簡易檢索 / 詳目顯示

研究生: 許智明
Xu, Zhi-Ming
論文名稱: 發電機引擎使用廢食用油生質柴油排氣FPM2.5、CPM與PM上水溶性離子及金屬特性
FPM2.5, CPM, and PM-bound water-soluble ions and metals emitted from a diesel engine generator fueled with WCO-biodiesels
指導教授: 李嘉塗
Lee, Jia-twu
陳瑞仁
Chen, Shui-Jen
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程與科學系所
Department of Environmental Science and Engineering
畢業學年度: 108
語文別: 中文
論文頁數: 81
中文關鍵詞: 柴油引擎發電機FPM2.5CPM水溶性離子金屬
外文關鍵詞: diesel engine generator, FPM2.5, CPM, water-soluble ions, metals
DOI URL: http://doi.org/10.6346/NPUST202000232
相關次數: 點閱:27下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統
  • 至今,以生質柴油為替代燃料之研究大多著重於柴油引擎尾氣中可過濾性total-PM(Total Filterable Particulate Matter, TFPM),而有關排氣中可過濾性細微粒(Fine Filterable Particulate Matter,FPM2.5)及凝結性微粒(Condensable Particulate Matter,即CPM)特性之相關研究甚少,此可能導致低估柴油引擎尾氣之健康風險。此外,目前世界各國已有完善且嚴格道路用柴油引擎(如:柴油小客車、重型柴油車…等)尾氣污染物排放標準;而非道路用柴油引擎(如:發電機)之數量雖然較道路用柴油引擎少,然其尾氣至今尚無任何污染排放規範。本研究以石化柴油(D100)中添加20%及40%廢食用油生質柴油(以W20及W40表示)為燃料,進行排氣FPM2.5及CPM採樣,以探討其做為引擎發電機替代燃料時排氣FPM2.5、CPM與PM上水溶性離子及金屬特徵。
    研究結果顯示:與D100相較,發電機引擎3.0 kW負載下使用W20及W40時排氣FPM2.5濃度隨生質柴油添加比增加而有明顯遞減(分別減少8.3及10.6 mg/Nm3);使用W20時排氣有機CPM濃度雖有些微增加(+0.8 mg/Nm3)、然無機CPM濃度則降低較多(–1.44 mg/Nm3),致其Total-CPM濃度較D100時降低;使用W40時排氣無機CPM及有機CPM濃度均增加,致其Total-CPM濃度較D100時明顯增加。與D100相較,使用W20時排氣總PM濃度有降低(減少17%),而使用W40時排氣總PM濃度則上升(增加16%);與D100相較,使用W20及W40時排氣CPM/FPM2.5值均增加,且隨生質柴油添加比提高其比值有增加。與D100相較,使用W20及W40時排氣FPM2.5、無機CPM、有機CPM及總PM上所測水溶性離子總濃度及各PM上水溶性離子含量均有減少,且均隨生質柴油添加比增加而遞減(除W20之無機CPM濃度外);排氣PM上水溶性離子均主要分佈於無機CPM上(佔82%)、有機CPM(佔13%)次之、FPM2.5上最少(佔5%)。與D100相較,使用W20及W40時排氣FPM2.5、無機CPM及有機CPM上ΣMetals濃度隨生質柴油添加比增加而降低。使用D100、W20及W40各油品時其排氣FPM2.5、無機CPM及有機CPM上金屬大致以Na、Mg、Al、K、Ca、Fe、Zn及Sn為主;排氣PM上金屬均主要分佈於無機CPM上(佔54.5%)、有機CPM(佔25.9%)次之、FPM2.5上最少(佔19.6%)。使用D100、W20及W40時排氣PM上非致癌有毒金屬(Al、Cr及Mn)風險及致癌金屬(Cr及Ni)風險均在可接受範圍。

    Most of the researches using biodiesel as a diesel alternative have focused on the emissions of total filterable particulate matter (TFPM) from the diesel engines so far. However, little concern has been to investigating the characteristics of filterable fine particulate matter (FPM2.5) and condensable particulate matter (CPM) emission from diesel engines, which might underestimate the health risk of diesel engine exhaust. Additionally, the emission regulations of road diesel engines, such as light-duty diesel vehicles, heavy-duty diesel vehicles etc., have been well established; however, the emissions of nonroad diesel engines (e.g. diesel engine generators), have not been regulated presently, because their amount are less than on-road ones. In the current study, the testing fuels were prepared by adding 20 and 40% of waste cooking oil (WCO) into conventional diesel (D100) to form W20 and W40, respectively. The emission of FPM2.5 and CPM were then collected from a diesel engine generator to analyze the effect on the characteristics of their mass concentrations, soluble ions, and metal contents by using alternative fuels.
    Results show that the FPM2.5 concentrations were obviously reduced 8.3 and 10.6 mg/Nm3 when replacing D100 by W20 and W40, respectively, at 3.0 kW operation. The inorganic-CPM emission slightly increased by 0.8 mg/Nm3 when using W20, while that of organic-CPM decreased by 1.44 mg/Nm3. Therefore, the overall CPM (Total-CPM) emission from using W20 was lower than that from using D100. On the other hand, the inorganic- and organic-CPM both increased when W40 was used and caused the significantly higher Total-CPM levels than using D100. The TFPM emission concentrations for using W20 and W40 were reduced by 17% and 16%, respectively, in comparison to using D100. Additionally, the CPM/FPM2.5 increased along with the addition fractions of WCO and it was higher when the engine was fueled with W20 or W40 than with D100. For soluble ions, the ion contents on each and the sum of FPM2.5, inorganic- and organic-CPM, and TFPM decreased with the WCO addition fraction, except the inorganic-CPM by using W20. Specifically, the soluble ions mainly distributed on the inorganic-CPM (82%), followed by organic-CPM (13%), and FPM2.5 (5%). The concentrations of metal components (ΣMetals) on FPM2.5, inorganic-, and organic-CPM, decreased with the WCO addition fraction. The dominant metals of FPM2.5, inorganic-, and organic-CPM were Na, Mg, Al, K, Ca, Fe, Zn, and Sn despite the use of different fuels. The total metal distribution on inorganic-CPM was 54.5%, on organic-CPM 25.9%, and on FPM2.5 19.6%. Fortunately, the excess noncancer risk caused by Al, Cr, and Mn and lifetime cancer risk by Cr and Ni both stayed in the acceptable range on PM for all the tested fuels.

    摘要 I
    Abstract III
    謝誌 V
    目錄 VI
    圖目錄 VIII
    表目錄 X
    第 1 章 前言 1
    1.1 研究源起 1
    1.2 研究目的 3
    第 2 章 文獻回顧 4
    2.1 柴油引擎 4
    2.1.1 柴油引擎概述 4
    2.1.2 柴油引擎之工作原理 5
    2.1.3 柴油引擎之燃燒 7
    2.1.4 柴油引擎尾氣污染物特性 8
    2.1.5 柴油引擎金屬排放特性 10
    2.1.6 柴油引擎水溶性離子排放特性 13
    2.2 可凝結性微粒概述 15
    2.3 能源使用概況 17
    2.4 生質柴油 19
    2.4.1 生質能源概述 19
    2.4.2 生質柴油製成 20
    2.4.3 生質柴油之特性 21
    第 3 章 研究方法 24
    3.1 採樣規劃 24
    3.2 研究設備與方法 24
    3.2.1 柴油引擎及發電機規格 24
    3.2.2 試驗油品 26
    3.2.3 試驗方法 29
    3.2.4 濾紙前處理 29
    3.2.5 採樣設備前處理 31
    3.3 樣品回收與分析 31
    3.3.1 FPM2.5樣品回收與質量分析 31
    3.3.2-1 CPM樣品回收 32
    3.3.2-2 CPM質量分析 33
    3.3.3 PM上水溶性離子分析 34
    3.3.4 PM上金屬分析 36
    3.4 人體健康風險評估 38
    第 4 章 結果與討論 40
    4.1 排氣FPM2.5及CPM濃度 40
    4.2 排氣FPM2.5及CPM上水溶性離子濃度與含量 44
    4.3 排氣FPM2.5及CPM上金屬濃度與特徵剖面 55
    4.4 排氣PM上金屬健康風險評估 64
    第 5 章 結論與建議 68
    5.1 結論 68
    5.2 建議 69
    參考文獻 70
    作者簡介 82

    Abdul, K.S.M., Jayasinghe, S.S., Chandana, E.P., Jayasumana, C., De Silva, P.M.C., 2015. "Arsenic and human health effects: A review." Environmental Toxicology and Pharmacology, Vol. 40, No.3, pp. 828-846.
    Amiri, M., Sadighzadeh, A., Falamaki, C., 2016. "Experimental parametric study of frequency and sound pressure level on the acoustic coagulation and precipitation of PM2. 5 aerosols." Aerosol and Air Quality Research, Vol. 16, pp. 3012-3025.
    Atmanli, A., 2016. "Comparative analyses of diesel–waste oil biodiesel and propanol, n-butanol or 1-pentanol blends in a diesel engine." Fuel, Vol. 176, pp. 209-215.
    Agarwal, A. K., and Das, L. M., 2000, "Biodiesel development and characterization for use as a fuel in compression ignition engines." Journal of Engineering for Gas Turbines and Power, Vol. 123, pp. 440-447.
    Agency for Toxic Substances and Disease Registry (ATSDR)., 2004a. Toxicological Profile for Copper.
    Agency for Toxic Substances and Disease Registry (ATSDR)., 2004b. Toxicological Profile for Strontium.
    Agency for Toxic Substances and Disease Registry (ATSDR)., 2005a. Toxicological Profile for Zinc (Update).
    Agency for Toxic Substances and Disease Registry (ATSDR)., 2005b. Toxicological Profile for Nickel.
    Agency for Toxic Substances and Disease Registry (ATSDR)., 2007. Toxicological Profile for Barium and Compounds.
    Agency for Toxic Substances and Disease Registry (ATSDR)., 2008a. Toxicological Profile for Aluminum.
    Agency for Toxic Substances and Disease Registry (ATSDR)., 2008b. Toxicological Profile for Cadmium.
    Agency for Toxic Substances and Disease Registry (ATSDR)., 2012a. Toxicological Profile for Vanadium.
    Agency for Toxic Substances and Disease Registry (ATSDR)., 2012b. Toxicological Profile for Chromium.
    Agency for Toxic Substances and Disease Registry (ATSDR)., 2012c. Toxicological Profile for Manganese.
    Agency for Toxic Substances and Disease Registry (ATSDR)., 2019. Toxicological Profile for Lead.
    Basha, S.A., Gopal, K.R., Jebaraj, S., 2009. "A review on biodiesel production, combustion, emissions and performance." Renewable and Sustainable Energy Reviews, Vol. 13, No. 6-7, pp. 1628-1634.
    Beddows, D.C., Harrison, R.M., 2008. "Comparison of average particle number emission factors for heavy and light duty vehicles derived from rolling chassis dynamometer and field studies." Atmospheric Environment, Vol. 42, No.34, pp. 7954-7966.
    Betha, R., Balasubramanian, R., 2011. "Emissions of particulate-bound elements from stationary diesel engine: Characterization and risk assessment." Atmospheric Environment, Vol. 45, No. 30, pp. 5273-5281.
    Betha, R., Balasubramanian, R., 2013. "Emissions of particulate-bound elements from biodiesel and ultra low sulfur diesel: Size distribution and risk assessment." Chemosphere, Vol. 90, No. 3, pp. 1005-1015.
    Brook, R.D., Rajagopalan, S., Pope III, C.A., Brook, J.R., Bhatnagar, A., Diez-Roux, A.V., Holguin, F., Hong, Y., Luepker, R.V., Mittleman, M.A., 2010. "Particulate matter air pollution and cardiovascular disease: an update to the scientific statement from the American Heart Association." Circulation, Vol. 121, No.21, pp. 2331-2378.
    Canesi, L., Ciacci, C., Betti, M., Fabbri, R., Canonico, B., Fantinati, A., Marcomini, A., Pojana, G., 2008. "Immunotoxicity of carbon black nanoparticles to blue mussel hemocytes." Environment International, Vol. 34, No.8, pp. 1114-1119.
    Cano, M., Vega, F., Palomo, D., Serrano, J., Navarrete, B., 2019. "Characterization of Condensable Particulate Matter Emissions in Agricultural Diesel Engines Using a Dilution-Based Sampling Train." Energy and Fuels, Vol. 33, No. lssue, pp. 779-787.
    Chang, Y.-C., Lee, W.-J., Lin, S.-L., Wang, L.-C., 2013. "Green energy: Water-containing acetone–butanol–ethanol diesel blends fueled in diesel engines." Applied Energy, Vol. 109, pp. 182-191.
    Chang, Y.-C., Lee, W.-J., Wang, L.-C., Yang, H.-H., Cheng, M.-T., Lu, J.-H., Tsai, Y.I., Young, L.-H., 2014a. "Effects of waste cooking oil-based biodiesel on the toxic organic pollutant emissions from a diesel engine." Applied Energy, Vol. 113, pp. 631-638.
    Chang, Y.-C., Lee, W.-J., Wu, T.S., Wu, C.-Y., Chen, S.-J., 2014b. "Use of water containing acetone–butanol–ethanol for NOx-PM (nitrogen oxide-particulate matter) trade-off in the diesel engine fueled with biodiesel." Energy, Vol. 64, pp. 678-687.
    Chiang, H.-L., Lai, Y.-M., Chang, S.-Y., 2012. "Pollutant constituents of exhaust emitted from light-duty diesel vehicles." Atmospheric Environment, Vol. 47, pp. 399-406.
    Chung, A., Lall, A., Paulson, S., 2008. "Particulate emissions by a small non-road diesel engine: Biodiesel and diesel characterization and mass measurements using the extended idealized aggregates theory." Atmospheric Environment, Vol. 42, No.9, pp. 2129-2140.
    Dwivedi, D., Agarwal, A.K., Sharma, M., 2006. "Particulate emission characterization of a biodiesel vs diesel-fuelled compression ignition transport engine: A comparative study." Atmospheric Environment, Vol. 40, No. 29, pp. 5586-5595.
    Feng, Y., Li, Y., Cui, L., 2018. "Critical review of condensable particulate matter." Fuel, Vol. 224, pp. 801-813.
    Fukuda, H., Kondo, A., Noda, H., 2001. "Biodiesel fuel production by transesterification of oils." Journal of Bioscience and Bioengineering, Vol. 92, No. 5, pp. 405-416.
    Geiger, A., Cooper, J., 2010. "Overview of airborne metals regulations, exposure limits, health effects, and contemporary research." US Environmental Protection Agency, Air Quality, Vol. 25, pp. 2015.
    Hao, Y., Gao, C., Deng, S., Yuan, M., Song, W., Lu, Z., Qiu, Z., 2019. "Chemical characterisation of PM2. 5 emitted from motor vehicles powered by diesel, gasoline, natural gas and methanol fuel." Science of the Total Environment, Vol. 674, pp. 128-139.
    Hasan, M., Rahman, M., 2017. "Performance and emission characteristics of biodiesel–diesel blend and environmental and economic impacts of biodiesel production: A review." Renewable and Sustainable Energy Reviews, Vol. 74, pp. 938-948.
    Hu, S., Herner, J.D., Shafer, M., Robertson, W., Schauer, J.J., Dwyer, H., Collins, J., Huai, T., Ayala, A., 2009. "Metals emitted from heavy-duty diesel vehicles equipped with advanced PM and NOx emission controls." Atmospheric Environment, Vol. 43, No.18, pp. 2950-2959.
    IARC, 1980. "Some metals and metallic compounds." Monograph on the Evaluation of Carcinogenic Risk of Chemicals to Humans, Vol. 23, Lyon.
    IARC, 1990. "Chromium, nickel and welding." Monograph on the Evaluation of Carcinogenic Risk of Chemicals to Humans, Vol. 49, Lyon.
    IARC, 1993. "Beryllium, cadmium, mercury, and exposures in the glass manufacturing industry." Monograph on the Evaluation of Carcinogenic Risk of Chemicals to Humans, Vol. 58, Lyon.
    IARC,2012.Press Release, IARC : Diesel engine exhaust carcinogenic, available at:
    https://www.iarc.fr/en /media-centre/pr/2012/pdfs/pr213_E.pdf
    Jacobson, M.Z., Seinfeld, J.H., 2004. "Evolution of nanoparticle size and mixing state near the point of emission." Atmospheric Environment, Vol. 38, No.13, pp. 1839-1850.
    Jaiprakash, Habib, G., 2017. "Chemical and optical properties of PM2. 5 from on-road operation of light duty vehicles in Delhi city." Science of the Total Environment, Vol. 586, pp. 900-916.
    Javadli, R., De Klerk, A., 2012. "Desulfurization of heavy oil." Applied Petrochemical Research, Vol.1, No.1-4, pp. 3-19.
    Jung, H., Kittelson, D.B., Zachariah, M.R., 2006. "Characteristics of SME biodiesel-fueled diesel particle emissions and the kinetics of oxidation." Environmental Science and Technology, Vol. 40, No. 16, pp. 4949-4955.
    Kerminen, V.-M., Mäkelä, T.E., Ojanen, C.H., Hillamo, R.E., Vilhunen, J.K., Rantanen, L., Havers, N., von Bohlen, A., Klockow, D., 1997. "Characterization of the particulate phase in the exhaust from a diesel car." Environmental Science and Technology, Vol. 31, pp. 1883-1889.
    Kittelson, D.B., 1998. "Engines and nanoparticles: a review." Journal of Aerosol Science, Vol. 29, No.5-6, pp. 575-588.
    Liati, A., Pandurangi, S.S., Boulouchos, K., Schreiber, D., Dasilva, Y.A.R., 2015. "Metal nanoparticles in diesel exhaust derived by in-cylinder melting of detached engine fragments." Atmospheric Environment, Vol. 101, pp. 34-40.
    Liati, A., Schreiber, D., Dimopoulos Eggenschwiler, P., Arroyo Rojas Dasilva, Y., 2013. "Metal particle emissions in the exhaust stream of diesel engines: an electron microscope study." Environmental Science and Technology, Vol. 47, pp. 14495-14501.
    Li, J., Qi, Z., Li, M., Wu, D., Zhou, C., Lu, S., Yan, J., Li, X., 2017. "Physical and chemical characteristics of condensable particulate matter from an ultralow-emission coal-fired power plant." Energy and Fuels, Vol. 31, pp. 1778-1785.
    Lim, M., Ayoko, G.A., Morawska, L., Ristovski, Z., Jayaratne, E., 2007. "The effects of fuel characteristics and engine operating conditions on the elemental composition of emissions from heavy duty diesel buses." Fuel, Vol. 86, No. 12-13, pp. 1831-1839.
    Lin, C.-C., Chen, S.-J., Huang, K.-L., Lee, W.-J., Lin, W.-Y., Tsai, J.-H., Chaung, H.-C., 2008. "PAHs, PAH-induced carcinogenic potency, and particle-extract-induced cytotoxicity of traffic-related nano/ultrafine particles." Environmental Science and Technology, Vol. 42, pp. 4229-4235.
    Lin, S.-L., Lee, W.-J., Chia-fon, F.L., Wu, Y.-p., 2012. "Reduction in emissions of nitrogen oxides, particulate matter, and polycyclic aromatic hydrocarbon by adding water-containing butanol into a diesel-fueled engine generator." Fuel, Vol. 93, pp. 364-372.
    Liu, Y., Zhang, W., Yang, W., Bai, Z., Zhao, X., 2018. "Chemical compositions of PM2.5 emitted from diesel trucks and construction equipment." Aerosol Science and Engineering, Vol. 2, pp. 51-60.
    Maricq, M.M., Chase, R.E., Xu, N., Laing, P.M., 2002. "The effects of the catalytic converter and fuel sulfur level on motor vehicle particulate matter emissions: Light duty diesel vehicles." Environmental Science and Technology, Vol. 36, pp. 283-289.
    Maté, T., Guaita, R., Pichiule, M., Linares, C., Díaz, J., 2010. "Short-term effect of fine particulate matter (PM2. 5) on daily mortality due to diseases of the circulatory system in Madrid (Spain)." Science of the Total Environment, Vol. 408, No.23, pp. 5750-5757.
    Meng, Y., Zhao, Y., Li, R., Li, J., Cui, L., Kong, L., Fu, H., 2019. "Characterization of inorganic ions in rainwater in the megacity of Shanghai: Spatiotemporal variations and source apportionment." Atmospheric Research, Vol. 222, pp. 12-24.
    NRC, U., 1983. "Risk assessment in the federal government: managing the process." National Research Council, Washington DC, Vol. 11, No. 3.
    Polichetti, G., Cocco, S., Spinali, A., Trimarco, V., Nunziata, A., 2009. "Effects of particulate matter (PM10, PM2. 5 and PM1) on the cardiovascular system." Toxicology, Vol. 261, No.1-2, pp. 1-8.
    Pope III,C.A., Burnett, R.T., Thun, M.J., Calle, E.E., Krewski, D., Ito, K., Thurston, G.D., 2002. "Lungcancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution." Journal of the American Medical Association, Vol. 287, pp. 1132-1141.
    Qi, Z., Li, J., Wu, D., Xie, W., Li, X., Liu, C., 2017. "Particulate matter emission characteristics and removal efficiencies of a low-low temperature electrostatic precipitator." Energy and Fuels, Vol. 31, pp. 1741-1746.
    Rakopoulos, C., Antonopoulos, K., Rakopoulos, D., Hountalas, D., Giakoumis, E., 2006. "Comparative performance and emissions study of a direct injection diesel engine using blends of diesel fuel with vegetable oils or bio-diesels of various origins." Energy Conversion and Management, Vol. 47, No. 18-19, pp. 3272-3287.
    Sappok, A., Kamp, C., Wong, V., 2012. "Sensitivity analysis of ash packing and distribution in diesel particulate filters to transient changes in exhaust conditions." SAE International Journal of Fuels and Lubricants, Vol. 5, No.2, pp. 733-750.
    Schneider, J., Hock, N., Weimer, S., Borrmann, S., Kirchner, U., Vogt, R., Scheer, V., 2005. "Nucleation particles in diesel exhaust: Composition inferred from in situ mass spectrometric analysis." Environmental Science and Technology, Vol. 39, pp. 6153-6161.
    See, S., Balasubramanian, R., 2006. "Risk assessment of exposure to indoor aerosols associated with Chinese cooking." Environmental Research, Vol. 102, No. 2, pp. 197-204.
    Shahabuddin, M., Liaquat, A., Masjuki, H., Kalam, M., Mofijur, M., 2013. "Ignition delay, combustion and emission characteristics of diesel engine fueled with biodiesel." Renewable and Sustainable Energy Reviews, Vol. 21, pp. 623-632.
    Shen, X., Sun, J., Zhang, X., Zhang, Y., Zhang, L., Che, H., Ma, Q., Yu, X., Yue, Y., Zhang, Y., 2015. "Characterization of submicron aerosols and effect on visibility during a severe haze-fog episode in Yangtze River Delta, China." Atmospheric Environment, Vol. 120, pp. 307-316.
    Shukla, P.C., Gupta, T., Labhsetwar, N.K., Agarwal, A.K., 2017. "Trace metals and ions in particulates emitted by biodiesel fuelled engine." Fuel, Vol. 188, pp. 603-609.
    Singh, D., Sharma, D., Soni, S., Sharma, S., Sharma, P.K., Jhalani, A., 2020. "A review on feedstocks, production processes, and yield for different generations of biodiesel." Fuel, Vol. 262, pp. 116553.
    Sodeman, D.A., Toner, S.M., Prather, K.A., 2005. "Determination of single particle mass spectral signatures from light-duty vehicle emissions." Environmental Science and Technology, Vol. 39, pp. 4569-4580.
    Takase, M., Zhao, T., Zhang, M., Chen, Y., Liu, H., Yang, L., Wu, X., 2015. "An expatiate review of neem, jatropha, rubber and karanja as multipurpose non-edible biodiesel resources and comparison of their fuel, engine and emission properties." Renewable and Sustainable Energy Reviews, Vol. 43, pp. 495-520.
    Tsai, J.-H., Chen, S.-J., Huang, K.-L., Lin, Y.-C., Lee, W.-J., Lin, C.-C., Lin, W.-Y., 2010. "PM, carbon, and PAH emissions from a diesel generator fuelled with soy-biodiesel blends." Journal of Hazardous Materials, Vol. 179, No.1-3, pp. 237-243.
    Tsai, J.-H., Chen, S.-J., Huang, K.-L., Lin, T.-C., Chaung, H.-C., Chiu, C.-H., Chiu, J.-Y., Lin, C.-C., Tsai, P.-Y., 2012. "PM, carbon, PAH, and particle-extract-induced cytotoxicity emissions from a diesel generator fueled with wasteedible-oil-biodiesel." Aerosol and Air Qualita Research, Vol. 12, pp.843-855.
    Tsai, J.-H., Chen, S.-J., Huang, K.-L., Lin, W.-Y., Lee, W.-J., Chao, H.-R., Lin, C.-C., Hsieh, L.-T., 2014. "Emission reduction of NOx, PM, PM-carbon, and PAHs from a generator fuelled by biodieselhols." Journal of Hazardous Materials, Vol. 274, pp. 349-359.
    Ulrich, A., Wichser, A., Hess, A., Heeb, N., Emmenegger, L., Czerwinski, J., Kasper, M., Mooney, J., Mayer, A., 2012. Particle and metal emissions of diesel and gasoline engines are particle filters appropriate measures, Proceedings of the 16th ETH Conference on Combustion Generated Nanoparticles.
    United States Department of Energy (US DOE), 1999. Guidance for Conducting Risk Assessments and Related Risk Activities for the DOE-ORO Environmental Management Program. BJC/OR-271. Retreved June 06, 2020 from the Word Wide Web :
    https://rais.ornl.gov/documents/bjc_or-271.pdf
    USEPA Integrated Risk Information Sytem (IRIS), Retreved June 06, 2020 from the Word Wide Web : https://www.epa.gov/iris
    Vaaraslahti, K., Virtanen, A., Ristimäki, J., Keskinen, J., 2004. "Nucleation mode formation in heavy-duty diesel exhaust with and without a particulate filter." Environmental Science and Technology, Vol. 38, pp. 4884-4890.
    Van Gerpen, J., 2005. "Biodiesel processing and production." Fuel Processing Technology, Vol. 86, No. 10, pp. 1097-1107.
    Volckens, J., Leith, D., 2003. "Partitioning theory for respiratory deposition of semivolatile aerosols." Annals of Occupational Hygiene, Vol. 47, No. 2, pp. 157-164.
    Wåhlin, P., Palmgren, F., Van Dingenen, R., Raes, F., 2001. "Pronounced decrease of ambient particle number emissions from diesel traffic in Denmark after reduction of the sulphur content in diesel fuel." Atmospheric Environment, Vol. 35, No.21, pp. 3549-3552.
    Wang, Y., Liu, H., Lee, C.-F.F., 2016. "Particulate matter emission characteristics of diesel engines with biodiesel or biodiesel blending: A review." Renewable and Sustainable Energy Reviews, Vol. 64, pp. 569-581.
    Watson, J.G., Chow, J.C., Houck, J.E., 2001. "PM2. 5 chemical source profiles for vehicle exhaust, vegetative burning, geological material, and coal burning in Northwestern Colorado during 1995." Chemosphere, Vol. 43, No. 8, pp. 1141-1151.
    Winther, M., Slentø, E., 2010. "Heavy metal emissions for Danish road transport. National environmental research institute, Aarhus University, Denmark. 99 pp." NERI Technical Report, No.780.
    Yang, H.-H., Arafath, S.M., Lee, K.-T., Hsieh, Y.-S., Han, Y.-T., 2018. "Chemical characteristics of filterable and condensable PM2.5 emissions from industrial boilers with five different fuels." Fuel, Vol. 232, pp. 415-422.
    Yang, H.-H., Lee, K.-T., Hsieh, Y.-S., Luo, S.-W., Li, M.-S., 2014. "Filterable and condensable fine particulate emissions from stationary sources." Aerosol and Air Quality Research, Vol. 14, pp. 2010-2016.
    Yilmaz, N., Morton, B., 2011. "Comparative characteristics of compression ignited engines operating on biodiesel produced from waste vegetable oil." Biomass and Bioenergy, Vol. 35, No. 5, pp. 2194-2199.
    Yilmaz, N., Vigil, F.M., 2014. "Potential use of a blend of diesel, biodiesel, alcohols and vegetable oil in compression ignition engines." Fuel, Vol. 124, pp. 168-172.
    Zheng, X., Xu, X., Yekeen, T.A., Zhang, Y., Chen, A., Kim, S.S., Dietrich, K.N., Ho, S.-M., Lee, S.-A., Reponen, T., 2016. "Ambient air heavy metals in PM2. 5 and potential human health risk assessment in an informal electronic-waste recycling site of China." Aerosol and Air Quality Research, Vol. 16, pp. 388-397.
    Zielinska, B., 2005. "Atmospheric transformation of diesel emissions." Experimental and Toxicologic Pathology, Vol. 57, pp. 31-42.
    台灣中油股份有限公司油品行銷事業部,2018,柴油小知識(民國107年5月3日),檢自https://web.cpc.com.tw/division/mb/product-text.aspx?id=11 (Oct.17, 2019)。
    行政院環境保護署,2011,健康風險評估技術規範(民國100年07月20日),發文字號:環署綜字第1000060206號。
    何文淵,1999,「汽油車引擎廢氣揮發性有機物成份及光化反應潛勢」,碩士論文,國立成功大學,環境工程研究所,台南。
    吳堅、許宏彰、劉鎮相、陳中邦,2016,「潤滑基礎油與添加劑化學」,化學,第七十四卷,第四期,341-348 頁。
    李文智、盧昭暉、楊錫賢、楊禮豪、王琳麒,2017,「柴油引擎排放懸浮微粒之物理及化學特性研究」,105年度科技部/環保署空污防治科研合作計畫期末報告,計畫編號: MOST105-EPA-F-007-003。
    林志忠,2007,「交通源大氣奈米、超細、細及粗微粒組成特性之研究」,博士論文,屏東科技大學,環境工程與科學系所,屏東。
    林忠亮, 方炳勳, 黃冬梨, 李政誠, 吳奇生,2006,「生質柴油之製程發展與應用」石油季刊,第四十二卷,第一期,49-59 頁。
    陳亭妤,2018,「工業密集區大氣懸浮微粒特性分析」,碩士論文,東海大學,環境科學與工程學系所,台中。
    張笙又,2006,「生質柴油燃料比例對引擎排放有機氣態污染物特徵影響研究」,碩士論文,國立成功大學,環境工程研究所,台南。
    黃靖雄、初郡恩,2018,「現代汽車引擎(第三版)」,全華圖書股份有限公司,新北市。
    楊錫賢,1998,「大氣環境中多環芳香烴化合物與金屬元素之特徵」,博士論文,國立成功大學,環境工程學系,台南。
    鄭曼婷、楊錫賢、蔡瀛逸、王琳麒、楊禮豪,2010,「柴油車細懸浮微粒排放推估與減量技術之研究」,98年度「環保署/國科會空污防制科研合作計畫」成果報告,計畫編號:NSC 98-EPA-M-003-002
    鄭儀節,2011,「以二甲醚混合柴油對柴油引擎醛酮類化合物排放特徵之研究」,碩士論文,國立中山大學,環境工程系研究所,高雄。

    無法下載圖示 校外公開
    2025/07/20
    QR CODE