簡易檢索 / 詳目顯示

研究生: 宋泓慶
Sung, Hung-Ching
論文名稱: 彎曲塑性變形對鈦-20釩-4鋁-1錫合金顯微結構之影響
Effect of Bending Plastic Deformation on the Microstructure of Ti-20V-4Al-1Sn Alloy
指導教授: 趙志燁
Chau,Chih-Yeh
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程系所
Department of Mechanical Engineering
畢業學年度: 108
語文別: 中文
論文頁數: 74
中文關鍵詞: 鈦合金彎曲顯微結構加工麻田散體針狀組織
外文關鍵詞: Titanium alloys, Bending, microstructure, stress induced martensite, plate-like structure
DOI URL: http://doi.org/10.6346/NPUST202000018
相關次數: 點閱:111下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統
  • 近30年,鈦合金在民生工業被廣泛的應用,如:眼鏡架、腳踏車車架、網球拍、高爾夫球頭等。其相關的研究與應用主要為,1.各類合金元素於鈦合金之合金設計,2.強度、延伸率、疲勞強度、磨耗…等機械性質探討,3.成分、溫度、時間與相變化關係,4.鑄造、滾軋、鍛造、3D列印…等加工製程方法與參數調整。本文利用SEM、XRD、TEM分析方法,研究鈦-20釩-4鋁-1錫合金,經彎曲壓縮後,顯微結構的變化。結果如下:
    1. SEM觀察顯示:鈦-20釩-4鋁-1錫合金3.30±0.05mm板材,在彎曲壓縮過程中,初始表層會形成加工麻田散體(平行組織)結構;隨著彎曲量增加,麻田散體結構往內部擴展,同時,於結構內部亦可觀察到微細針狀組織。
    2. XRD與TEM分析顯示:在彎曲壓縮過程中,初始於β相基地會形成大量的差排,亦可觀察到多晶化特徵;隨著彎曲量增加,於基地內可觀察到微細的α相顆粒存在,且逐漸成長為完整區域。此外,於微細針狀組織結構內,可觀察到島狀ω相顆粒。

    Recently, Titanium and Titanium alloys have been widely investigated and applied on the minsheng industry, incuding glaeeses, bicycle, temis and golf clubs etc. And, their researches are focused on alloy design, mechanical property, phase transformation and manufatural processes. The purposes of present studies are to investigate on the microstructures of the Ti-20V-4Al-1Sn alloy during the bending processes. The main results are described as following:
    1. Based on the SEM observation, some stress induced martensite with parallel morpholgy formed on surface layer or within center part during bending processes. Meanwhile, some plate-like structure also formed within parallel-morpholgy martensite of which the higher-bending worked.
    2. Based on The XRD and TEM examination, during the bending proceses, high-density of dislocations and poligonization characterics observed in initial stage. Additionally, with increasing bending work, some α-phase particles are observed within β-phase matrix, and then grown to whole matrix. Meanwhile, some ω-phase particles are observed on the interface of β-phase matrix.

    摘要 I
    Abstract II
    誌謝 III
    目錄 IV
    表目錄 VII
    圖目錄 VIII
    第1章 前言 1
    第2章 文獻回顧 2
    2.1. 鈦合金的應用[1~5] 2
    2.2. 鈦合金設計[1~10] 3
    2.3.相變化[1~5] 6
    2.3.1 β相的轉變 7
    2.3.1.1麻田散體轉換 7
    2.3.1.2 ω相的轉換 8
    2.4.鈦合金之加工製程[10~15] 8
    2.5.塑性變形與鈦合金顯微結構關係 10
    2.5.1鈦合金的滑移系統[1~4] 10
    2.5.2鈦合金的機械雙晶[1] 10
    2.5.3塑性加工的織構[1] 11
    2.5.4 β鈦合金塑性加工的相關研究 11
    2.5.4.1滾軋加工[17~22] 11
    2.5.4.2鍛造加工[23,24] 13
    2.5.4.3其他塑性加工研究[25~27] 13
    2.7鈦合金的氧化[1][28~30]] 14
    2.6.高爾夫介紹[5] 15
    第3章 實驗步驟 25
    3.1 鈦-20釩-4鋁-1錫合金製備 25
    3.2 彎曲塑性變形 25
    3.3 顯微結構分析 25
    3.3.1 掃描式電子顯微鏡(SEM)分析 25
    3.3.1 穿透式電子顯微鏡(TEM)分析 26
    3.3.1 X-ray繞射分析儀(XRD)分析 26
    第4章 結果與討論 29
    4.1掃描式電子顯微鏡(SEM) 29
    4.2 X-ray繞射分析儀(XRD) 30
    4.3穿透式電子顯微鏡(TEM) 31
    4.4研究討論 32
    4.4.1實務面出現的氧化反應 32
    4.4.1 ω相的生成與過往的研究比較 32
    第5章 結論 70
    參考文獻 71
    作者簡介 74

    [1] C. Leyens、M. Peters,編,陳振華,譯,“鈦與鈦合金”,化學工業出版社,北京,2008,
    [2] 賴耿陽,“金屬鈦理論與應用”,復漢出版社,2000
    [3] 王群驕,“有色金屬熱處理技術”,化學工業出版社,北京,2008
    [4] 李勝隆,“熱處理-金屬材料原理與應用”,全華出版社,2014
    [5] 許勝安,2014,高爾夫球頭材質探究,碩士論文,國立屏東科技大學,屏東
    [6] 王群驕,“有色金屬熱處理技術”,化學工業出版社,北京,2008
    [7] 吳俊男,2015年,「鈦-12鈮-1銀合金相變化」,碩士論文,屏東科技大學,屏東
    [8] 劉原彰,2015,「鈦-5銅合金相變化」,碩士論文,屏東科技大學,屏東
    [9] 李文傑,2016年,「鈦-1.8銅合金相變化」,碩士論文,屏東科技大學,屏東
    [10] G. G. Wang, Q. Gao, J. X. Liu, Q. Yang, D. C. Wang, R. Yao, S. Y. Liao, F. Zheng, 2017, “Composition design of beta-titanium alloys: Theoretical, Methodological and Practical Advances,” Material Guide A, Vol 31, Issue 02, pp.44-51.
    [11] 翁義祥,2017年,「不同熱處理對6-4鈦3D列印塊材機械性質的影響」,碩士論文,屏東科技大學,屏東
    [12] 蔡誌擎,2018,「熱處理對3D列印6-4Ti合金機械性質的影響」,碩士論文,屏東科技大學,屏東
    [13] 蕭安利,2009年,「不同加工量對鈦合金顯微結構影響」,碩士論文,屏東科技大學,屏東
    [14] 林清淵,2009年,「鈦-6.4鋁-3.6釩合金鍛造性分析」,碩士論文,屏東科技大學,屏東
    [15] 吳旭財,2009年,「鈦-4.5鋁-3鉻-1.8鉬-1釩-0.6鐵鍛造性分析」,碩士論文,屏東科技大學,屏東
    [16] 李智能,2019年,「晶粒尺寸對鈦-10釩-2鐵-3鋁合金機械性質之影響」,碩士論文,屏東科技大學,屏東
    [17] Alexandra O.F. Hayama, Juliana F.S.C. Lopes, Marcelo J.Gomes da Silva, Hamilton F.G.Abreu, Rubens Caram, 2014, “Crystallographic texture evolution in Ti–35Nb alloy deformed by cold rolling,” Materials & Design, Vol 60, pp.653-660
    [18] Huihong Liu, Mitsuo Niinomi, Masaaki Nakai, Ken Cho, 2016, “Athermal and deformation-induced ω-phase transformations in biomedical beta-type alloy Ti–9Cr–0.2O,” Acta Materialia, Vol 106, pp.162-170
    [19] Gwnaghyo Choi, Kwangmin Lee, 2017, “Effect of cold rolling on the microstructural evolution of new β-typed Ti–6Mo–6V–5Cr–3Sn–2.5Zr alloys,” Materials Characterization, Vol 123, pp.67-74
    [20] Sanjay KumarVajpai, Bhupendra Sharma, Mie Ota, Kei Ameyama, 2018, “Effect of cold rolling and heat-treatment on the microstructure and mechanical properties of β-titanium Ti-25Nb-25Zr alloy,” Materials Science and Engineering: A, Vol 736, pp.323-328
    [21] X.J.Jianga, H.T.Zhao, R.H.Han, X.Y.Zhang, M.Z.Ma, R.P.Liu, 2018, “Grain refinement and tensile properties of a metastable TiZrAl alloy fabricated by stress-induced martensite and its reverse transformation,” Materials Science and Engineering: A, Vol 722, pp.8-13
    [22] Lichun Qi, Xueliang Qiao, Lijun Huang, Xu Huang, Wenlong Xiao, Xinqing Zhao, 2019, “Effect of cold rolling deformation on the microstructure and properties of Ti-10V-2Fe-3Al alloy,” Materials Characterization, Vol 155, 109789
    [23] L.Meng, T.Kitashima, T.Tsuchiyama, M.Watanabe, 2020, “Effect of α precipitation on β texture evolution during β-processed forging in a near-β titanium alloy,” Materials Science and Engineering: A, Vol 771, 138640
    [24] Wei Chen, Qiaoyan Sun, Lin Xiao, Jun Sun, 2020, “Deformation-induced microstructure refinement in primary α phase-containing Ti–10V–2Fe–3Al alloy,” Materials Science and Engineering: A, Vol 571, pp.7725-7234
    [25] F.Sun, J.Y.Zhang, M.Marteleur, T.Gloriant, P.Vermaut, D.Laillé, P.Castany, C.Curfs, P.J.Jacques, F.Prima, 2013, “Investigation of early stage deformation mechanisms in a metastable β titanium alloy showing combined twinning-induced plasticity and transformation-induced plasticity effects,” Acta Materialia, Vol 61, pp.6406-6417
    [26] A.Zafari, X.S.Wei, W.Xu, K.Xia, 2015, “Formation of nanocrystalline β structure in metastable beta Ti alloy during high pressure torsion: The role played by stress induced martensitic transformation,” Acta Materialia, Vol 97, pp.146-155
    [27] Xinkai Ma, Fuguo Li, Jun Cao, Jinghui Li, Zhankun Sun, Guang Zhu, Shunshun Zhou, 2018, “Strain rate effects on tensile deformation behaviors of Ti-10V-2Fe-3Al alloy undergoing stress-induced martensitic transformation,” Materials Science and Engineering: A, Vol 710, pp.1-9
    [28] Entao Dong, Wei Yu, Qingwu Cai, 2017, “Alpha-case kinetics and high temperature plasticity of Ti-6Al-4V alloy oxidized in different phase regions,” Scripta Materialia, Vol 207, pp. 2149-2154
    [29] P.A.J.Bagot, A.Radecka, A.P.Magyar, Y.Gong, D.C.Bell, G.D.W.Smith, M.P.Moody, D.Dye, D.Rugg, 2018, “The effect of oxidation on the subsurface microstructure of a Ti-6Al-4V alloy,” Scripta Materialia, Vol 147, pp.24-28
    [30] 劉韋志,2016年,「6-4鈦合金α-case結構分析」,碩士論文,屏東科技大學,屏東
    [31] 王麗晴,2010年,「鈦-4.5鋁-3鉻-1.8鉬-1釩-0.6鐵合金相變化」,碩士論文,屏東科技大學,屏東
    [32] Bei He, Xu Cheng, Jia Li, Guo-Chao Li, Hua-Ming Wang, 2017, “ω-assisted α phase and hardness of Ti-5Al-5Mo-5V-1Cr-1Fe during low temperature isothermal heat treatment after laser surface remelting,” Scripta Materialia, Vol 708, pp.1054-1062
    [33] 戴嘉信,2019年,「鈦-3鋁-8釩-4鉬-4鋯合金相變化」,碩士論文,屏東科技大學,屏東
    [34] 劉國雄,林樹均,李勝隆,鄭晃忠,工程材料科學,台北
    [35] 呂璞石,黃振賢,1988,金屬材料,文京圖書

    無法下載圖示 校外公開
    2025/01/12
    QR CODE