簡易檢索 / 詳目顯示

研究生: 李昊澐
Li, Hao-Yun
論文名稱: 不同彎曲入流條件下之離心葉片式幫浦效能分析
Research on the Performance of Centrifugal Propeller Pump Connected with Different Inflow Curved Blend Ducts
指導教授: 苗志銘
Miao, Jr-Ming
學位類別: 碩士
Master
系所名稱: 工學院 - 生物機電工程系所
Department of Biomechatronics Engineering
畢業學年度: 109
語文別: 中文
論文頁數: 92
中文關鍵詞: 不均勻流離心式幫浦磨損環間隙粗糙度
外文關鍵詞: Non-uniform blend flow, Centrifugal pump, Wear ring clearance, Wall Roughness
DOI URL: http://doi.org/10.6346/NPUST202100450
相關次數: 點閱:13下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統
  • 泵(Pump)的設計通常是以直管入流條件為主,但實際工程中安裝空間限制、結構設計等原因,造成入口流動不均勻,導致泵效率降低,彎管入流是影響因素之一。本研究使用CAD軟體建立離心泵之幾何模型,以數值模擬方法,分析不同彎管入流、磨損環間隙、表面粗糙度等對離心式泵的性能影響。數值模擬之控制方程式為三維雷諾平均Navier-Stoke方程,壓力項與速度項之耦合計算使用Couple法則,紊流模式為三方程k-ω SST模型,流場則假設為不可壓縮流體。經由紊流模式選用、網格獨立性分析,模擬結果和實際實驗值相吻合;在四個彎管入流條件中,45度一倍葉輪直徑長彎管,是所有彎管效率和揚程最好的,效率提升主要在於彎管角度的減少;模擬0.15mm、0.2mm、0.5mm三種不同磨損環間隙,經由揚程和效率曲線可以看出,磨損環間隙大小對泵效率有明顯影響,且0.15mm總體效率略大於0.2mm,但考量到那些微的提升效益和實際製程的技術成本問題,選擇0.2mm間隙成本效益為最高;經由0.1、0.05、0.01mm表面粗糙度比較,過了額定流量後,當流量越大,泵效能損耗越劇烈,結果顯示數值模擬的揚程會高於實驗量測,考量粗糙度效應數值模擬值則會接近實驗值;模擬粗糙度在0.1mm時,揚程效率曲線和實驗最相符。

    The pump performance design is usually evaluated with inflow conditions on the straight pipe under various volumetric flow rates. However, in the actual operational environment, due to installation space limitations, structural enforcement, and other special reasons the pump performance is decayed more than the engineer expected value. The blend pipe cause uneven inlet flow resulting in a degree of reduced pump efficiency that is unknown for the pump industry. The effects of inflow blend pipes, wall roughness, and seal clearness on the output stoke of centrifugal pump under various flow rates are investigated in this works by CFD method.
    In this study, the first step is using CAD software of SolidWorks2014 to establish the geometric model of the centrifugal pump provided by the manufacturer. Based on the original design, some modifications to the model are made about the connected elbow inflow pipes and seal clearance. The second step is to employ the CFD tools to finish the computational grids. The performance of the centrifugal pump was analyzed by the numerical simulation software based on to control volume method. The conservation equations of the numerical simulation are the steady, incompressible three-dimensional Reynolds-averaged Navier-Stoke equations. The coupling calculation of the pressure term and the velocity term use the Couple law, the turbulence model is a two-equation SST k-ω model. The working fluid is pure water and the flow field is assumed to be an incompressible fluid flow.
    After finished the selection of turbulent flow mode and grid independence analysis, the numerical methods are specified and the simulation results are compared with the actual experimental values. The performance cures are well agreement with each other. Among the four inflow conditions (a combination of 450 and 900 elbow with 0.5 and 1 times diameter of straight pipes), the 450 elbows with one time of diameter long pipe have the best efficiency. The worst case belongs to the model of 900 elbow with short straight pipe due to the uneven impingement flow on the propeller blades.
    Simulation runs are conducted for three different wear ring gaps of 0.15mm, 0.2mm, and 0.5mm under various flow rates. From the stoke and efficiency with respect to the flow rate curves, it can be seen that the value of the wear ring gap has a significant impact on the output efficiency of the pump, and the overall efficiency of 0.15mm is slightly greater than 0.2mm. The reduction in the seal clearance shows a positive effect on the improvement of the pump’s performance. However, due to complex factors in the manufacturing process, it is suggested that a model with 0.2mm seal clearance is more suitable for the present pump company. Inspections on the results of cases with the surface roughness of 0.1, 0.05, and 0.01mm show that the performance is obviously dropped when the tested flow rates are higher than the on-design point. Generally, the increase in the wall roughness resulted in the reduction of pump efficiency.
    When the flow rate is fixed, it is showing that the head of the numerical simulation of smooth wall boundary conditions will be higher than those of experimental measurements. After correcting the numerical with the actual wall roughness of the pump body, the predictions are more fitted to of experimental from test platforms. It means that the wall roughness effect should be considered in the CFD simulations of centrifugal pumps.

    摘要 I
    Abstract II
    謝誌 IV
    目錄 V
    圖目錄 VII
    表目錄 X
    符號說明 XI
    第一章 緒論 1
    1-1 前言 1
    1-2 文獻回顧 3
    1-2-1 磨損環間隙研究現狀 3
    1-2-2 壁面粗糙度研究現狀 4
    1-2-3 彎管入流研究現狀 5
    1-3 研究動機與目的 6
    1-4 研究流程與架構 7
    第二章 研究方法 9
    2-1 基本假設 9
    2-2 泵運作原理與效率標準說明 10
    2-2-1 泵構型簡介和分類 10
    2-2-2 泵作用原理 13
    2-2-3 泵效率標準說明 14
    2-3 統御方程式 16
    2-4 數值方法 17
    2-4-1 紊流數值模擬方法 17
    2-5 葉輪外緣與磨損環間隙效應 19
    2-7 數值模型說明 21
    2-7-1 數值模型建立 23
    2-7-2 計算網格系統 27
    2-7-3 初始與邊界條件 28
    2-8 收斂條件與研究矩陣 30
    第三章 結果與討論 31
    3-1 模型與模型驗證 31
    3-1-1 網格建立與獨立性分析 32
    3-1-2 紊流模式選用 37
    3-2 實體實驗數據和模擬數值比對分析 40
    3-2-1 實驗環境簡介 40
    3-2-2 實體實驗數據和模擬比對 44
    3-2-3 模擬數據高度差補正 52
    3-3 葉輪外緣與磨損環間隙效應 55
    3-3-1 葉輪外緣與磨損環間隙分析 55
    3-4 粗糙度分析效應 63
    3-4-1 模擬數據高度差補正 66
    3-5 彎管入流條件下離心式幫浦試驗結果分析 68
    3-5-1 彎管入流條件對離心式幫浦流動影響 68
    3-5-2 模擬數據高度差補正 79
    3-5-3 加入間隙效應條件比對 83
    3-5-4 模擬數據高度差補正 85
    第四章 結論 88
    4-1 結論 88
    4-2 建議 89
    參考文獻 90

    [1] Rorres C.(2000) .The turn of the Screw: Optimum design of an Archimedes Screw, ASCE Journal of Hydraulic Engineering, Volume 126, Number 1, 72–80.
    [2] 吳佳樺(2018)。全球液體泵浦市場與產業發展趨勢。機械工業雜誌。427。6-12。
    [3] 陳慧珠(2020)。國際推動液體泵能源效率介紹。機械工業雜誌。450。13-20。
    [4] IEA.(2016).Policy Guidelines for Motor DrivenUnits.
    [5] 王玉晶(2020)。弯管入流工况下双吸离心泵内部流动数值分析及优化。西安理工大學。
    [6] 楊富翔(2010)。離心式水幫浦CFD及葉片最佳化設計。國立交通大學。
    [7] 樊毅、袁辉靖、许兆峰、吴玉林(2006)。水泵吸水池不对称流动的自由液面测量试验。工程热物理学报。27(4)。604-606。
    [8] 產業泵浦-效率管理及節約能源手冊,經濟部能源局。
    [9] Robert Aronen.(2011). The Power of Wear Rings. Pumps & Systems Mar,2011.
    [10] Jiegang Mou, Zhenfu Chen, Yunqing Gu, Tianxing Fan.(2016),Effect of sealing ring clearance on pump performance.World Pumps,Volume 2016, Issue 3, 38-41.
    [11] 柯明村、吳明和(2010)。磨損環間隙對泵浦與主機的節能效益分析。中華水電冷凍空調月刊,99年6月。
    [12] 郑路路(2018)。离心泵口环间隙非定常流动机理研究。浙江理工大學。
    [13] 张明星、张文斌、王璐、刘瑞青、刘琦(2020) 离心泵级间间隙数值模拟及结构优化。船海工程。49(6)。91-94。
    [14] Pattanapol, W.,Wakes, S.J., Hilton, M.J., Dickinson, K.J.(2008.) Modeling of surface roughness for flow over acomplex vegetated surface. Int. J. Math. Phys. Eng. Sci.2008,2, 18–26.
    [15] Khanjanpour, M. H., & Javadi, A. A. (2020). Experimental and CFD Analysis of Impact of Surface Roughness on Hydrodynamic Performance of a Darrieus Hydro (DH) Turbine. Energies, 13(4), 928.
    [16] 李龙、王泽(2004)。粗糙度对轴流泵性能影响的数值模拟研究。农业工程学报。01。132-135。
    [17] 談明高、劉厚林、吳賢芳、王勇、王凱、付猛(2011)。粗糙度對離心泵性能數值預測的影響。中國農村水利水電。131-134。
    [18] Esch, van, B. P. M., & Bulten, N. W. H. (2005). Numerical and Experimental Investigation of Hydrodynamic Forces Due to Non-Uniform Suction Flow to a Mixed-Flow Pump. Volume 1: Symposia, Parts A and B. ASME 2005 Fluids Engineering Division Summer Meeting.
    [19] 朱红耕(2005)。进水池对水泵进水条件影响的数值模拟和试验。农业机械学报, 36(06)。57-60。
    [20] 刘为民, 刘超(2007)。 泵站进水流道对泵性能影响的研究。江苏科技大学学报(自然科学版)。21(2)。75-79。
    [21] 钱方琦,张淑佳,毛鹏展(2010) 大比转速双吸泵吸水室CFD数值模拟。輕工機械。28(6)。32-35。
    [22] Sten Mittag(2015) Experimental and Numerical Investigation of Centrifugal Pumps with Asymmetric Inflow Conditions” Journal of Thermal Science Vol.24,No.6, pp. 516-525.
    [23] 靳恩(2020)。弯管入流对离心泵内部流动的影响研究。西安理工大學。
    [24] 陈鹏宇(2020)。基于CFD 的离心泵内部流场数值模拟分析。昆明理工大学。
    [25] 李双(2017)。非均匀入流对双吸离心泵内部流动影响的研究。西安理工大学。
    [26] 裴奕凡(2020)。弯管入流对离心泵压力脉动特性的影响研究。西安理工大学。
    [27] 关醒凡(2010)。泵的理论与设计(頁17-18)。北京:机械工业出版社。
    [28] Bell & Gossett(2019). Principles of Centrifugal Pump Construction. Illinois, Xylem Inc.pp.3-4.
    [29] JOHANN F G. (2008)Centrifugal pumps [M] . New York: Springer Berlin.
    [30] 蘇宗寶(1986)。離心式泵。徐氏基金會出版。
    [31] ANSYS FLUENT 12.0 User's Guide(2009). ANSYS, Inc.
    [32] 國家標準(CNS)(2017)。迴轉動力泵液壓性能允收試驗-1級、2級及3級。經濟部標準檢驗局。
    [33] Sun-Sheng Yang, Shahram Derakhshan, Fan-Yu Kong(1991).Theoretical, numerical and experimental prediction of pump as turbine performance, Renewable Energy, 48, 507-513.
    [34] PILLER, M., NOBILE, E., & HANRATTY, T. J. (2002). DNS study of turbulent transport at low Prandtl numbers in a channel flow. Journal of Fluid Mechanics, 458, 419–441.
    [35] Tokyay, T. E., & Constantinescu, S. G. (2006). Validation of a Large-Eddy Simulation Model to Simulate Flow in Pump Intakes of Realistic Geometry. Journal of Hydraulic Engineering, 132(12), 1303–1315.
    [36] Launder, B.E., Spalding, D.B.(1972). Lectures in mathematical models of turbulence. Academic Press, London.
    [37] bell & gossett (2013) Principles of Centrifugal Pump Construction

    無法下載圖示 校外公開
    2026/08/25
    QR CODE