簡易檢索 / 詳目顯示

研究生: 陳宜妮
Chen, Yi-Ni
論文名稱: 拉曼光譜法應用於乳製品之檢測
Application of Raman spectrometry on dairy product inspection
指導教授: 黃至君
Chih-Chun, Huang
學位類別: 碩士
Master
系所名稱: 農學院 - 食品科學系所
Department of Food Science
畢業學年度: 107
語文別: 中文
論文頁數: 63
中文關鍵詞: 拉曼光譜法鮮乳保久乳還原乳奶粉奶精
外文關鍵詞: Raman spectrometry, fresh milk, sterilized milk, reconstituted milk, milk powder, creamer
DOI URL: http://doi.org/10.6346/NPUST201900397
相關次數: 點閱:17下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統
  • 拉曼光譜法是以探測光波光子與物質分子之非彈性碰撞所產生振動能階為原理的分析方法,此方法可用於液態和固態樣品做定性與半定量分析。本研究目的是利用雷射光源為785 nm的拉曼光譜儀來檢測鮮乳、保久乳、奶粉與奶精粉樣品,並研究其拉曼光譜圖之光譜變化,來探討各乳製品之可能成分官能基造成的拉曼特徵峰,以辨別鮮乳、還原乳與保久乳以及奶粉與奶精粉之差別、檢測牛乳之乳脂率與探討辨別奶茶中鮮乳與奶精的方法。結果顯示,鮮乳、還原乳與保久乳於波數範圍960至1180 cm-1之間的拉曼光譜圖有差異,可將此區間的拉曼訊號強度以主成分分析法辨別三者;而於奶粉和奶精粉之拉曼光譜圖中,發現奶粉之特徵峰顯示於波數352和1000 cm-1處,而奶精粉之特徵峰則是於476和926 cm-1處,這些特徵峰之顯示與否可用來分辨奶粉及奶精粉。牛乳之拉曼乳脂特徵峰則發現顯示於波數1264、1300、1440、1654和1746 cm-1處,利用不同乳脂率與這些特徵峰的訊號強度之線性關係建立乳脂檢量線,可檢測牛乳之乳脂量。此外,於紅茶中添加鮮乳或奶精水的結果顯示,紅茶之拉曼訊號強烈,會遮蔽區分鮮乳與奶精之特徵峰,但於1300、1440與1654 cm-1處可觀察出油脂特徵峰。綜上所述拉曼光譜法有潛力成為快速檢驗乳製品之方法,其最大優點是樣品不需經過繁瑣的前處理,能節省時間和成本。

    關鍵字:拉曼光譜法、鮮乳、保久乳、還原乳、奶粉、奶精

    Raman spectrometry is an analytical method based on the principle of detecting the vibrational energy levels generated by inelastic collisions between light-wave photons and matter molecules. This method can be used for qualitative and semi-quantitative analysis of liquid and solid samples. The objectives of this study were to analyze the dairy samples including fresh milk, sterilized milk, milk powder and creamer powder using a Raman spectrometer with a 785 nm laser, to understand the changes of spectra from the Raman spectrograms to further discuss the characteristic peaks resulting from the possible functional groups of the components in the samples in order to distinguish fresh milk from sterilized milk and reconstituted milk and milk powder from creamer powder, to determine the milk fat percentage in milk samples, and to discuss the way to distinguish fresh milk and creamer in milk tea. The results of the Raman spectrograms at wavenumber ranged from 960 to 1180 cm-1 show differences among fresh milk, sterilized milk and reconstituted milk. The intensities of these Raman signals after analyzed using principal component analysis can be used to distinguish the three. On the other hand, the characteristic peaks in Raman spectrograms of milk powder are found at wavenumber 352 and 1000 cm-1, while those for creamer powder are found at 476 and 926 cm-1. The appearance of these characteristic peaks can be used to distinguish milk powder from creamer. Additionally, the characteristic peaks for milk fat are found at wavenumber 1264, 1300, 1440, 1654 and 1746 cm-1, and the linear relationship of their intensities and different concentrations of milk fat can be used to construct standard curves of milk fat to detect the milk fat % in milk. Moreover, the Raman spectrograms of black tea show strong signals, which can mask the characteristic peaks used to differentiate fresh milk and creamer when mixed with black tea but not the lipid characteristic peaks at wavenumber 1300, 1440 and 1654 cm-1. In summary, Raman spectrometry has a potential to become a method of rapid inspection for dairy products without tedious sample preparation to save time and cost, which is its greatest advantage.

    Keywords: Raman spectrometry, fresh milk, sterilized milk, reconstituted milk, milk powder, creamer

    中文摘要 I
    Abstract II
    謝誌 IV
    目錄 V
    圖目錄 VII
    表目錄 IX
    1. 前言 1
    2. 文獻回顧 3
    2.1 乳製品之製程與法規規定 3
    2.1.1 牛乳 3
    2.1.1.1 生乳 (Raw milk) 3
    2.1.1.2 鮮乳 (Fresh milk) 3
    2.1.1.3 保久乳 (Sterilized milk) 3
    2.1.1.4 乳飲品 (Dairy drinks) 4
    2.1.2 奶粉 4
    2.2 拉曼光譜法 (Raman spectrometry) 6
    2.2.1 原理 6
    2.2.2 拉曼光譜法在乳製品之應用 10
    2.2.2.1 乳品種之成分 10
    2.2.2.2 乳糖之測定 11
    2.2.2.3 蔗糖之測定 11
    2.2.2.4 非蛋白氮之攙假 12
    2.2.2.5 麥芽糊精之攙假 14
    2.2.2.6 牛乳加工之變化 14
    3. 材料與方法 15
    3.1 實驗目的 15
    3.2 實驗設計 15
    3.3 實驗設備 15
    3.4 試驗藥品 15
    3.5 試驗樣品 17
    3.6 試驗方法 17
    3.6.1 樣品前處理和配製 17
    3.6.1.1 奶粉與奶精粉 17
    3.6.1.2 鮮乳與保久乳 17
    3.6.1.3 還原乳 17
    3.6.1.4 奶精水 19
    3.6.1.5 奶茶之調製 19
    3.6.2 偵測乳製品之拉曼光譜法建立 19
    3.6.2.1 拉曼光譜儀之校正 19
    3.6.2.2 偵測乳製品之拉曼光譜法條件 21
    3.6.2.3 拉曼光譜法於乳脂率之偵測 21
    3.6.3 CNS乳脂肪含量之測定 23
    3.6.4 統計方法 23
    4. 結果與討論 24
    4.1 拉曼光譜法於乳製品偵測之條件探討 24
    4.2 牛乳乳脂與乳固形物之拉曼光譜圖 33
    4.3 鮮乳、還原乳、保久乳與奶精水之辨別 40
    4.3.1 鮮乳、還原乳與保久乳之辨別 40
    4.3.2 鮮乳與奶精水之辨別 43
    4.4 奶粉與奶精粉之辨別 45
    4.5 乳脂率之偵測 47
    4.5.1 牛乳乳脂率之檢量線 47
    4.5.2 拉曼光譜法測得之乳脂率與包裝標示值之比較 47
    4.5.3 拉曼光譜法測得之乳脂率與CNS乳脂含量之比較 47
    4.6 奶粉包裝標示之乳脂率與拉曼乳脂訊號強度之線性關係 52
    4.7 鮮乳或奶精水與紅茶混合之拉曼光譜圖 52
    5. 結論 57
    參考文獻 59
    作者簡介 63

    王翠霜、汪文忠、李金枝、李進送、林維炤、林鴻儒、姜仁章、施敏慧、徐文平、黃明星、張妙玲、葉錦芬、劉常興、戴火木 (1996) 化學。大揚出版社。457-460頁。
    石宇華、石宇嘉 (2011) 儀器分析化學。鼎茂出版社。122-166頁。
    林慶文 (1996) 乳品加工學。華香園出版社。458-468頁。
    施正雄 (2012) 儀器分析原理與應用。五南出版。101-114,249-295頁。
    柯以侃、周心如、董慧茹、賀秀平、楊屹、張新祥 (2007) 儀器分析。新文京開發出版股份有限公司。7-89,241-260頁。
    張勝善 (1991) 牛乳與乳製品。長河出版社。499-528頁。
    許炎和 (1992) 儀器分析原理。國興出版社。179-185頁。
    陳陵援、吳慧眼 (2000) 儀器分析。三民書局股份有限公司。127-136頁。
    黃俊哲、吳吉輝 (2003) 普通化學。俊傑書局股份有限公司。564-574頁。
    經濟部標準檢驗局中華民國國家標準CNS 生乳 總號3055 類號N5092。2015年11月11日修訂公布。
    經濟部標準檢驗局中華民國國家標準CNS 乳粉(奶粉)及乳脂粉 總號2343 類號N5058。2015年11月11日修訂公布。
    經濟部標準檢驗局中華民國國家標準CNS 乳飲品 總號15792 類號N5260。2015年2月16日公布。
    經濟部標準檢驗局中華民國國家標準CNS 保久乳(滅菌乳) 總號13292 類號N5230。2015年2月16日修訂公布。
    經濟部標準檢驗局中華民國國家標準CNS 鮮乳 總號3056 類號N5093。2015年2月16日修訂公布。
    經濟部標準檢驗局中華民國國家標準CNS乳品檢驗法-乳糖之測定 總號3445 類號N6061。2007年1月19日修訂公布。
    劉興鑑、孫逸民、陳玉舜、趙敏勳、謝明學、楊明德 (2008) 儀器分析。全威圖書有限公司。211-227頁。
    魏明通 (2006) 普通化學。五南圖書出版股份有限公司。355-362頁。
    Amjad, A.; Ullah, R.; Khan, S.; Bilal, M.; Khan, A. (2018) Raman spectroscopy based analysis of milk using random forest classification. Vibrational Spectroscopy. 99: 124-129.
    Buckova, M.; Vaskova, H.; Bubelova, Z. (2016) Raman spectroscopy as a modern tool for lactose determination. Wseas Transactions on Biology and Biomedicine. 13: 108-114.
    Czamara, K.; Majzner, K.; Pacia, M. Z.; Kochan, K.; Kaczor, A.; Baranska, M. (2014) Raman spectroscopy of lipids: a review. Journal of Raman Spectroscopy. 46: 4-20.
    El-Abassy, R. M.; Eravuchira, P. J.; Donfack, P.; von der Kammer, B.; Materny, A. (2011). Fast determination of milk fat content using Raman spectroscopy. Vibrational Spectroscopy. 56: 3-8.
    Feng, S.; Lock, A. L.; Garnsworthy, P. C. (2004). Technical Note: A Rapid Lipid Separation Method for Determining Fatty Acid Composition of Milk. Journal of Dairy Science. 87: 3785-3788.
    Ferrão, M.F.; Mello, C.; Borin, A.; Maretto, D.A.; Poppi, R.J. (2007) LSSVM: A new chemometric tool for multivariate regression. Comparison of LS-SVM and PLS regression for determination of common adulterants in powdered milk by NIR spectroscopy. Quimica Nova. 30: 852-859.
    Fox, P. F.; Uniacke-Lowe, T.; McSweeney, P. L. H.; O’Mahony, J. A. (1998) Physical Properties of Milk. Dairy Chemistry and Biochemistry. 321-343.
    Gallier, S.; Gordon, K. C.; Singh, H. (2012). Chemical and structural characterisation of almond oil bodies and bovine milk fat globules. Food Chemistry. 132: 1996-2006.
    Gelder, J.; Gussem, K.; Vandenabeele, P.; Moens, L. (2007). Reference database of Raman spectra of biological molecules. Journal of Raman Spectroscopy. 38: 1133-1147.
    Knipschildt, M. E.; Andersen, G. G. (1994). Drying of Milk and Milk products. Robinson: Modern Dairy Technology. 159-254.
    Li, M.; Chen, J.; Xu, J.; Fu, S.; Gong, H. (2015) Determination of Lactose in Milk by Raman Spectroscopy. Analytical Letters. 48: 1333-1340.
    Lindmark Månsson, H. (2008). Fatty acids in bovine milk fat. Food & Nutrition Research. 52: 18-21.
    McGoverin, C.M.; Clark, A.S.S.; Holroyd, S.E.; Gordon, K.C. (2010) Raman spectroscopic quantification of milk powder constituents. Analytica Chimica Acta. 673:26-32.
    Nieuwoudt, M.K.; Holroyd, S.E.; McGoverin, C.M.; Simpson, M.C.; Williams, D.E. (2016) Rapid, sensitive, and reproducible screening of liquid milk for adulterants using a portable Raman spectrometer and a simple, optimized sample well. Journal of Dairy Science. 99: 7821-7831.
    Qin, J.; Chao, K.; Kim, M. S. (2013) Simultaneous detection of multiple adulterants in dry milk using macro-scale Raman chemical imaging. Food Chemistry. 138: 998-1007.
    Rodrigues Junior, P. H.; de Sa Oliveira, K.; de Almeida, C. E.; De Oliveira, L. F.; Stephani, R.; Pinto Mda, S.; de Carvalho, A. F.; Perrone, I. T. (2016). FT-Raman and chemometric tools for rapid determination of quality parameters in milk powder: Classification of samples for the presence of lactose and fraud detection by addition of maltodextrin. Food Chemistry. 196: 584-588.
    Sadeghi-Jorabchi, H.; Wilson, R. H.; Belton, P. S.; Edwards-Webb, J. D.; Coxon, D. T. (1991) Quantitative analysis of oils and fats by Fourier transform Raman spectroscopy. 47: 1449-1458.
    Song, C. Y.; Chen, W. L.; Yang, M. C.; Huang, J. P.; Mao, S. J. T. (2004). Epitope Mapping of a Monoclonal Antibody Specific to Bovine Dry Milk. Journal of Biological Chemistry. 280: 3574-3582.
    Vaskova, H.; Buckova, M.; Zalesakova, L. (2016) Spectroscopic analysis of milk fat and its mathematical evaluation. International journal of biology and biomedical engineering. 10: 168-175.
    Yao, Y.; Zhao, G.; Yan, Y.; Mu, H.; Jin, Q.; Zou, X.; Wang, X. (2016) Milk fat globules by confocal Raman microscopy: Differences in human, bovine and caprine milk. Food Research International. 80: 61-69.

    無法下載圖示 校外公開
    2024/08/13
    QR CODE