/fact-sheets/nutrient-management/item/nitrogen. Accessed on 28 July 2019.
    Ishii, S., Seishi, I., Kiwamu, M., and Keishi, S. 2011. Nitrogen Cycling in Rice Paddy Environments: Past Achievements and Future Challenges. Microbes Environtal. 26(4): 282 – 292. Doi:10.1264/jsme2.ME11293
    Islam, M.R., Tahera, S., Jang-Cheon, C., Melvin, M. J., Sa, T.M. 2012. Diversity of Free-Living Nitrogen-Fixing Bacteria Associated with Korean Paddy Fields. Annals of Microbiology. 62(4):1643-1650. Islam, S..M. M., Yam, K.G., Shah, A.L., Upendra, S., Md.Imran, U.S.., Md.Abdus, S., Joaquin, S. 2016. Rice Yields and Nitrogen use Efficiency with Different Fertilizers and Water Management under Intensive Lowland Rice Cropping System in Bangladesh. Nutrient Cycling in Agroforestry. 106(2): 1385-1314.
    Jalota, S.S., Vashisht.B.B., Sandeep, S., Samanpreet, K. 2018. Emission of Greenhouse Gases and Their Warming Effect. 1 – 53
    Jha, Y., and Subramanian, S.R. 2013. Paddy plants inoculated with PGPR Show Better Growth Physiology and Nutrient Content under Saline Conditions. Chilean Journal of Agricultural Research. 73(3).
    56
    Jonathan W. Leff, J.W., Stuart E. J.Suzanne M. P., Albert B., Elizabeth T. B., Jennifer L. F., Harpole, W.S., Sarah, E.H., Kirsten, S.H., Johannes, M.H.K., Rebecca, L.M., Kimberly, L.P., Anita, C.R., Eric, W.S., Martin, S., Christoper, S., Carly, J.S., and Noah, F. 2015. Consistent responses of soil microbial communities to elevated nutrient inputs in grasslands across the globe. PNAS. 12(35): 10967 – 10972
    Kang, S.M., Ramalingam, R., Young, H.Y., Gil, J.J., In-Jung, L., Ko-eun, L., Jin-Ho, K. 2014. Solubilizing Bacillus megaterium mj1212 Regulates Endogenous Plant Carbohydrates and Amino Acids Contents to Promote Mustard Plant Growth. Indian Journal Microbiol. 54(4):427–433.
    Katiyar, D. 2016. Plant growth promoting Rhizobacteria-an efficient tool for agriculture promotion. Advanced In Plants & Agriculture Research. 4(6). 426 – 434.
    Khan, A., Sirajuddin, Xue, Q. Z., Tariq, M. J., Saifulla, K., Asghari, B., Ren, F.S., Sajid, M. 2016. Bacillus pumilus Enhances Tolerance in Rice (Oryza sativa L.) to Combined Stresses of Nacl and High Boron Due To Limited Uptake of Na+. Environmental and Experimental Botany. 124: (120 – 129).
    Khan, A.A., Ghulan, J., Mohammad, S.A., Syed, M.S.N., Muhammad, R. 2009. Phosphorus Solubilizing Bacteria: Occurrence, Mechanisms and their Role in Crop Production. Journal of Agriculture Biology. 1(1):48-58.
    Khan, M.M.A., Effil, H., Narayan, C.P., Muhammad, A.K., Saleh, M.S.A., Mahfuzur, R., Muhammad, T.I. 2017. Enhancement of Growth and Grain Yield of Rice in Nutrient Deficient Soils by Rice Probiotic Bacteria. Rice Science. 24 (5): 264 – 273.
    Khush, G.G. 2000. Redesigning Rice Photosynthesis to Increase Yield : Strategies for increasing the yield potential of rice. Studies in Plant Science. Philipine. 7:207-212
    57
    Kumar, P., Dubey, R.C., Maheswari, D.K. 2012. Bacillus Strains Isolated from Rhizosphere Showed Plant Growth Promoting and Antagonistic Activity Against Phytopathogens. Microbiol Research. 6:167(8):493-9.
    Kumar, V., and Nivedita, S. 2017. Plant Growth Promoting Rhizobacteria as Growth Promoters for Wheat: A Review. Agriculture Research and Technology. 12(4): 2471 – 6774.
    Kundan, R., Garima, P., Nitesh, J., and Pavan, K.A. 2015. Plant Growth Promoting Rhizobacteria: Mechanism and Current Perspective. Journal of Fertilizer and Pesticides. 6:2
    Li, X., Junpeng, R., Jingbo, X., Jiabao, L., Jizhong, Z., Anthony, C. Y., Roderick, I.M., 2014. Functional Potential of Soil Microbial Communities in the Maize Rhizosphere. PLOS ONE. 9(11):112609
    Labuschagne, N., Theresa, P., and Ahmed. I.H. 2010Plant Growth Promoting Rhizobacteria as Biocontrol Agents Against Soil-Borne Plant Diseases. Plant Growth and Health Promoting Bacteria. 211-23.
    Lee, S., Jong-Ok, K., Hong-Gyu, S. 2012. Growth Promotion of Xanthium italicum by Application of Rhizobacterial Isolates of Bacillus aryabhattai in Microcosm Soil. The Journal of Microbiology.50 (1): 45 – 59.
    Lee, Y.H., Su, J.J., Joon-Hee, H., Jin, S.B., Hyunsuk, S., Hee, J. P., Mee, K., S., Song, H.H. Kyoung, S., K., Sang-Wook, H., and Jeum, K.H. 2018. Enhanced Tolerance of Chinese Cabbage Seedlings Mediated by Bacillus aryabhattai H26-2 and B. siamensis H30-3 against High Temperature Stress and Fungal Infections. Plant Pathlogy Journal. 34(6): 555-566.
    Leghari, S.J., Niaz, A.W., Ghulam, M.L., Abdul, H.L., Ghulam, M.B., Khalid, H.T., Tofique, A.B., Safdar, A.W., Ayaz, A.L. 2016. Role of Nitrogen for Plant Growth and Development: A review. Advances in Environmental Biology. 10(9):209-218
    58
    Liou, J.S.C., and Madsen, E.L. 2008. Microbial Ecological Processes: Aerobic/Anaerobic. Reference Module in Earth Systems and Environmental Sciences. Encyclopedia of Ecology. 2348 – 2357.
    Liu, M., Li, Z.P., Zhang, T.L., Jiang, C.Y., Che, Y.P. 2011. Discrepancy in Response of Rice Yield and Soil Fertility to Long-Term Chemical Fertilization and Organic Amendments in Paddy Soils Cultivated from Infertile Upland in Subtropical China. Agricultural Sciences in China. 10(2): 259-266.
    Liu, X., Wang, H., Zhou, J., Zhu, D., Chen, Z., and Liu, Y. 2016. Effect of N Fertilization Pattern on Rice Yield, N Use Efficiency and Fertilizer-N Fate in the Yangtze River Basin, China. PLoS One. 11(11).
    Marulanda, A.,Rosario, A.,François, C.,Juan, M.R.L.,Ricardo, A. 2010. Regulation of Plasma Membrane Aquaporins by Inoculation with a Bacillus megaterium strain in Maize (Zea mays L.) Plants under Unstressed and Salt-Stressed Conditions. Planta. 232:533–543.
    Massa, J and Behzad, A. 2016. Effect of Chemical Fertilizers on Soil Compaction and Degradation. Agricultural Mechanization in Asia, Africa, and Latin America. 47(1).
    Menendez, E., and Paula, G.F. 2017. Review : Plant probiotic bacteria: solutions to feed the world. Aims Microbiology. 3(3): 502-524.
    Moe, K., Kumudra, W. M., Kyaw, K. W., Takeo, Y. 2017. Effects of Combined Application of Inorganic Fertilizer and Organic Manures on Nitrogen Use and Recovery Efficiencies of Hybrid Rice (Palethwe-1). American Journal of Plant Sciences. 8: 1043 – 1064.
    Moronta-Barrios, F., Fabrizia, G., Alberto, P., Efgloris, M., and Vittorio, V. 2017. Bacterial Microbiota of Rice Roots: 16S-Based Taxonomic
    59
    Profiling of Endophytic and Rhizospheric Diversity, Endophytes Isolation and Simplified Endophytic Community. Microorganisms. 6(14).
    Nandakumar, R., Rasappa, V., Subramanian, B., Raguchander, T. 2001. Induction of systemic resistance in rice against sheath blight disease by Pseudomonas fluorescens. Soil Biology and Biochemistry. 33(4-5):603-612.
    Nazir, N., Azra, N., K., Durdana, S. 2018. Mechanism of Plant Growth Promoting Rhizobacteria (PGPR) in Enhancing Plant Growth – A Review. International Journal of Management, Technology, and Engineering. 8(VII). 2249 – 7455.
    Nevita, T., Sharma, G.G., Piyush P. 2018. Differences in Rice Rhizosphere Bacterial Community Structure by Application of Lignocellulolytic Plant-Probiotic Bacteria with Rapid Composting Traits. Ecological Engineering. 120: 209 – 221.
    Ngangom, I., Nisha, M.M., Kumar,S.S., Ravindra, K.V., Tewari, L., and Sushimitha, S. 2019. Role of Bacillus aryabhattai in Plant Growth and Development. Agricultural Science Digest - A Research Journal of Agriculture, Animal and Veterinary Sciences. 39(1):46 -50.
    Ohyama, T., and Kuni, S. 2010. Nitrogen As A Major Essential Element of Plants: Nitrogen Assimilation in Plants. ISBN: 978-81-308-0406-4: 1 – 18.
    Olivar, V.T., Rosa, M.M.A., Luis, A.V.A., and Iran, A.T. 2014. Role of Nitrogen and Nutrients in Crop Nutrition. Journal of Agricultural Science and Technology. 4: 29-3
    Pailan, S., Debdoot, G., Snehal, A., Srinivasan, K., Pradipta, S. 2015. Degradation of organophosphate insecticide by a novel Bacillus aryabhattai strain SanPS1, Isolated From Soil of Agricultural Field in
    60
    Burdwan, West Bengal, India. International Biodeterioration & Biodegradation. 103: 191 – 195.
    Pal, A.K., and Chandan, S. 2016. Effect of plant growth promoting rhizobacteria on early growth of Rice plant (Oryza sativa L.) under Cadmium (Cd) and Lead (Pb) stress condition. International Journal of BioSciences and Technology. 9(12): 74 – 81.
    Park, Y.G., Bong-Gyu, M. Sang-Mo, K., Adil, H., Raheem, S., Chang-Woo, S., Ah-Yeong, K., Sang-Uk, L., Keyeong, Y. O., Dong, Y.L., In-Jung, L., Byung-Wook, Y. 2017. Bacillus aryabhattai SRB02 Tolerates Oxidative and Nitrosative Stress and Promotes the Growth of Soybean by Modulating The Production of Phytohormones. PLOS ONE. 10.
    Patra, B.C., Soham, R., Umakanta, N., Trilochan, M. 2016. Genetic and Genomic Resources for Grain Cereals Improvement: Rice. 1-80
    Prakash, J., and Naveen, K.A.2019.Phosphate-solubilizing Bacillus sp. Enhances Growth, Phosphorus Uptake and Oil Yield of Mentha arvensis L. Biotech. 9:126.
    Prashar, P., Neera, K., and Sarita, S. 2013. Rhizosphere: Its Structure, Bacterial Diversity, and Significance. Reviews in Environmental Science Biotechnology. 13 (1).
    Purwanto, Agustono, T., Mujiono, Widiatmoko, T., and Widjonarko, B.R. 2019. The Effect of Plant Growth Promotion Rhizobacteria Inoculation to Agronomic Traits of Aromatic Rice (Oryza sativa CV. Inpago Unsoed 1). IOP Conf. Series: Earth and Environmental Science. 255: 012023.
    Ramesh, A., Sushil, K.S., Mahaveer, P.S., Narata, Y., Om, P.J.2014. Inoculation of zinc solubilizing Bacillus aryabhattai strains for improved growth, mobilization, and biofortification of zinc in soybean and wheat cultivated in Vertisols of central India. Applied Soil Ecology. 87 – 96.
    61
    Ranatunga, T., Ken, H., Takeo, O., Yasushi, I. 2018. Process of Denitrification in Flooded Rice Soils. Reviews in Agricultural Science. 6:21-33.
    Rao, A.S., Jha, P., Meena, A.K., Brij, L.L., Ashok, K.P. 2017. Nitrogen Processes in Agroecosystems of India. The Indian Nitrogen Assessment. 59-76.
    Richardson, A.E., Jose-Miguel, B., Ann, M., M., Claire, P.C. 2009. Acquisition of Phosphorus and Nitrogen in the Rhizosphere and Plant Growth Promotion by Microorganisms. Plant and Soil. 321(1-2): 305 – 339.
    Rodrigues, E.P., Luciana, S.R., Andre, L.M.O., Vera, L.D.B., Katia, R.S.T., Segundo, U and Veronica, M.R. 2008. Azospirillum amazonense Inoculation: Effects on Growth, Yield and N2 Fixation of Rice (Oryza sativa L.). Plant Soil. 302: 249 – 261.
    Saha, S. and Sanchita, D. 2018. Effect of Root Exudates on the Genomic Elements in Plant Growth Modulation in Bacillus Aryabhattai AB211. International Journal of Research in Engineering, Science and Management. 1(12): 2581-5792.
    Saharan. B.S., Vibha, N. 2011.Plant Growth Promoting Rhizobacteria: A Critical Review. Life Sciences and Medicine Research. LSMR-21.
    Sarbadhikary, S.B., and Narayan, Mandal. 2017. Field Application of Two Plant Growth Promoting Rhizobacteria with Potent Antifungal Properties. Rhizosphere. 3:170-175.
    Satomi, H., Bandana, B., Saeid, M., Arief, I., Dugald, R., Sharon, S., Alina, T., Bethanyvan, H., April, H., Paul, S., Brett, J. F. 2015. The Value of Biodiversity in Legume Symbiotic Nitrogen Fixation and Nodulation for Biofuel and Food Production. Journal of Plant Physiology. 172(1): 128 – 136.
    62
    Shakeel, M. Afroz, R., Muhammad Nadem, H., Fauzia. Y.H. 2015. Root Associated Bacillus sp. Improves Growth, Yield and Zinc Translocation for Basmati Rice (Oryza sativa) Varieties. Frontiers in Microbiology.
    Sharma, A., Shankhdhar, D., Shankdhar, S.C.2013. Enhancing grain iron content of rice by the application of plant growth promoting rhizobacteria. Plant Soil Environment. 59: 89-94.
    Shen, F.T., Jui-Hung, Y., Chien-Sen, L., Wen-CHing, C., and Yi-Ting, C. 2019. Screening of Rice Endophytic Biofertilizers with Fungicide Tolerance and Plant Growth-Promoting Characteristics. Sustainability. 11(4):1133.
    Shivaji, S., Preeti, C., Zareena, B., Pavan, K. P., R. Manorama,D. Ananth, P.,Y, S. S.,Shrikant, P., Parag, V. C. B. S. Dutt,G. N. Datta., R. K. Manchanda., U. R. Rao., P. M. Bhargava., and J. V. Narlikar. 2009. Janibacter hoylei sp. nov., Bacillus isronensis sp. nov. and Bacillus aryabhattai sp. nov., Isolated From Cryotubes Used For Collecting Air From The Upper Atmosphere. International Journal of Systematic and Evolutionary Microbiology. 59: 2977–2986.
    Siavoshi, M., Alireza, N., and Shankar, L.L. 2010. Effect of Organic Fertilizer on Growth and Yield Components in Rice (Oryza sativa L.) The Journal of Agriculture Science. 3(3).
    Siddikee, M.A., Chauhan, P.S., Anandham, R., Gwang-Hyun, H., and Tongmin, S. 2010. Isolation, Characterization, and Use for Plant Growth Promotion under Salt Stress, of ACC Deaminase-Producing Halotolerant Bacteria Derived from Coastal Soil. Journal Microbial Bioethanol. 20(11), 1577–1584.
    Singh, B. and Vinodh, K.S. 2017. Fertilizer Management in Rice. Book: Rice Production Worldwide. 217-253.
    63
    Sooksa-nguan, T., Janice, E.T., Phrek, G., Nantakorn, B., Neung, T. 2009. Effect of Rice Cultivation Systems on Nitrogen Cycling and Nitrifying Bacterial Community Structure. Applied Soil Ecology. 43 (1): 139 – 149.
    Suresh, K., Ramasubba, R., Hemalatha, S., Reddy, S.N., Raju, A.S, and Madhulety, T.Y. 2013. Integrated Nutrient Management in Rice: A Critical Review. International Journal of Applied Biology and Pharmaceutical Technology. 4(2): 0974-4550
    Tahir, M., and Aqeel, M.S. 2013. Plant Growth Promoting Rhizobacteria (PGPR): A Budding Complement of Synthetic Fertilizers for Improving Crop Production. Pakistan Journal of Life and Social Science. 11(1): 1-7.
    Tang, A., Ahmed, O.H., Nik, M. A.M. 2018. Potential PGPR properties of cellulolytic, Nitrogen-Fixing, and Phosphate-Solubilizing Bacteria of a Rehabilitated Tropical Forest Soil. bioRxiv.
    Tang, H., Xiao, X., Tang, W., Li, C., Wang, K., Weiyang, L., Kaikai, Cheng and Pan X. 2018. Long-term effects of NPK Fertilizers and Organic Manures on Soil Organic Carbon and Carbon Management Index under A Double-Cropping Rice System in Southern China. Communication in Soil Science and Plant Analysis. 49 (16): 1976-1989.
    Tarno, H., Erfan, D. S., and Luqman, Q.A. 2016. Microbial Community Associated with Ambrosia Beetle, Euplatypus parallelus on Sonokembang, Pterocarpus indicus in Malang. Agrivita. Journal of Ariculture Science. 38(3): 312 – 320. Tayefe, M., Akif, G., Amiri, E. 2014. Effect of nitrogen on rice yield, yield components and quality parameters. African Journal of Biotechnology. 13(1):91-105.
    Toyota, K. 2015. Bacillus-related Spore Formers: Attractive Agents for Plant Growth Promotion. Microbes and Environment. 30(3): 205–207.
    64
    USDA. 2019. Global Agricultural Information Network. Network.https://gain.fas.usda.gov/Recent%20GAIN%20Publications/Grain%20and%20Feed%20Annual_Taipei_Taiwan_4-1-2019.pdf. Accessed on 26 July 2019.
    Vacheron, J., Guilhem, D., Marie-Lara, B., Bruno, T., Yvan, M., Daniel, M., Laurent, L., Florence, W., and Claire, P. 2013. Plant Growth-Promoting Rhizobacteria and Root System Functioning. Front Plant Science.
    Vandenberghe, L.P.S, Lina, M.B.G., Cristine, R., Marcela, C.C., Gilberto, V.M., Pereira, J.O., and Carlos, R.S. 2017. Potential Applications of Plant Probiotic Microorganisms in Agriculture and Forestry. AIMS Microbiology. 3(3): 629-648.
    Walintang, D., Sandipan, S., Aritra, R.C., Poulami, C, Shamim, A., and Tongmin, S. 2019. Diversity and Plant Growth-Promoting Potential of Bacterial Endophytes in Rice. Plant Growth Promoting Rhizobacteria (PGPR): Prospects for Sustainable Agriculture.
    Wang, J., Ying,Z., Jinbo, Z., Wei, Z., Christoph,M., and Zucong, C. 2017. Nitrification is the key process determining N use efficiency in paddy soils. Journal Plant Nutrition.180: 648–658
    Ward, B.B. 2008. Nitrification. Encyclopedia of Ecology (Second Edition). 2: 351 – 358.
    Win, K. T., Aung, Z.O., Naoko, O.O., and Tadashi, Y. 2018. Bacillus Pumilus Strain TUAT-1 and Nitrogen Application in Nursery Phase Promote Growth of Rice Plants under Field Conditions. Agronomy. 8(10): 216.
    Xu, M.G., li, D.C., Li, J.M., Qin, D.Z., Kazuyuki, Y., Hosen, Y. 2008. Effects of Organic Manure Application with Chemical Fertilizers on Nutrient Absorption and Yield of Rice in Hunan of Southern China. Agricultural Sciences in China. 7(10): 1245 – 1252.
    65
    Yadegari, M., Asadi, H.R., Noormohammadi, G., and Ayneband, A. 2008. Plant Growth Promoting Rhizobacteria Increase Growth, Yield and Nitrogen Fixation in Phaseolus Vulgaris. Journal of Plant Nutrition. 33(12): 1733 – 1743
    Yan, B. and Ying, H. 2018. Soil Chemical Properties at Different Toposequence and Fertilizer under Continuous Rice Production-a Review. IOP Conference Series: Earth and Environmental Science. 170(3):032107.
    Yang, Yi., Na, W., Xinyan, G., yi, Z., Boping, Y. 2017. Comparative Analysis of Bacterial Community Structure in the Rhizosphere of Maize by High-Throughput Pyrosequencing. PLOS ONE. 12(5): 178425
    Yao, L., Wang, D., Kang, L., Wang, D., Zhang, Y., Hou, X., Guo, Y. 2018. Effects of Fertilizations On Soil Bacteria and Fungi Communities in A Degraded Arid Steppe Revealed By High Through-Put Sequencing. PeerJ.6:4623
    Zhang, A., Ruljang, L., Ji, G., Shigi, Y., and Zhe, C. 2014. Regulating N Application for Rice Yield and Sustainable Eco-Agro Development in the Upper Reaches of Yellow River Basin, China. Scientific World Journal: 239279.
    Zhang, X., Quansheng, C., Xingguo, H. 2013. Soil Bacterial Communities Respond to Mowing and Nutrient Addition in a Steppe Ecosystem. PLOS ONE. 8(12): 84210.
    Zheng, B.X., Xiu, L.H., Kai, D., Guo, W.Z., Qing, L.C., Jia, B. Z and Yong, G.Z. 2017. Long-Term Nitrogen Fertilization Decreased the Abundance of Inorganic Phosphate Solubilizing Bacteria in An Alkaline Soil. Scientific Report. 7: 42284.
    Zhou, S., Sakiyama, Y., Riya, S., Song, X., Terada, A., Hosomi, M. 2012. Assessing Nitrification and Denitrification in A Paddy Soil With Different
    66
    Water Dynamics And Applied Liquid Cattle Waste Using The ¹⁵N Isotopic Technique. Scientific Total Environment. 15(430): 93 – 100.
    Zou, C., Zhifang, L., and Diqiu, Y. 2010. Bacillus megaterium Strain XTBG34 Promotes Plant Growth by pro

    無法下載圖示 校外公開
    2024/08/10
    QR CODE