簡易檢索 / 詳目顯示

研究生: 陳經學
Chen, Ching-Hsueh
論文名稱: 豌豆蛋白的分離及其加工上特性的研究
Study on the pea protein’s isolation and its characteristics in processing
指導教授: 林貞信
Lin, Jenshinn
學位類別: 碩士
Master
系所名稱: 農學院 - 食品科學系所
Department of Food Science
畢業學年度: 108
語文別: 中文
論文頁數: 96
中文關鍵詞: 豌豆豌豆蛋白鹼萃取等電沉澱法功能特性組織化蛋白
外文關鍵詞: pea, pea protein, alkali extraction-isoelectric precipitation, functionality, texturized protein
DOI URL: http://doi.org/10.6346/NPUST202000305
相關次數: 點閱:45下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統
  • 近年來由於全球暖化及糧食短缺,尋找肉類蛋白替代品成為一個十分熱門的關注議題,而豌豆本身含有大量的複合式碳水化合物、優良蛋白質及微量元素,成為了市場上關注的新焦點。多項研究表明豌豆蛋白與大豆蛋白具有相似的功能特性,但豌豆蛋白的低致敏特性更受到食品工業的重視,近年來常作為食品添加劑應用於食品中。這些商業性蛋白大都以高溫噴霧乾燥進行量產,在過程中常使蛋白受到熱破壞而變性,因此,本研究先利用鹼萃取-等電沉澱法自綠豌豆與黃豌豆中萃取出蛋白質,並用冷凍乾燥法進行乾燥,探討以不同pH值及粉水比對於蛋白質萃取率及純度的影響,之後使用最適之萃取條件以低溫(60°C)噴霧乾燥進行蛋白粉量產,比較商業性蛋白粉與自製蛋白粉之功能特性,最終利用國產單軸擠壓機進行高水分組織化試驗。研究結果顯示,在冷凍乾燥組中,綠豌豆於pH 11.5與粉水比1:10條件下有最高之蛋白質萃取產率15.75%;黃豌豆於pH 10.5與粉水比1:20條件下有最高之蛋白質萃取產率13.50%,兩者的蛋白質純度皆超過85%。噴霧乾燥組中,黃豌豆及綠豌豆蛋白質萃取產率落在10~12%間,蛋白質純度約為83%。由SDS-PAGE的結果,發現自製蛋白粉之球蛋白含量顯著高於商業性蛋白粉;蛋白質溶解度測定中,商業性蛋白粉之蛋白溶解度顯著低於自製蛋白粉,整體隨pH上升呈現先下降再上升的趨勢,於pH 5下有最低之蛋白質溶解度;乳化活性測試結果與蛋白質溶解度具有相似的趨勢,同樣於pH 5下蛋白粉具有最低之乳化活性;乳化穩定性測試結果,發現冷凍乾燥之蛋白粉乳化穩定性較高,整體來說乳化穩定性與pH值無顯著關係;發泡性與發泡穩定性測試中,pH值變化對自製蛋白粉的發泡性與發泡穩定性並無顯著影響,整體數值表現偏低。在高水分組織化試驗中,商業性蛋白粉於150°C、50%進料含水率下便有明顯組織化,當上升至160°C時硬度與截斷力皆具有顯著性上升;自製蛋白粉於相同的溫度及條件下,硬度與截斷力顯著大於商業性濃縮蛋白組,整體交聯現象較商業性蛋白強韌。

    In recent years, due to global warming and food shortages, the search for meat protein substitutes have become a very popular topic. Pea contains a large number of complex carbohydrates, proteins and micronutrient, which has become a new focus in the market. Several studies have shown that pea protein and soybean protein have similar functional properties, but the hypoallergenic properties of the pea protein are more valued by the food industry. In recent years, pea protein is often used as food additives. Most of these commercial proteins are mass-produced by high-temperature spray-drying in the process, proteins were destroyed and denatured. Therefore, in this study, proteins from green peas and yellow peas were first extracted by using alkaline extraction-isoelectric precipitation method, and then dried by freeze-drying method. Effects of different pH values and powder-water ratios on protein extraction rate and purity were studied. Furthermore, an optimum extraction condition was obtained and used with the spray-drying at a temperature of 60°C for a mass production of self-extraction pea protein. The functional characteristics of the self-extraction pea protein were compared with those of commercial protein, and then processed by an indigenous single-screw extruder for high-moisture texturization test. The results showed that in the freeze-drying group, green pea has the highest extraction yield (15.75%) under the conditions of pH 11.5 and powder to water ratio 1:10; yellow pea has the highest extraction yield (13.50%) under the condition of pH 10.5 and powder to water ratio 1:20, and the protein purity of both were more than 85%. In the spray-drying group, the extraction yield of yellow pea and green pea felt between 10 and 12%, and the protein purity was about 83%. The results of SDS-PAGE showed that the content of globulin in self-extraction protein was significantly higher than commercial protein. In the determination of protein solubility, the commercial proteins were significantly lower than the self-extraction protein, and the figure showed as a U-shaped curve. It has the lowest protein solubility at pH 5. And about the protein functionality, the trend of emulsifying activity test was similar to protein solubility, but the emulsifying stability was not. In the foaming properties test, the commercial protein was significantly higher than the self-extraction protein, and the self-extraction protein has no significant difference at different pH values. In the high-moisture texturized protein test, the commercial protein is clearly texturized at 150°C and 50% feed moisture content. When it raised to 160°C, the hardness and the cutting force were significantly increase. And at the same process conditions, the self-extraction proteins had significantly higher hardness and cutting force than commercial protein groups. Overall, the self-extraction protein’s gelling ability were higher than commercial protein.

    摘要 I
    Abstract II
    謝誌 IV
    目錄 V
    圖目錄 VIII
    表目錄 IX
    第1章 前言 1
    第2章 文獻回顧 2
    2.1 人造肉 2
    2.1.1 植物性蛋白 2
    2.1.2 植物性蛋白的分類 3
    2.2 蛋白質萃取方法 3
    2.3 豌豆 6
    2.3.1 豌豆之簡介 6
    2.3.2 豌豆之種類 6
    2.3.2.1 黃豌豆與綠豌豆 6
    2.3.3 豌豆之結構 8
    2.3.4 豌豆營養特性 8
    2.3.5 豌豆蛋白 8
    2.3.5.1 白蛋白 8
    2.3.5.2 球蛋白 10
    2.3.6 豌豆分離蛋白 11
    2.3.7 豌豆蛋白質特性 13
    2.4 乾燥技術 15
    2.4.1 冷凍乾燥 15
    2.4.2 噴霧乾燥 17
    2.5 擠壓技術 24
    2.5.1 擠壓技術簡介 24
    2.5.2 蛋白質的蒸煮擠壓 24
    第 3 章 材料與方法 26
    3.1 實驗設計 26
    3.1.1 凍乾法萃取蛋白實驗 26
    3.1.2 噴霧乾燥量產蛋白粉 26
    3.1.3 擠壓試驗 30
    3.2 實驗原料 31
    3.3 實驗設備 31
    3.4 測定項目及分析方法 33
    3.4.1 一般組成分分析 33
    3.4.1.1 水分含量 33
    3.4.1.2 灰分含量 33
    3.4.1.3 粗蛋白含量 33
    3.4.1.4 粗脂肪含量 34
    3.4.1.5 色澤 35
    3.4.2 蛋白質理化性質分析 35
    3.4.2.1 保水能力及保油能力測試 35
    3.4.2.2 蛋白質溶解度測定 36
    3.4.2.3 聚丙烯醯胺膠體電泳 36
    3.4.2.4 乳化性及乳化穩定性測定 37
    3.4.2.5 發泡性及發泡穩定性測定 39
    3.4.2.6 掃描式電子顯微鏡觀察 39
    3.4.3 組織化蛋白理化性質分析 40
    3.4.3.1 蒸煮產率 40
    3.4.3.2 蒸煮流失率 40
    3.4.3.3 質地分析 40
    3.4.3.4 掃描式電子顯微鏡觀察 41
    3.4.4 實驗數據整理及統計分析 41
    第 4 章 結果與討論 42
    4.1 基本成分分析 42
    4.1.1 原料基本成分分析 42
    4.1.2 噴霧乾燥蛋白粉之基本成分分析 42
    4.1.3 冷凍乾燥蛋白粉產率及純度 45
    4.2 蛋白粉物理性質分析 49
    4.2.1 色澤分析 49
    4.2.2 保水能力及保油能力測試 52
    4.2.3 蛋白質溶解度 54
    4.2.4 聚丙烯醯胺膠體電泳 56
    4.2.5 乳化活性及乳化穩定性 60
    4.2.5.1 乳化活性 60
    4.2.5.2 乳化穩定性 63
    4.2.6 發泡能力及發泡穩定性 66
    4.2.7 商業性蛋白粉與自製蛋白粉之微觀結構 71
    4.3 蒸煮擠壓加工蛋白粉之物理性質分析 74
    4.3.1 色澤分析 74
    4.3.2 蒸煮產率與蒸煮流失率 77
    4.3.3 截斷力與硬度 79
    4.3.4 組織化豌豆蛋白之微觀結構 81
    第 5 章 結論與建議 86
    參考文獻 88
    作者簡介 96

    林貞信。2017。生活中的休閒食品—擠壓加工技術原理與應用。科學月刊第570期。
    行政院農業委員會。2017。台中區農業專訊第四十五期。
    洪聖杰。2018。焙炒與擠壓加工對米糠品質影響之研究。國立屏東科技大學食品科學系碩士學位論文。
    馮培格。2009。利用大豆萃取物粉對組織化大豆蛋白物理與機能性質之影響。國立屏東科技大學食品科學系碩士學位論文。
    張建智。2017。國產單軸擠壓裝置不同模具擠壓加工脫脂大豆粉之研究。國立屏東科技大學食品科學系碩士學位論文。
    藍敬順。2011。大豆分離蛋白、米穀粉與澱粉對組織化全脂大豆蛋白品質之影響。國立屏東科技大學食品科學系碩士學位論文。
    趙亮瑜。2018。添加不同膠對組織化大豆蛋白之理化性質的影響。國立屏東科技大學食品科學系碩士學位論文。
    游鎮嘉。2019。利用蝶豆花開發機能性膨發米點心之研究。國立屏東科技大學食品科學系碩士學位論文。
    潘柏守。2015。糙米、玉米及大麥混和物膨發擠壓之研究。國立屏東科技大學食品科學系碩士學位論文。
    江翊存。2018。探討葫蘆巴萃取物理化性質暨其在麵條及餅乾的應用。國立屏東科技大學食品科學系碩士學位論文。
    顏珀玟。2017。中低溫小型噴霧乾燥系統之建置與測試。國立中興大學食品暨應用生物科技學系碩士學位論文。
    Adebiyi, A. P., & Aluko, R. E. (2011). Functional properties of protein fractions obtained from commercial yellow field pea (Pisum sativum L.) seed protein isolate. Food Chemistry, 128(4), 902–908.
    Aluko, R. E., Mofolasayo, O. A., & Watts, B. M. (2009). Emulsifying and Foaming Properties of Commercial Yellow Pea ( Pisum sativum L.) Seed Flours. Journal of Agricultural and Food Chemistry, 57(20), 9793–9800.
    Arêas, J. A. G., Rocha-Olivieri, C. M., & Marques, M. R. (2016). Extrusion Cooking: Chemical and Nutritional Changes. In B. Caballero, P. M. Finglas, & F. Toldrá (Eds.), Encyclopedia of Food and Health (pp. 569–575).
    Arntfield, S. D., & Maskus, H. D. (2011). Peas and other legume proteins. In Handbook of Food Proteins (pp. 233–266).
    Barac, M., Cabrilo, S., Pesic, M., Stanojevic, S., Zilic, S., Macej, O., & Ristic, N. (2010). Profile and Functional Properties of Seed Proteins from Six Pea (Pisum sativum) Genotypes. International Journal of Molecular Sciences, 11(12), 4973–4990.
    Barac, M., Pesic, M., Stanojevic, S., Kostic, A., & Cabrilo, S. (2015). Techno-functional properties of pea (Pisum sativum) protein isolates: A review. Acta Periodica Technologica, 46, 1–18.
    Benali, M. (2012). Drying of yellow pea starch on inert carriers: Drying kinetics, moisture diffusivity, and product quality. Journal of Food Engineering, 110(3), 337–344.
    Berghout, J. A. M., Pelgrom, P. J. M., Schutyser, M. A. I., Boom, R. M., & van der Goot, A. J. (2015). Sustainability assessment of oilseed fractionation processes: A case study on lupin seeds. Journal of Food Engineering, 150, 117–124.
    Bérot, S., Le Goff, E., Foucault, A., & Quillien, L. (2007). Centrifugal partition chromatography as a tool for preparative purification of pea albumin with enhanced yields. Journal of Chromatography B, 845(2), 205–209.
    Bogahawaththa, D., Bao Chau, N. H., Trivedi, J., Dissanayake, M., & Vasiljevic, T. (2019). Impact of selected process parameters on solubility and heat stability of pea protein isolate. LWT, 102, 246–253.
    Boye, J. I., Aksay, S., Roufik, S., Ribéreau, S., Mondor, M., Farnworth, E., & Rajamohamed, S. H. (2010). Comparison of the functional properties of pea, chickpea and lentil protein concentrates processed using ultrafiltration and isoelectric precipitation techniques. Food Research International, 43(2), 537–546.
    Burger, T. G., & Zhang, Y. (2019). Recent progress in the utilization of pea protein as an emulsifier for food applications. Trends in Food Science & Technology, 86, 25–33.
    Carbonaro, M., Maselli, P., & Nucara, A. (2015). Structural aspects of legume proteins and nutraceutical properties. Food Research International, 76, 19–30.
    Chen, M., Lu, J., Liu, F., Nsor-Atindana, J., Xu, F., Goff, H. D., Ma, J., & Zhong, F. (2019). Study on the emulsifying stability and interfacial adsorption of pea proteins. Food Hydrocolloids, 88, 247–255.
    Chéreau, D., Videcoq, P., Ruffieux, C., Pichon, L., Motte, J.-C., Belaid, S., Ventureira, J., & Lopez, M. (2016). Combination of existing and alternative technologies to promote oilseeds and pulses proteins in food applications. OCL, 23(4), D406.
    Croy, R. R., Gatehouse, J. A., Tyler, M., & Boulter, D. (1980). The purification and characterization of a third storage protein (convicilin) from the seeds of pea (Pisum sativum L.). The Biochemical Journal, 191(2), 509–516.
    Djoullah, A., Djemaoune, Y., Husson, F., & Saurel, R. (2015). Native-state pea albumin and globulin behavior upon transglutaminase treatment. Process Biochemistry, 50(8), 1284–1292.
    Egounlety, M., & Aworh, O. C. (2003). Effect of soaking, dehulling, cooking and fermentation with Rhizopus oligosporus on the oligosaccharides, trypsin inhibitor, phytic acid and tannins of soybean (Glycine max Merr.), cowpea (Vigna unguiculata L. Walp) and groundbean (Macrotyloma geocarpa Harms). Journal of Food Engineering, 56(2–3), 249–254.
    Finch-Savage, W. E., & Leubner-Metzger, G. (2006). Seed dormancy and the control of germination: Tansley review. New Phytologist, 171(3), 501–523.
    Gayler, K. R., & Sykes, G. E. (1985). Effects of Nutritional Stress on the Storage Proteins of Soybeans. Plant Physiology, 78(3), 582–585.
    Gharsallaoui, A., Cases, E., Chambin, O., & Saurel, R. (2009). Interfacial and Emulsifying Characteristics of Acid-treated Pea Protein. Food Biophysics, 4(4), 273–280.
    Introduction to spray drying. (2015). In C. Anandharamakrishnan & S. P. Ishwarya, Spray Drying Techniques for Food Ingredient Encapsulation (pp. 1–36). John Wiley & Sons, Ltd.
    Kelly, G. M., O’Mahony, J. A., Kelly, A. L., Huppertz, T., Kennedy, D., & O’Callaghan, D. J. (2015). Influence of protein concentration on surface composition and physico-chemical properties of spray-dried milk protein concentrate powders. International Dairy Journal, 51, 34–40.
    Khan, T. N., Meldrum, A., & Croser, J. S. (2016). Pea: Overview. In Encyclopedia of Food Grains (pp. 324–333). Elsevier.
    Kutzli, I., Griener, D., Gibis, M., Schmid, C., Dawid, C., Baier, S. K., Hofmann, T., & Weiss, J. (2020). Influence of Maillard reaction conditions on the formation and solubility of pea protein isolate-maltodextrin conjugates in electrospun fibers. Food Hydrocolloids, 101, 105535.
    Lam, A. C. Y., Can Karaca, A., Tyler, R. T., & Nickerson, M. T. (2018). Pea protein isolates: Structure, extraction, and functionality. Food Reviews International, 34(2), 126–147.
    Lan, Y., Xu, M., Ohm, J.-B., Chen, B., & Rao, J. (2019). Solid dispersion-based spray-drying improves solubility and mitigates beany flavour of pea protein isolate. Food Chemistry, 278, 665–673.
    Leyva-Porras, C., Cruz-Alcantar, P., Espinosa-Solís, V., Martínez-Guerra, E., Piñón-Balderrama, C. I., Compean Martínez, I., & Saavedra-Leos, M. Z. (2019). Application of Differential Scanning Calorimetry (DSC) and Modulated Differential Scanning Calorimetry (MDSC) in Food and Drug Industries. Polymers, 12(1), 5.
    Liang, H.-N., & Tang, C.-H. (2013). PH-dependent emulsifying properties of pea [Pisum sativum (L.)] proteins. Food Hydrocolloids, 33(2), 309–319.
    Lin, S., Huff, H. E., & Hsieh, F. (2002). Extrusion Process Parameters, Sensory Characteristics, and Structural Properties of a High Moisture Soy Protein Meat Analog. Journal of Food Science, 67(3), 1066–1072.
    Lu, B.-Y., Quillien, L., & Popineau, Y. (2000). Foaming and emulsifying properties of pea albumin fractions and partial characterisation of surface-active components. J Sci Food Agric, 9.
    Makri, E., Papalamprou, E., & Doxastakis, G. (2005). Study of functional properties of seed storage proteins from indigenous European legume crops (lupin, pea, broad bean) in admixture with polysaccharides. Food Hydrocolloids, 19(3), 583–594.
    Marathe, S. A., Rajalakshmi, V., Jamdar, S. N., & Sharma, A. (2011). Comparative study on antioxidant activity of different varieties of commonly consumed legumes in India. Food and Chemical Toxicology, 49(9), 2005–2012.
    Moreno, H. M., Domínguez-Timón, F., Díaz, M. T., Pedrosa, M. M., Borderías, A. J., & Tovar, C. A. (2020). Evaluation of gels made with different commercial pea protein isolate: Rheological, structural and functional properties. Food Hydrocolloids, 99, 105375.
    Nicolai, T., & Durand, D. (2013). Controlled food protein aggregation for new functionality. Current Opinion in Colloid & Interface Science, 18(4), 249–256.
    Oliete, B., Yassine, S. A., Cases, E., & Saurel, R. (2019). Drying method determines the structure and the solubility of microfluidized pea globulin aggregates. Food Research International, 119, 444–454.
    Osborne, T. B. (1909). The vegetable proteins. London, Longmans.
    Osen, R., & Schweiggert-Weisz, U. (2016). High-Moisture Extrusion: Meat Analogues. In Reference Module in Food Science (p. B9780081005965031000).
    Osen, Raffael, Toelstede, S., Eisner, P., & Schweiggert-Weisz, U. (2015). Effect of high moisture extrusion cooking on protein-protein interactions of pea ( Pisum sativum L.) protein isolates. International Journal of Food Science & Technology, 50(6), 1390–1396.
    Pietsch, V. L., Bühler, J. M., Karbstein, H. P., & Emin, M. A. (2019). High moisture extrusion of soy protein concentrate: Influence of thermomechanical treatment on protein-protein interactions and rheological properties. Journal of Food Engineering, 251, 11–18.
    Pietsch, V. L., Werner, R., Karbstein, H. P., & Emin, M. A. (2019). High moisture extrusion of wheat gluten: Relationship between process parameters, protein polymerization, and final product characteristics. Journal of Food Engineering, 259, 3–11.
    Roy, I., & Gupta, M. N. (2004). Freeze-drying of proteins: Some emerging concerns. Biotechnology and Applied Biochemistry, 39(2), 165.
    Sandoval Murillo, J. L., Osen, R., Hiermaier, S., & Ganzenmüller, G. (2019). Towards understanding the mechanism of fibrous texture formation during high-moisture extrusion of meat substitutes. Journal of Food Engineering, 242, 8–20.
    Schreuders, F. K. G., Dekkers, B. L., Bodnár, I., Erni, P., Boom, R. M., & van der Goot, A. J. (2019). Comparing structuring potential of pea and soy protein with gluten for meat analogue preparation. Journal of Food Engineering, 261, 32–39.
    Schutyser, M. A. I., Pelgrom, P. J. M., van der Goot, A. J., & Boom, R. M. (2015). Dry fractionation for sustainable production of functional legume protein concentrates. Trends in Food Science & Technology, 45(2), 327–335.
    Sridharan, S., Meinders, M. B. J., Bitter, J. H., & Nikiforidis, C. V. (2020). Pea flour as stabilizer of oil-in-water emulsions: Protein purification unnecessary. Food Hydrocolloids, 101, 105533.
    Sui, X., Bi, S., Qi, B., Wang, Z., Zhang, M., Li, Y., & Jiang, L. (2017). Impact of ultrasonic treatment on an emulsion system stabilized with soybean protein isolate and lecithin: Its emulsifying property and emulsion stability. Food Hydrocolloids, 63, 727–734.
    Swanson, B. G. (1990). Pea and lentil protein extraction and functionality. Journal of the American Oil Chemists’ Society, 67(5), 276–280.
    Taherian, A. R., Mondor, M., Labranche, J., Drolet, H., Ippersiel, D., & Lamarche, F. (2011). Comparative study of functional properties of commercial and membrane processed yellow pea protein isolates. Food Research International, 44(8), 2505–2514.
    Tamm, F., Herbst, S., Brodkorb, A., & Drusch, S. (2016). Functional properties of pea protein hydrolysates in emulsions and spray-dried microcapsules. Food Hydrocolloids, 58, 204–214.
    Thadavathi, Y. L. N., Wassén, S., & Kádár, R. (2019). In-line rheological and microstroctural characterization of high moisture content protein vegetable mixtures in single screw extrusion. Journal of Food Engineering, 245, 112–123.
    Tosh, S., & Yada, S. (2010). Dietary fibres in pulse seeds and fractions: Characterization, functional attributes, and applications. Food Research International, 43, 450–460.
    Ventureira, J., Martínez, E. N., & Añón, M. C. (2010). Stability of oil: Water emulsions of amaranth proteins. Effect of hydrolysis and pH. Food Hydrocolloids, 24(6), 551–559.
    Wisniewski, R. (n.d.). Spray Drying Technology Review. 46.
    Wolz, M., & Kulozik, U. (2017). System parameters in a high moisture extrusion process for microparticulation of whey proteins. Journal of Food Engineering, 209, 12–17.
    Xi, C., Kang, N., Zhao, C., Liu, Y., Sun, Z., & Zhang, T. (2020). Effects of pH and different sugars on the structures and emulsification properties of whey protein isolate-sugar conjugates. Food Bioscience, 33, 100507.
    Xu, B., Liu, C., Sun, H., Wang, X., & Huang, F. (2019). Oil-in-water Pickering emulsions using a protein nano-ring as high-grade emulsifiers. Colloids and Surfaces B: Biointerfaces, 110646.
    Yuliarti, O., Kiat Kovis, T. J., & Yi, N. J. (2021). Structuring the meat analogue by using plant-based derived composites. Journal of Food Engineering, 288, 110138.
    Zhang, J., Liu, L., Jiang, Y., Shah, F., Xu, Y., & Wang, Q. (2020). High-moisture extrusion of peanut protein-/carrageenan/sodium alginate/wheat starch mixtures: Effect of different exogenous polysaccharides on the process forming a fibrous structure. Food Hydrocolloids, 99, 105311.
    Ziaee, A., Albadarin, A. B., Padrela, L., Femmer, T., O’Reilly, E., & Walker, G. (2019). Spray drying of pharmaceuticals and biopharmaceuticals: Critical parameters and experimental process optimization approaches. European Journal of Pharmaceutical Sciences, 127, 300–318.
    Zuo, F., Chen, Z., Shi, X., Wang, R., & Guo, S. (2016). Yield and textural properties of tofu as affected by soymilk coagulation prepared by a high-temperature pressure cooking process. Food Chemistry, 213, 561–566.

    無法下載圖示 校外公開
    2025/08/01
    QR CODE