簡易檢索 / 詳目顯示

研究生: 陳靖浩
Chen, Ching-Hao
論文名稱: 河川溶解性與顆粒性有機質(DOM與POM)光學特徵探討
Investigation optical characteristics of dissolved and particulate organic matters(DOM and POM) in river.
指導教授: 陳庭堅
Ting-Chien Chen
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程與科學系所
Department of Environmental Science and Engineering
畢業學年度: 107
語文別: 中文
論文頁數: 82
中文關鍵詞: 有機質腐植質顆粒有機質溶解性有機質光學指標分子量
外文關鍵詞: DOM, POM, humic substances, optical indicator
DOI URL: http://doi.org/10.6346/NPUST201900367
相關次數: 點閱:15下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統
  • 論文題目:河川溶解性與顆粒性有機質(DOM與POM)光學特徵探討
    學號:M10631023 頁數:82
    學校名稱:國立屏東科技大學 系所:環境工程與科學系
    畢業年月:2019年7月 學位:碩士學位論文
    研究生:陳靖浩 指導教授:陳庭堅 博士

    台灣人口稠密、環境資源有限,加上生活、畜牧及工業廢水與廢棄物不當排入河川,使得環境水體中受到各種污染。近年來顆粒與溶解性有機質(POM and DOM)逐漸受到關注。
    本研究探討武洛溪三個場址,DOM和POM光學特徵,POM與DOM的濾液(< 0.45 μm)利用交錯式濃縮設備分離不同分子量:MW-A(10 kDa-0.45 μm)、MW-B(1 kDa-10 kDa)與MW-C(< 1 kDa)。各種溶液利用紫外光/可見光分光光度計及螢光光譜儀,分析其不同的吸光值與激發/放射矩陣光譜,分別探討POM與DOM 4種溶液光學特徵。
    研究結果顯示POM與DOM有機質含量會隨著水體排放來源而有明顯差異。有機碳質量分率顯示DOM主要分布於MW-C(< 1 kDa),而POM主要分布於MW-A(10 kDa-0.45 μm )。光學指標顯示DOM較POM有更多芳香性(SUVA254)和腐植化程度(HIX)。FI指標顯示DOM主要來源為微生物源,POM為介於微生物與陸域源之間。BIX顯示皆為高比例原生產生的有機質,HIX顯示POM與DOM屬於低腐殖化程度新鮮產生有機質。TRYs/HLs及TRYs/FLs比例顯示DOM較POM有較多的類腐植酸及類黃酸,以MW-A (10 kDa-0.45 μm)數值較高。光學指標顯示DOM受微生物作用增加腐殖化程度。螢光區域積分百分率顯示,DOM之P3與P5分率較POM高,表示DOM的腐植化程度較高。溶解性微生物副產物分率(P4)顯示POM較DOM高。利用光譜分析快速了解溶液DOM與POM光學特徵與差異,顯示光學方法是分析DOM與POM迅速且可行的工具。

    關鍵字:有機質、腐植質、顆粒有機質、溶解性有機質、光學指標、分子量

    Student ID: M10631023
    Title of Thesis: Thesis:Investigation optical characteristics of dissolved and
    particulate organic matters(DOM and POM) in river.
    Total Pages: 82
    Name of Institute: National Pingtung University of Science and Technology
    Name of Department: Department of Environmental Science and Engineering
    Date of Graduation: July, 2019 Degree Conferred: Master degree
    Name of Student: Ching hao Chen Adviser: Dr. Ting-Chien Chen
    The Contents of Abstract in this Thesis:

    Taiwan is dense population and limited of environmental resources. The improper discharge of domestic, livestock and industrial wastewater into rivers have caused various pollutions in environmental waters. In recent years, particles and dissolved organic matter (POM and DOM) have received increasing attention.
    This study explores the optical characteristics of DOM and POM at three sites in WuLuo Creek. The POM and DOM bulk solutions (< 0.45 μm) were separated into three different molecular weights using cross flow ultrafiltration equipment. The solutions were MW-A (10 kDa-0.45 μm), MW-B (1 kDa-10 kDa) and MW-C (< 1 kDa). These solutions were analyzed by UV/Vis spectrophotometer and fluorescence spectrometer to analyze their different absorbance values and excitation/emission spectra, and to examine the optical characteristics of the four solutions of POM and DOM.
    The results shown that the organic matter content of POM and DOM will vary significantly with the source of discharge water. The organic carbon mass fraction shown that DOM was mainly distributed in MW-C (< 1 kDa), while POM was mainly distributed in MW-A (10 kDa-0.45 μm). Optical indicators shown that DOM had more aromaticity (SUVA254) and degree of humification (HIX) than POM. The FI indicator shows that the main source of DOM is the microbial source, and the POM is between the microbial and terrestrial sources. BIX shown high proportion of the organic matter was fresh produced. HIX shown that POM and DOM belong to a low degree of humification and freshly produced organic matter. The ratios of TRYs/HLs and TRYs/FLs showed that DOM had more humic acid and fulvic acid than POM, and the value of MW-A (10 kDa-0.45 μm) was higher than MW-B and MW-C. Optical indicators shown that DOM was affected by microbial activity, hence to increase the degree of humification. The percentage of the fluorescent region integration shown that DOM had higher P3 and P5 fractions than POM indicated that the DOM had a higher degree of humification. The fraction of soluble microbial byproducts (P4) shown that the POM was higher than the DOM. Using optical method to analyze POM and DOM can quickly understand the optical characteristics and differences of POM and DOM solutions. Hence, the optical method is a rapid and feasible tool for analyzing DOM and POM.
    Keywords: organic matter, DOM, POM, humic substances, optical indicator, molecular weight

    摘要 I
    Abstract III
    謝誌 V
    目錄 VI
    表目錄 IX
    圖目錄 XI
    第一章 前言 1
    1.1研究緣起 1
    1.2研究目的 2
    第二章 文獻回顧 3
    2.1 武洛溪流域 3
    2.2武洛溪流域產業環境 4
    2.3武洛溪流域畜牧業計量 6
    2.3溶解性有機質 7
    2.4腐植質 8
    2.5螢光光譜 9
    第三章 材料與方法 10
    3.1樣品來源 10
    3.2實驗藥品與器材 11
    3.2.1藥品與器材 11
    3.2.2實驗儀器設備 12
    3.3實驗流程 13
    3.4實驗方法 15
    3.4.1樣品採集 15
    3.4.2液體pH值測定 15
    3.4.3懸浮固體(Suspended solid, SS) 15
    3.4.4總固體物(Total solid, TS) 15
    3.4.5化學需氧量(Chemical Oxygen Demand, COD) 16
    3.4.6液體總磷 16
    3.4.7氨氮(Ammonia nitrogen) 17
    3.4.8 SPM基本性質值測定 17
    3.4.9 SPM有機質(OM)測定 17
    3.4.10水中總有機碳測定(溶解性有機碳,DOC) 18
    3.5 液體和SPM中有機質的萃取與分離程序 18
    3.5.1 SPM有機質NaOH萃取 18
    3.5.2交錯式超微過濾 19
    3.6紫外線/可見光分光光度計量測 20
    3.7螢光光譜儀分析 20
    3.8螢光區域積分法(Fluorescence regional integration, FRI) 23
    3.9數據統計與分析 24
    第四章 結果與討論 25
    4.1基本性質分析 25
    4.1.1武洛溪液體基本性質 25
    4.1.2武洛溪SPM基本性質 28
    4.2溶解性有機碳測定 28
    4.2.1 DOM在三場址的DOC濃度與有機碳質量分率 29
    4.2.2 POM在三場址的DOC濃度與有機碳質量分率 29
    4.3 UV/Vis指標 31
    4.3.1場址U DOM和POM UV/Vis指標 32
    4.3.2場址M DOM和POM UV/Vis指標 32
    4.3.3場址D DOM和POM UV/Vis指標 33
    4.4螢光物種鑑定 37
    4.4.1場址U DOM和POM螢光物種鑑定 40
    4.4.2場址M DOM和POM螢光物種鑑定 45
    4.4.3場址D DOM和POM螢光物種鑑定 50
    4.5螢光指標 55
    4.5.1場址U DOM和POM螢光指標 56
    4.5.2場址M DOM和POM螢光指標 56
    4.5.3場址D DOM和POM螢光指標 57
    4.6螢光區域積分法 62
    4.6.1場址U DOM和POM溶液之FRI 62
    4.6.2場址M DOM和POM溶液之FRI 62
    4.6.3場址D DOM和POM溶液之FRI 63
    4.7 UV/Vis指標與螢光指標之相關性 67
    4.7.1 DOM光學指標相關性分析結果 67
    4.7.2 POM光學指標相關性分析結果 67
    第五章 結論與建議 71
    5.1結論 71
    5.2建議 72
    參考文獻 73
    作者簡介 82

    Aftab, B., & Hur, J. (2017). Fast tracking the molecular weight changes of humic substances in coagulation/flocculation processes via fluorescence EEM-PARAFAC. Chemosphere, 178, 317-324.
    Baker,A., 2001, "Fluorescence excitation− emission matrix characterization of some sewage-impacted rivers," Environmental science & technology, Vol. 35, No. 5, pp. 948-953.
    Baker, A., 2002, "Fluorescence properties of some farm wastes: implications for water quality monitoring," Water Research, Vol. 36, No. 1, pp. 189-195.
    Battin, T. J., 1998, "Dissolved organic matter and its optical properties in a blackwater tributary of the upper Orinoco river, Venezuela," Organic Geochemistry, Vol. 28, No. 9, pp. 561-569.
    Bilal, M., Jaffrezic, A., Dudal, Y., Le Guillou, C., Menasseri, S., and Walter, C., 2010, "Discrimination of farm waste contamination by fluorescence spectroscopy coupled with multivariate analysis during a biodegradation study," Journal of agricultural and food chemistry, Vol. 58, No. 5, pp. 3093-3100.
    Birdwell, J. E. and Engel, A. S., 2010, "Characterization of dissolved organic matter in cave and spring waters using UV–Vis absorbance and fluorescence spectroscopy," Organic Geochemistry, Vol. 41, No. 3, pp. 270-280.
    Burdige, D. J., Kline, S. W., and Chen, W., 2004, "Fluorescent dissolved organic matter in marine sediment pore waters," Marine Chemistry, Vol. 89, No. 1-4, pp. 289-311.
    Chen, W., Westerhoff, P., Leenheer, J. A., and Booksh, K., 2003, "Fluorescence excitation− emission matrix regional integration to quantify spectra for dissolved organic matter," Environmental science & technology, Vol. 37, No. 24, pp. 5701-5710.
    Chen, W., Westerhoff, P., Leenheer, J. A., and Booksh, K., 2003, "Fluorescence excitation− emission matrix regional integration to quantify spectra for dissolved organic matter," Environmental science & technology, Vol. 37, No. 24, pp. 5701-5710.
    Chen, W., & Wangersky, P. J. (1993). High-temperature combustion analysis of dissolved organic carbon produced in phytoplankton cultures. Marine chemistry, 41(1-3), 167-171.
    Chin, Y.-P., Aiken, G., and O'Loughlin, E., 1994, "Molecular weight, polydispersity, and spectroscopic properties of aquatic humic substances," Environmental Science & Technology, Vol. 28, No. 11, pp. 1853-1858.
    Chiou, C. T., Peters, L. J., and Freed, V. H., 1979, "A physical concept of soil-water equilibria for nonionic organic compounds," Science, Vol. 206, No. 4420, pp. 831-832.
    Coble, P. G., 2007, "Marine optical biogeochemistry: the chemistry of ocean color," Chemical reviews, Vol. 107, No. 2, pp. 402-418.
    Cory, R. M. and McKnight, D. M., 2005, "Fluorescence spectroscopy reveals ubiquitous presence of oxidized and reduced quinones in dissolved organic matter," Environmental science & technology, Vol. 39, No. 21, pp. 8142-8149.
    Cory, R. M., McKnight, D. M., Chin, Y. P., Miller, P., & Jaros, C. L. (2007). Chemical characteristics of fulvic acids from Arctic surface waters:Microbial contributions and photochemical transformations. Journal of Geophysical Research: Biogeosciences, 112(G4).
    Cory, R. M., McNeill, K., Cotner, J. P., Amado, A., Purcell, J. M., and Marshall, A. G., 2010, "Singlet oxygen in the coupled photochemical and biochemical oxidation of dissolved organic matter," Environmental science & technology, Vol. 44, No. 10, pp. 3683-3689.
    Del Vecchio, R. and Blough, N. V., 2002, "Photobleaching of chromophoric dissolved organic matter in natural waters: kinetics and modeling," Marine Chemistry, Vol. 78, No. 4, pp. 231-253.
    Du, Y., Zhang, Y., Chen, F., Chang, Y., and Liu, Z., 2016, "Photochemical reactivities of dissolved organic matter (DOM) in a sub-alpine lake revealed by EEM-PARAFAC: An insight into the fate of allochthonous DOM in alpine lakes affected by climate change," Science of the Total Environment, Vol. 568, No. pp. 216-225.
    Dzierzbicka-Glowacka, L., Kulinski, K., Maciejewska, A., Jakacki, J., & Pempkowiak, J. (2010). Particulate organic carbon in the southern Baltic Sea: numerical simulations and experimental data. Oceanologia, 52(4).
    Dzierzbicka-Głowacka, L., Kuliński, K., Maciejewska, A., Jakacki, J., & Pempkowiak, J. (2011). Numerical modelling of POC dynamics in the southern Baltic under possible future conditions determined by nutrients, light and temperature. Oceanologia, 53(4), 971-992.
    Edzwald, J. K., Tobiason, J. E., Amato, T., and Maggi, L. J., 1999, "Integrating high‐rate DAF technology into plant design," Journal‐American Water Works Association, Vol. 91, No. 12, pp. 41-53.
    Ferrari, G. M., Bo, F. G., & Babin, M. (2003). Geo-chemical and optical characterizations of suspended matter in European coastal waters. Estuarine, coastal and shelf science, 57(1-2), 17-24.
    Fellman, J. B., Hood, E., and Spencer, R. G., 2010, "Fluorescence spectroscopy opens new windows into dissolved organic matter dynamics in freshwater ecosystems: A review," Limnology and Oceanography, Vol. 55, No. 6, pp. 2452-2462.
    Guo, M. and Chorover, J., 2003, "Transport and fractionation of dissolved organic matter in soil columns," Soil Science, Vol. 168, No. 2, pp. 108-118.
    Hakim, A. and Kobayashi, M., 2018, "Aggregation and charge reversal of humic substances in the presence of hydrophobic monovalent counter-ions: Effect of hydrophobicity of humic substances," Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 540, No. pp. 1-10.
    Hansell, D. A. and Carlson, C. A., 2001, "Marine dissolved organic matter and the carbon cycle," Oceanography, Vol. 14, No. 4, pp. 41-49.
    Hansell, D. A. and Carlson, C. A., 2014, Biogeochemistry of marine dissolved organic matter, Academic Press.
    Hansen, A. M., Kraus, T. E., Pellerin, B. A., Fleck, J. A., Downing, B. D., and Bergamaschi, B. A., 2016, "Optical properties of dissolved organic matter (DOM): Effects of biological and photolytic degradation," Limnology and Oceanography, Vol. 61, No. 3, pp. 1015-1032.
    Hassett, J. P., 2006, "Dissolved natural organic matter as a microreactor," Science, Vol. 311, No. 5768, pp. 1723-1724.
    He, W., Chen, M., Schlautman, M. A., & Hur, J. (2016). Dynamic exchanges between DOM and POM pools in coastal and inland aquatic ecosystems: a review.Science of the Total Environment, 551, 415-428.
    He, X., Xi, B., Wei, Z., Guo, X., Li, M., An, D., and Liu, H., 2011, "Spectroscopic characterization of water extractable organic matter during composting of municipal solid waste," Chemosphere, Vol. 82, No. 4, pp. 541-548.
    Helms, J. R., Stubbins, A., Ritchie, J. D., Minor, E. C., Kieber, D. J., and Mopper, K., 2008, "Absorption spectral slopes and slope ratios as indicators of molecular weight, source, and photobleaching of chromophoric dissolved organic matter," Limnology and Oceanography, Vol. 53, No. 3, pp. 955-969.
    Henderson, R. K., Baker, A., Murphy, K., Hambly, A., Stuetz, R., and Khan, S., 2009, "Fluorescence as a potential monitoring tool for recycled water systems: a review," Water research, Vol. 43, No. 4, pp. 863-881.
    Hood, E., Williams, M. W., and McKnight, D. M., 2005, "Sources of dissolved organic matter (DOM) in a Rocky Mountain stream using chemical fractionation and stable isotopes," Biogeochemistry, Vol. 74, No. 2, pp. 231-255.
    Huguet, A., Vacher, L., Relexans, S., Saubusse, S., Froidefond, J.-M., and Parlanti, E., 2009, "Properties of fluorescent dissolved organic matter in the Gironde Estuary," Organic Geochemistry, Vol. 40, No. 6, pp. 706-719.
    Hur, J. and Kim, G., 2009, "Comparison of the heterogeneity within bulk sediment humic substances from a stream and reservoir via selected operational descriptors," Chemosphere, Vol. 75, No. 4, pp. 483-490.
    Hur, J., Lee, D.-H., and Shin, H.-S., 2009, "Comparison of the structural, spectroscopic and phenanthrene binding characteristics of humic acids from soils and lake sediments," Organic Geochemistry, Vol. 40, No. 10, pp. 1091-1099.
    Hygum, B. H., Petersen, J. W., & Søndergaard, M. (1997). Dissolved organic carbon released by zooplankton grazing activity-a high-quality substrate pool for bacteria. Journal of Plankton Research, 19(1), 97-111.
    Jones, M. N. and Bryan, N. D., 1998, "Colloidal properties of humic substances," Advances in colloid and interface science, Vol. 78, No. 1, pp. 1-48.
    Kieber, R. J., Zhou, X., and Mopper, K., 1990, "Formation of carbonyl compounds from UV‐induced photodegradation of humic substances in natural waters: Fate of riverine carbon in the sea," Limnology and Oceanography, Vol. 35, No. 7, pp. 1503-1515.
    Kim, H.-C. and Yu, M.-J., 2007, "Characterization of aquatic humic substances to DBPs formation in advanced treatment processes for conventionally treated water," Journal of Hazardous Materials, Vol. 143, No. 1-2, pp. 486-493.
    Korshin, G. V., Benjamin, M. M., Chang, H.-S., and Gallard, H., 2007, "Examination of NOM chlorination reactions by conventional and stop-flow differential absorbance spectroscopy," Environmental science & technology, Vol. 41, No. 8, pp. 2776-2781.
    Korshin, G. V., Li, C.-W., and Benjamin, M. M., 1997, "Monitoring the properties of natural organic matter through UV spectroscopy: a consistent theory," Water Research, Vol. 31, No. 7, pp. 1787-1795.
    Korshin, G. V., Wu, W. W., Benjamin, M. M., and Hemingway, O., 2002, "Correlations between differential absorbance and the formation of individual DBPs," Water Research, Vol. 36, No. 13, pp. 3273-3282.
    Kowalczuk, P., Durako, M. J., Young, H., Kahn, A. E., Cooper, W. J., and Gonsior, M., 2009, "Characterization of dissolved organic matter fluorescence in the South Atlantic Bight with use of PARAFAC model: Interannual variability," Marine chemistry, Vol. 113, No. 3-4, pp. 182-196.
    Lapworth, D. J. and Kinniburgh, D., 2009, "An R script for visualising and analysing fluorescence excitation–emission matrices (EEMs)," Computers and Geosciences, Vol. 35, No. 10, pp. 2160-2163.
    Li, P. and Hur, J., 2017, "Utilization of UV-Vis spectroscopy and related data analyses for dissolved organic matter (DOM) studies: A review," Critical Reviews in Environmental Science and Technology, Vol. 47, No. 3, pp. 131-154.
    Lowe, A. T., Galloway, A. W., Yeung, J. S., Dethier, M. N., & Duggins, D.O. (2014). Broad sampling and diverse biomarkers allow characterization of nearshore particulate organ matter. Oikos,
    123(11), 1341-1354.
    Ma, H., Allen, H. E., and Yin, Y., 2001, “Characterization of Isolated Fractions of Dissolved Organic Matter from Natural Waters and a Wastewater Effluent,” Water Research, Vol. 35, No. 4, pp. 985-996.
    Meler, J., Ostrowska, M., Stoń-Egiert, J., & Zabłocka, M. (2017). Seasonal and spatial variability of light absorption by suspended particles in the southern Baltic: A mathematical description. Journal of Marine Systems, 170, 68-87.
    McKnight, D. M., Boyer, E. W., Westerhoff, P. K., Doran, P. T., Kulbe, T., and Andersen, D. T., 2001, "Spectrofluorometric characterization of dissolved organic matter for indication of precursor organic material and aromaticity," Limnology and Oceanography, Vol. 46, No. 1, pp. 38-48.
    Miller, W. L. and Moran, M. A., 1997, "Interaction of photochemical and microbial processes in the degradation of refractory dissolved organic matter from a coastal marine environment," Limnology and Oceanography, Vol. 42, No. 6, pp. 1317-1324.
    Moran, M. A., Sheldon, W. M., and Zepp, R. G., 2000, "Carbon loss and optical property changes during long‐term photochemical and biological degradation of estuarine dissolved organic matter," Limnology and Oceanography, Vol. 45, No. 6, pp. 1254-1264.
    Murphy, K. R., Boehme, J. R., Brown, C., Noble, M., Smith, G., Sparks, D., and Ruiz, G. M., 2013, "Exploring the limits of dissolved organic matter fluorescence for determining seawater sources and ballast water exchange on the US Pacific coast," Journal of Marine Systems, Vol. 111, No. pp. 157-166.
    Murphy, K. R., Butler, K. D., Spencer, R. G., Stedmon, C. A., Boehme, J. R., and Aiken, G. R., 2010, "Measurement of dissolved organic matter fluorescence in aquatic environments: an interlaboratory comparison," Environmental science & technology, Vol. 44, No. 24, pp. 9405-9412.
    Obernosterer, I. and Benner, R., 2004, "Competition between biological and photochemical processes in the mineralization of dissolved organic carbon," Limnology and Oceanography, Vol. 49, No. 1, pp. 117-124.
    Osburn, C. L., Handsel, L. T., Mikan, M. P., Paerl, H. W., and Montgomery, M. T., 2012, "Fluorescence tracking of dissolved and particulate organic matter quality in a river-dominated estuary," Environmental science & technology, Vol. 46, No. 16, pp. 8628-8636.
    Parlanti, E., Wörz, K., Geoffroy, L., and Lamotte, M., 2000, "Dissolved organic matter fluorescence spectroscopy as a tool to estimate biological activity in a coastal zone submitted to anthropogenic inputs," Organic geochemistry, Vol. 31, No. 12, pp. 1765-1781.
    Pellerin, B. A., Hernes, P. J., Saraceno, J., Spencer, R. G., and Bergamaschi, B. A., 2010, "Microbial degradation of plant leachate alters lignin phenols and trihalomethane precursors," Journal of environmental quality, Vol. 39, No. 3, pp. 946-954.
    Peng, J., Ren, Z., Song, Y., Yu, H., Tang, X., and Gao, H., 2015, "Impact of spring flooding on DOM characterization in a small watershed of the Hun River, China," Environmental earth sciences, Vol. 73, No. 9, pp. 5131-5140.
    Peuravuori, J. and Pihlaja, K., 1997, "Molecular size distribution and spectroscopic properties of aquatic humic substances," Analytica Chimica Acta, Vol. 337, No. 2, pp. 133-149.
    Piccolo, A., 2001, "The supramolecular structure of humic substances," Soil science, Vol. 166, No. 11, pp. 810-832.
    Santos, L., Pinto, A., Filipe, O., Cunha, Â., Santos, E. B., and Almeida, A., 2016, "Insights on the optical properties of estuarine DOM–hydrological and biological influences," PloS one, Vol. 11, No. 5, p. e0154519.
    Sazawa, K., Tachi, M., Wakimoto, T., Kawakami, T., Hata, N., Taguchi, S., and Kuramitz, H., 2011, "The evaluation for alterations of DOM components from upstream to downstream flow of rivers in Toyama (Japan) using three-dimensional excitation-emission matrix fluorescence spectroscopy," International journal of environmental research and public health, Vol. 8, No. 5, pp. 1655-1670.
    Snoeijs-Leijonmalm, P., Schubert, H., & Radziejewska, T. (Eds.). (2017). Biological oceanography of the Baltic Sea. Springer Science & Business Media.
    Sorensen, J., Vivanco, A., Ascott, M., Gooddy, D., Lapworth, D., Read, D., Rushworth, C., Bucknall, J., Herbert, K., and Karapanos, I., 2018, "Online fluorescence spectroscopy for the real-time evaluation of the microbial quality of drinking water," Water research,137, 301-309.
    Stedmon, C. A., Markager, S., and Bro, R., 2003, "Tracing dissolved organic matter in aquatic environments using a new approach to fluorescence spectroscopy," Marine Chemistry, Vol. 82, No. 3-4, pp. 239-254.
    Stedmon, C. A., Thomas, D. N., Granskog, M., Kaartokallio, H., Papadimitriou, S., and Kuosa, H., 2007, "Characteristics of dissolved organic matter in Baltic coastal sea ice: allochthonous or autochthonous origins?," Environmental science & technology, Vol. 41, No. 21, pp. 7273-7279.
    Steinberg, C., 2013, Ecology of humic substances in freshwaters: determinants from geochemistry to ecological niches, Springer Science & Business Media.
    Steinberg, C. E., Paul, A., Pflugmacher, S., Meinelt, T., Klöcking, R., and Wiegand, C., 2003, "Pure humic substances have the potential to act as xenobiotic chemicals-A review," Fresenius Environmental Bulletin, Vol. 12, No. 5, pp. 391-401.
    Wang, M., & Chen, Y. (2018). Generation and characterization of DOM in wastewater treatment processes. Chemosphere, 201, 96-109.
    Wang, Z., Wu, Z., and Tang, S., 2009, "Characterization of dissolved organic matter in a submerged membrane bioreactor by using three-dimensional excitation and emission matrix fluorescence spectroscopy," Water research, Vol. 43, No. 6, pp. 1533-1540.
    Woźniak, S. B., Darecki, M., Zabłocka, M., Burska, D., & Dera, J. (2016). New simple statistical formulas for estimating surface concentrations of suspended particulate matter (SPM) and particulate organic carbon (POC) from remote-sensing reflectance in the southern Baltic Sea. Oceanologia, 58(3), 161-175.
    Xiao, Y. H., Huang, Q. H., Vähätalo, A. V., Li, F. P., and Chen, L., 2014, "Effects of dissolved organic matter from a eutrophic lake on the freely dissolved concentrations of emerging organic contaminants," Environmental toxicology and chemistry, Vol. 33, No. 8, pp. 1739-1746.
    Yan, M. and Korshin, G. V., 2014, "Comparative examination of effects of binding of different metals on chromophores of dissolved organic matter," Environmental science & technology, Vol. 48, No. 6, pp. 3177-3185.
    Zhang, L., Li, A., Lu, Y., Yan, L., Zhong, S., and Deng, C., 2009, "Characterization and removal of dissolved organic matter (DOM) from landfill leachate rejected by nanofiltration," Waste Management, Vol. 29, No. 3, pp. 1035-1040.
    Zhang, Y., Liu, X., Wang, M., and Qin, B., 2013, "Compositional differences of chromophoric dissolved organic matter derived from phytoplankton and macrophytes," Organic Geochemistry, Vol. 55, No. pp. 26-37.
    Zhang, Y., van Dijk, M. A., Liu, M., Zhu, G., and Qin, B., 2009, "The contribution of phytoplankton degradation to chromophoric dissolved organic matter (CDOM) in eutrophic shallow lakes: field and experimental evidence," water research, Vol. 43, No. 18, pp. 4685-4697.
    Zhu, G., Yin, J., Zhang, P., Wang, X., Fan, G., Hua, B., Ren, B., Zheng, H., and Deng, B., 2014, "DOM removal by flocculation process: fluorescence excitation–emission matrix spectroscopy (EEMs) characterization," Desalination,346, 38-45.
    李丁來,2007,淨水程序中溶解性有機物之去除:生物濾床及污泥毯澄清池之操作評估,碩士論文,國立交通大學環境工程研究所,新竹。
    蘇彥瑋,2012,底泥萃取腐植質特性與結合雌激性化合物探討,碩士論文,國立屏東科技大學,環境工程與科學系,屏東。
    黃韋翔,2013,不同分子量影響底泥腐植質結合疏水性化合物特性,碩士論文,國立屏東科技大學,環境工程與科學系,屏東。
    張智全,2018,豬廢水營養源(氮及磷)隨者廢水處理程序變化,碩士論文,國立屏東科技大學,環境工程與科學系,屏東。
    蔡享駿,2018,底泥及孔隙水重金屬與風險評估以及有機質特性探討,碩士論文,國立屏東科技大學,環境工程與科學系,屏東。
    湯帄貴,2014,武洛溪流域水質水量補充調查及水質模式建立計畫,
    屏東。
    葉昱夆,2015,顆粒性懸浮物質與污泥不同分子量腐植質重金屬分配特性探討,碩士論文,國立屏東科技大學,環境工程與科學系,屏東。

    下載圖示
    QR CODE