簡易檢索 / 詳目顯示

研究生: 艾思亞
Nani Aisyah Putri
論文名稱: 枯草桿菌J1 α-L-阿拉伯糖苷酶的特性
Characterization of α-L-arabinofuranosidase (abfA) Gene from Bacillus subtilis J1
指導教授: 陳又嘉
Yo-Chia Chen
Ir. Joni Kusnadi, M.Si
學位類別: 碩士
Master
系所名稱: 農學院 - 生物科技系
Department of Biological Science and Technology
畢業學年度: 108
語文別: 英文
論文頁數: 73
中文關鍵詞: α-L-阿拉伯呋喃糖苷酶abfA枯草芽孢桿菌基因克隆
外文關鍵詞: α-L-arabinofuranosidase, abfA, Bacillus subtilis, gene cloning
DOI URL: http://doi.org/10.6346/NPUST202000374
相關次數: 點閱:21下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統
  • 植物細胞壁的降解需要幾種酶活性的作用。 α-L-阿拉伯呋喃糖苷酶(AbfA)作為脫支酶具有降解農業廢棄物中半纖維素的能力。該酶與木聚醣酶和木糖苷酶協同作用,以切割木聚醣上阿拉伯呋喃糖苷的側鏈。枯草芽孢桿菌是一種能夠產生AbfA的細菌,但是這種酶的活性仍然難以捉摸,需要深入研究。利用大腸桿菌生產重組酶是生產和鑑定枯草芽孢桿菌J1 AbfA的有前途的方法。從枯草芽孢桿菌J1基因組克隆了abfA,並將其連接到pET21a(+)質粒中。大腸桿菌BL21(DE3)用於產生和表徵添加礦物質以增加其溶解度的異丙基β-D-1-硫代吡喃半乳糖苷(IPTG)的最佳條件。該酶的最佳條件是在35℃的檸檬酸緩衝液中的pH 6.5,在pH 5-8範圍內穩定。該酶的分子量約為59.7 kDa。該酶對p-硝基苯基-α-L-阿拉伯呋喃糖苷(pNPA),阿拉伯木聚醣和阿拉伯聚醣底物具有活性,並且AbfA與Xyn的混合酶增加了阿拉伯木聚醣和木聚醣底物中的還原糖

    The degradation of the plant cell wall requires the action of several enzyme activities. α-L-arabinofuranosidase (AbfA) displays ability as a debranching enzyme to degrade hemicellulose from agricultural waste. This enzyme works synergistically with xylanase and xylosidase to cut the side chain of arabinofuranose on xylan. Bacillus subtilis is one bacterium that is capable to produce AbfA, but the activity of this enzyme remains elusive and need to be studied profoundly. The production of recombinant enzymes by utilizing E. coli is a promising way to produce and characterize B. subtilis J1 AbfA. The abfA was cloned from B. subtilis J1 genome and ligated in pET21a(+) plasmid. E. coli BL21 (DE3) was used to produce and characterize the optimum condition of isopropyl β-D-1-thiogalactopyranoside (IPTG) induction with mineral addition to increase its solubility. This enzyme optimum condition was in citric acid buffer pH 6.5 at 35 ºC. It was stable in a broad pH ranges 5–8 and inactive in temperature above 55 °C. The enzyme had a molecular weight of approximately 59.7 kDa. This enzyme was active against para-nitrophenyl-α-L-arabinofuranoside (pNPA), arabinoxylan and arabinan substrate, and the mixture enzyme of AbfA with Xylanase has increased the reducing sugar in arabinoxylan and xylan substrate

    TABLE OF CONTENTS
    摘要 I
    ABSTRACT II
    ACKNOWLEDGEMENTS III
    TABLE OF CONTENTS IV
    LIST OF FIGURES VII
    LIST OF TABLES IX
    1. INTRODUCTION 1
    1.1 Background 1
    1.2 Purpose of This Study 3
    2. LITERATURE REVIEW 4
    2.1 Agroindustrial Waste 4
    2.1.1 Substrate Pretreatment 6
    2.2 α-L-arabinofuranosidase 8
    2.2.1 Mechanisms of α-L-Arabinofuranosidase 9
    2.2.2 Biochemical Properties 10
    2.2.3 Synergistic Role of α-L-arabinofuranosidase 11
    2.3 α-L-arabinofuranosidase Applications 12
    2.3.1 Food Industry 12
    2.3.2 Delignification Process 13
    2.3.3 Functional Food Production 13
    2.3.4 Animal Feedstock 14
    2.4 α-L-arabinofuranosidase Production 15
    3. MATERIALS AND METHODS 18
    3.1 Frame Work 18
    3.2 Materials 19
    3.2.1 Bacterial Isolate 19
    3.2.2 Media Culture 19
    3.3 Gene of Interest Screening 20
    3.3.1 Bacillus Subtililis J1 Genome DNA Exraction 20
    3.3.2 AbfA Gene Isolation 20
    3.3.3 Agarose Gel Electrophoresis 22
    3.3.4 PCR Product Purification 22
    3.3.5 y T&A cloning 22
    3.3.6 Blue White Screening 23
    3.3.7 Plasmid Extraction 24
    3.38 Gene Sequencing and BLAST Analysis 24
    3.4 Protein Expression 25
    3.4.1 Cloning and Expression 25
    3.4.2 IPTG Induction Optimization 26
    3.4.3 Mineral Solution Addition 27
    3.4.4 Protein Assay 27
    3.4.5 Western Blot 29
    3.5 Enzyme Activity Assay 30
    3.6 Enzyme Condition Optimization 32
    3.6.1 pH 32
    3.6.2 Temperature 33
    3.6.3 Effect of Metal Ion 33
    3.7 Enzyme Stabilization Assay 33
    3.7.1 pH 33
    3.7.2 Temperature 33
    3.8 Enzyme Purification 34
    3.9 Substrate Specificity Assay 34
    3.10 Sugar Analysis 34
    4. RESULT 36
    4.1 Isolation of AbfA from Bacillus Subtililis J1 Genome 36
    4.2 TA Cloning and Sequencing 37
    4.3 Protein Expression 38
    4.3.1 Mineral Addition Optimization 38
    4.3.2 Induction Optimization 42
    4.4 Protein Detection 44
    4.5 Protein Purification 45
    4.6 Enzyme Optimization 46
    4.7 Enzyme Stabilization 47
    4.8 Substrate Specificity 48
    4.9 Sugar Analysis 50
    5. DISSCUSSION 55
    5.1 Bacillus subtilis α-L-arabinofuranosidase 55
    5.2 α-L-arabinofuranosidase Activity 59
    6. CONCLUSION 63
    REFERENCE 64
    INFORMATION OF AUTHOR 72

    Akpinar, O., Erdogan, K., Bakir, U., & Yilmaz, L. (2010). Comparison of acid and enzymatic hydrolysis of tobacco stalk xylan for preparation of xylooligosaccharides. LWT-Food Science and Technology, 43(1), 119-125.
    Akpinar, O., Erdogan, K., & Bostanci, S. (2009). Enzymatic production of xylooligosaccharide from selected agricultural wastes. Food and Bioproducts Processing, 87(2), 145-151.
    Alias, N. I., Mahadi, N. M., Murad, A. M. A., Bakar, F. D. A., Rabu, A., & Illias, R. M. (2011). Expression optimisation of recombinant α-Larabinofuranosidase from Aspergillus niger ATCC 120120 in Pichia pastoris and its biochemical characterisation. African Journal of Biotechnology, 10(35), 6700-6710.
    Anwar, Z., Gulfraz, M., & Irshad, M. (2014). Agro-industrial lignocellulosic biomass a key to unlock the future bio-energy: a brief review. Journal of radiation research and applied sciences, 7(2), 163-173.
    Azelee, N. I. W., Jahim, J. M., Ismail, A. F., Fuzi, S. F. Z. M., Rahman, R. A., & Illias, R. M. (2016). High xylooligosaccharides (XOS) production from pretreated kenaf stem by enzyme mixture hydrolysis. Industrial Crops and Products, 81, 11-19.
    Birgisson, H., Fridjonsson, O., Bahrani-Mougeot, F. K., Hreggvidsson, G. O., Kristjansson, J. K., & Mattiasson, B. (2004). A new thermostable α-L-arabinofuranosidase from a novel thermophilic bacterium. Biotechnology letters, 26(17), 1347-1351.
    Bouraoui, H., Desrousseaux, M.-L., Ioannou, E., Alvira, P., Manaï, M., Rémond, C., Dumon, C., Fernandez-Fuentes, N., & O’Donohue, M. J. (2016). The GH51 α-l-arabinofuranosidase from Paenibacillus sp. THS1 is multifunctional, hydrolyzing main-chain and side-chain glycosidic bonds in heteroxylans. Biotechnology for biofuels, 9(1), 140.
    Bourgois, T. M., Van Craeyveld, V., Van Campenhout, S., Courtin, C. M., Delcour, J. A., Robben, J., & Volckaert, G. (2007). Recombinant expression and characterization of XynD from Bacillus subtilis subsp. subtilis ATCC 6051: a GH 43 arabinoxylan arabinofuranohydrolase. Applied microbiology and biotechnology, 75(6), 1309-1317.
    Contesini, F. J., Liberato, M. V., Rubio, M. V., Calzado, F., Zubieta, M. P., Riaño-Pachón, D. M., Squina, F. M., Bracht, F., Skaf, M. S., & Damasio, A. R. (2017). Structural and functional characterization of a highly secreted α-L-arabinofuranosidase (GH62) from Aspergillus nidulans grown on sugarcane bagasse. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics, 1865(12), 1758-1769.
    Correia, M. A., Mazumder, K., Brás, J. L., Firbank, S. J., Zhu, Y., Lewis, R. J., York, W. S., Fontes, C. M., & Gilbert, H. J. (2011). Structure and function of an arabinoxylan-specific xylanase. Journal of Biological Chemistry, 286(25), 22510-22520.
    de Camargo, B. R., Claassens, N. J., Quirino, B. F., Noronha, E. F., & Kengen, S. W. (2018). Heterologous expression and characterization of a putative glycoside hydrolase family 43 arabinofuranosidase from Clostridium thermocellum B8. Enzyme and microbial technology, 109, 74-83.
    Falck, P., Linares-Pastén, J. A., Karlsson, E. N., & Adlercreutz, P. (2018). Arabinoxylanase from glycoside hydrolase family 5 is a selective enzyme for production of specific arabinoxylooligosaccharides. Food chemistry, 242, 579-584.
    Garrote, G., Domı́nguez, H., & Parajó, J. C. (2002). Autohydrolysis of corncob: study of non-isothermal operation for xylooligosaccharide production. Journal of Food Engineering, 52(3), 211-218.
    Geraylou, Z., Souffreau, C., Rurangwa, E., De Meester, L., Courtin, C. M., Delcour, J. A., Buyse, J., & Ollevier, F. (2013). Effects of dietary arabinoxylan-oligosaccharides (AXOS) and endogenous probiotics on the growth performance, non-specific immunity and gut microbiota of juvenile Siberian sturgeon (Acipenser baerii). Fish & Shellfish Immunology, 35(3), 766-775.
    Gomes, K. R., Chimphango, A. F., & Goergens, J. F. (2015). Modifying solubility of polymeric xylan extracted from Eucalyptus grandis and sugarcane bagasse by suitable side chain removing enzymes. Carbohydrate polymers, 131, 177-185.
    Gonçalves, T., Damásio, A., Segato, F., Alvarez, T., Bragatto, J., Brenelli, L., Citadini, A., Murakami, M., Ruller, R., & Leme, A. P. (2012). Functional characterization and synergic action of fungal xylanase and arabinofuranosidase for production of xylooligosaccharides. Bioresource Technology, 119, 293-299.
    Gu, Y., Xu, X., Wu, Y., Niu, T., Liu, Y., Li, J., Du, G., & Liu, L. (2018). Advances and prospects of Bacillus subtilis cellular factories: from rational design to industrial applications. Metabolic engineering, 50, 109-121.
    Ho, A. L., Carvalheiro, F., Duarte, L. C., Roseiro, L. B., Charalampopoulos, D., & Rastall, R. A. (2014). Production and purification of xylooligosaccharides from oil palm empty fruit bunch fibre by a non-isothermal process. Bioresource Technology, 152, 526-529.
    Hoffmam, Z. B., Oliveira, L. C., Cota, J., Alvarez, T. M., Diogo, J. A., de Oliveira Neto, M., Citadini, A. P. S., Leite, V. B., Squina, F. M., & Murakami, M. T. (2013). Characterization of a hexameric exo-acting GH51 α-L-arabinofuranosidase from the mesophilic Bacillus subtilis. Molecular biotechnology, 55(3), 260-267.
    İlgü, H., Sürmeli, Y., & Şanlı-Mohamed, G. (2018). A thermophilic α-l-Arabinofuranosidase from Geobacillus vulcani GS90: heterologous expression, biochemical characterization, and its synergistic action in fruit juice enrichment. European Food Research and Technology, 244(9), 1627-1636.
    Inacio, J. M., Correia, I. L., & de Sa-Nogueira, I. (2008). Two distinct arabinofuranosidases contribute to arabino-oligosaccharide degradation in Bacillus subtilis. Microbiology, 154(9), 2719-2729.
    Kiszonas, A. M., Fuerst, E. P., & Morris, C. F. (2013). Wheat arabinoxylan structure provides insight into function. Cereal Chemistry, 90(4), 387-395.
    Kurniati, A., Darmokoesoemo, H., & Puspaningsih, N. N. T. (2016). Scanning electron microscope analysis of rice straw degradation by a treatment with α-L-arabinofuranosidase. Procedia Chemistry, 18, 63-68.
    Lagaert, S., Pollet, A., Courtin, C. M., & Volckaert, G. (2014). β-Xylosidases and α-l-arabinofuranosidases: accessory enzymes for arabinoxylan degradation. Biotechnology advances, 32(2), 316-332.
    Lagaert, S., Pollet, A., Delcour, J. A., Lavigne, R., Courtin, C. M., & Volckaert, G. (2010). Substrate specificity of three recombinant α-L-arabinofuranosidases from Bifidobacterium adolescentis and their divergent action on arabinoxylan and arabinoxylan oligosaccharides. Biochemical and biophysical research communications, 402(4), 644-650.
    Lim, Y. R., Yoon, R. Y., Seo, E. S., Kim, Y. S., Park, C. S., & Oh, D. K. (2010). Hydrolytic properties of a thermostable α‐l‐arabinofuranosidase from Caldicellulosiruptor saccharolyticus. Journal of applied microbiology, 109(4), 1188-1197.
    Martínez, P. M., Kabel, M. A., & Gruppen, H. (2016). Delignification outperforms alkaline extraction for xylan fingerprinting of oil palm empty fruit bunch. Carbohydrate polymers, 153, 356-363.
    Matsumura, K., Obata, H., Hata, Y., Kawato, A., Abe, Y., & Akita, O. (2004). Isolation and characterization of a novel gene encoding α-L-arabinofuranosidase from Aspergillus oryzae. Journal of bioscience and bioengineering, 98(2), 77-84.
    Mazlan, N. A., Samad, K. A., Yussof, H. W., Saufi, S. M., & Jahim, J. (2019). Xylooligosaccharides from potential agricultural waste: Characterization and screening on the enzymatic hydrolysis factors. Industrial Crops and Products, 129, 575-584.
    McCleary, B. V., McKie, V. A., Draga, A., Rooney, E., Mangan, D., & Larkin, J. (2015). Hydrolysis of wheat flour arabinoxylan, acid-debranched wheat flour arabinoxylan and arabino-xylo-oligosaccharides by β-xylanase, α-L-arabinofuranosidase and β-xylosidase. Carbohydrate research, 407, 79-96.
    Mendis, M., & Simsek, S. (2015). Production of structurally diverse wheat arabinoxylan hydrolyzates using combinations of xylanase and arabinofuranosidase. Carbohydrate polymers, 132, 452-459.
    Numan, M. T., & Bhosle, N. B. (2006). α-L-Arabinofuranosidases: the potential applications in biotechnology. Journal of Industrial Microbiology and Biotechnology, 33(4), 247-260.
    Pareyt, B., Goovaerts, M., Broekaert, W. F., & Delcour, J. A. (2011). Arabinoxylan oligosaccharides (AXOS) as a potential sucrose replacer in sugar-snap cookies. LWT-Food Science and Technology, 44(3), 725-728.
    Phuengmaung, P., Kunishige, Y., Sukhumsirichart, W., & Sakamoto, T. (2018). Identification and characterization of GH62 bacterial α-L-arabinofuranosidase from thermotolerant Streptomyces sp. SWU10 that preferentially degrades branched L-arabinofuranoses in wheat arabinoxylan. Enzyme and microbial technology, 112, 22-28.
    Pitson, S. M., Voragen, A. G. J., Vincken, J.-P., & Beldman, G. (1997). Action patterns and mapping of the substrate-binding regions of endo-(1 → 5)-α-l-arabinanases from Aspergillus niger and Aspergillus aculeatus. Carbohydrate research, 303(2), 207-218. doi:https://doi.org/10.1016/S0008-6215(97)00159-6
    Ravanal, M. C., Callegari, E., & Eyzaguirre, J. (2010). Novel bifunctional α-L-arabinofuranosidase/xylobiohydrolase (ABF3) from Penicillium purpurogenum. Appl. Environ. Microbiol., 76(15), 5247-5253.
    Sabiha-Hanim, S., Noor, M. A. M., & Rosma, A. (2011). Effect of autohydrolysis and enzymatic treatment on oil palm (Elaeis guineensis Jacq.) frond fibres for xylose and xylooligosaccharides production. Bioresource Technology, 102(2), 1234-1239.
    Samanta, A., Jayapal, N., Jayaram, C., Roy, S., Kolte, A., Senani, S., & Sridhar, M. (2015). Xylooligosaccharides as prebiotics from agricultural by-products: production and applications. Bioactive Carbohydrates and Dietary Fibre, 5(1), 62-71.
    Seri, K., Sanai, K., Matsuo, N., Kawakubo, K., Xue, C., & Inoue, S. (1996). L-arabinose selectively inhibits intestinal sucrase in an uncompetitive manner and suppresses glycemic response after sucrose ingestion in animals. Metabolism, 45(11), 1368-1374.
    Shallom, D., Belakhov, V., Solomon, D., Gilead-Gropper, S., Baasov, T., Shoham, G., & Shoham, Y. (2002). The identification of the acid–base catalyst of α‐arabinofuranosidase from Geobacillus stearothermophilus T‐6, a family 51 glycoside hydrolase. FEBS letters, 514(2-3), 163-167.
    Shallom, D., Belakhov, V., Solomon, D., Shoham, G., Baasov, T., & Shoham, Y. (2002). Detailed kinetic analysis and identification of the nucleophile in α-L-arabinofuranosidase from Geobacillus stearothermophilus T-6, a family 51 glycoside hydrolase. Journal of Biological Chemistry, 277(46), 43667-43673.
    Shi, P., Li, N., Yang, P., Wang, Y., Luo, H., Bai, Y., & Yao, B. (2010). Gene cloning, expression, and characterization of a Family 51 α-L-arabinofuranosidase from Streptomyces sp. S9. Applied biochemistry and biotechnology, 162(3), 707-718.
    Sukiran, M. A., Abnisa, F., Daud, W. M. A. W., Bakar, N. A., & Loh, S. K. (2017). A review of torrefaction of oil palm solid wastes for biofuel production. Energy Conversion and Management, 149, 101-120.
    Sun, H.-J., Yoshida, S., Park, N.-H., & Kusakabe, I. (2002). Preparation of (1→ 4)-β-D-xylooligosaccharides from an acid hydrolysate of cotton-seed xylan: suitability of cotton-seed xylan as a starting material for the preparation of (1→ 4)-β-D-xylooligosaccharides. Carbohydrate research, 337(7), 657-661.
    Taylor, E. J., Smith, N. L., Turkenburg, J. P., D'souza, S., Gilbert, H. J., & Davies, G. J. (2006). Structural insight into the ligand specificity of a thermostable family 51 arabinofuranosidase, Ara f 51, from Clostridium thermocellum. Biochemical Journal, 395(1), 31-37.
    Vardakou, M., Palop, C. N., Christakopoulos, P., Faulds, C. B., Gasson, M. A., & Narbad, A. (2008). Evaluation of the prebiotic properties of wheat arabinoxylan fractions and induction of hydrolase activity in gut microflora. International Journal of Food Microbiology, 123(1-2), 166-170.
    Wang, T.-H., & Lu, S. (2013). Production of xylooligosaccharide from wheat bran by microwave assisted enzymatic hydrolysis. Food chemistry, 138(2-3), 1531-1535.
    Wirajana, I. N., Kimura, T., Sakka, K., Wasito, E. B., Kusuma, S. E., & Puspaningsih, N. N. T. (2016). Secretion of Geobacillus thermoleovorans IT-08 α-L-Arabinofuranosidase (AbfA) in Saccharomyces cerevisiae by fusion with HM-1 signal peptide. Procedia Chemistry, 18, 69-74.
    Xue, Y., Cui, X., Zhang, Z., Zhou, T., Gao, R., Li, Y., & Ding, X. (2020). Effect of β-endoxylanase and α-arabinofuranosidase enzymatic hydrolysis on nutritional and technological properties of wheat brans. Food chemistry, 302, 125332.
    Yang, W., Bai, Y., Yang, P., Luo, H., Huang, H., Meng, K., Shi, P., Wang, Y., & Yao, B. (2015). A novel bifunctional GH51 exo-α-l-arabinofuranosidase/endo-xylanase from Alicyclobacillus sp. A4 with significant biomass-degrading capacity. Biotechnology for biofuels, 8(1), 197.
    Yeoman, C. J., Han, Y., Dodd, D., Schroeder, C. M., Mackie, R. I., & Cann, I. K. (2010). Thermostable enzymes as biocatalysts in the biofuel industry Advances in applied microbiology (Vol. 70, pp. 1-55): Elsevier.

    無法下載圖示 校外公開
    2025/08/04
    QR CODE