簡易檢索 / 詳目顯示

研究生: 吳益修
Wu, Yi-Xiu
論文名稱: 協方差型亞伯拉罕時域法於唯響應模態估測之研究
A Study on Response-Only Modal Estimation Using Covariance-Driven Ibrahim Time Domain Method
指導教授: 林章生
Lin, Chang-Sheng
學位類別: 碩士
Master
系所名稱: 工學院 - 車輛工程系所
Department of Vehicle Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 83
中文關鍵詞: 非定常響應協方差矩陣亞伯拉罕時域法模態估測
外文關鍵詞: non-stationary response, covariance matrix, Ibrahim time domain method, modal estimation
DOI URL: http://doi.org/10.6346/NPUST202200234
相關次數: 點閱:18下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統
  • 傳統的亞伯拉罕時域法(ITD)為建構於系統自由響應下的時域唯輸出模態估測方法。前人已利用相關函數技術將ITD法推廣至隨機響應下的系統識別,但往往受限於選定的參考頻道內含模態激發豐富程度而影響模態估測的有效性。吾人利用協方差矩陣內含所有量測頻道間響應數據的相關性,即保有完整的模態信息;再結合奇異值分解法,可藉由奇異譜分析判定系統最小階數,然而可能會因模態激發不良或系統階數選定不佳,導致影響識別可靠性。本研究將協方差矩陣引入ITD法,可避免系統階數選定影響模態參數估測,並針對受具緩慢變化乘積模型非定常之外力激勵於線性系統,以非定常響應建構協方差矩陣,藉由協方差矩陣降低外力與雜訊對於系統響應的影響,使ITD法的適用性延伸至非定常過程。最後,利用數值模擬及實驗驗證本研究所提方法的有效性,甚至對於具相近模態的結構可有效估測系統模態。

    The conventional Ibrahim time domain method (ITD) using free response is a response-only modal identification technique. Previous studies have shown the ITD method in conjunction with correlation technique can be applied to the modal estimation from random response data only. However, the identification effectiveness is easily influenced by the choice of the reference channel. In this study, we use the covariance matrix consisting of correlation functions among response data for all measurement channels and avoid the choice of single reference channel in correlation technique. The minimum order of the system can be determined through the singular spectrum analysis. The poor identification may be caused due to the improper system order and incomplete modal information from insufficient frequency content around the structural modes of interest. By introducing the covariance matrix to the procedure of ITD method, the effectiveness of modal estimation can be improved without the estimation of system order. The data correlation matrix is constructed by covariance matrix in state space form composed of the non-stationary response in the form of the product model with the slowly-time-varying function and then extends the ITD method to modal identification directly and solely from nonstationary response data. Numerical simulations and experimental verification of effectiveness of the proposed method for modal identification of structural systems, even with closely spaced modes.

    摘要 I
    Abstract II
    謝誌 III
    目錄 IV
    表目錄 VI
    圖目錄 VIII
    符號索引 XII
    第1章 緒論 1
    1.1 前言 1
    1.2 文獻回顧 1
    1.3 研究目的及方法 4
    第2章 研究方法 5
    2.1 狀態空間 5
    2.2 協方差矩陣 7
    2.3 亞伯拉罕時域法 9
    2.4 非定常外力 11
    2.5 基於亞伯拉罕時域法之剃除虛假模態方法 14
    2.6 穩態圖 15
    2.7 模態相位共線性 16
    第3章 數值驗證 18
    3.1 隨機外力建立 18
    3.2 六自由度鏈模型 20
    3.3 二維桁架模型 26
    3.4 七自由度汽車模型 29
    3.5 真實激勵信號驗證 36
    第4章 實驗驗證 40
    4.1 實驗模態分析 42
    4.2 非定常激勵 48
    4.3 美濃地震信號激勵 57
    第5章 結論 66
    參考文獻 68
    個人著作 72
    附錄A: 美濃地震信號分析 74
    附錄B: 美濃地震信號激勵於六自由度鏈模型補充資料 78
    附錄C: 重建美濃地震信號之數值模擬分析 80

    1. Allemang, R. and Phillips, A., 2020, “Experimental Modal Parameter Evaluation Methods,” Handbook of Experimental Structural Dynamics, pp. 1-66.
    2. Allemang, R. and Brown, D., 2020, “Experimental Modal Analysis Methods,” Handbook of Experimental Structural Dynamics, pp. 1-81.
    3. Ibrahim, S. R. and Pappa, R. S., 1982, “Large modal survey testing using the Ibrahim time domain identification technique,” Journal of Spacecraft and Rockets, Vol. 19, Iss. 5, pp. 459-465.
    4. Chiang, D.-Y. and Lin, C.-S., 2008, “Identification of modal parameters from nonstationary ambient vibration data using correlation technique,” AIAA journal, Vol. 46, Iss. 11, pp. 2752-2759.
    5. Chiang, D.-Y. and Lin, C.-S., 2011, “Identification of modal parameters from nonstationary ambient vibration data using the channel-expansion technique,” Journal of mechanical science and technology, Vol. 25, Iss. 5, pp. 1307-1315.
    6. Juang, J.-N. and Pappa, R., 1986, “Effects of noise on modal parameters identified by the Eigensystem Realization Algorithm,” Journal of Guidance Control and Dynamics, Vol. 9, Iss. 3, pp. 294-303.
    7. Juang, J.-N., 1988, “An Eigensystem Realization Algorithm Using Data Correlations (ERA/DC) for Modal Parameter Identification,” Journal of Control Theory and Advanced Technology, Vol. 4, Iss. 1, pp. 5-14.
    8. Caicedo, J. M., Dyke, S. J., and Johnson, E. A., 2004, “Natural excitation technique and eigensystem realization algorithm for phase I of the IASC-ASCE benchmark problem: Simulated data,” Journal of Engineering Mechanics, Vol. 130, Iss. 1, pp. 49-60.
    9. James III, G. H., Carne, T. G., and Lauffer, J. P. (1993). “The natural excitation technique (NExT) for modal parameter extraction from operating wind turbines.” No. SAND-92-1666, SAND-92-1666). Sandia National Labs., Albuquerque, NM (United States).
    10. Chiang, D.-Y. and Lin, C.-S., 2010, “Identification of modal parameters from ambient vibration data using eigensystem realization algorithm with correlation technique,” Journal of mechanical science and technology, Vol. 24, Iss. 12, pp. 2377-2382.
    11. Lin, C.-S. and Lin, M.-H., 2021, “Output-Only Modal Estimation Using Eigensystem Realization Algorithm with Nonstationary Data Correlation,” Applied Sciences, Vol. 11, Iss. 7, pp. 3088.
    12. Van Overschee, P. and De Moor, B., 1991, “Subspace algorithms for the stochastic identification problem,” Proc. of the 30th IEEE Conference on Decision and Control (CDC'91), United Kingdom.
    13. Peeters, B. and De Roeck, G., 1999, “Reference-based stochastic subspace identification for output-only modal analysis,” Mechanical Systems and Signal Processing, Vol. 13, Iss. 6, pp. 855-878.
    14. Boonyapinyo, V. and Janesupasaeree, T., 2010, “Data-driven stochastic subspace identification of flutter derivatives of bridge decks,” Journal of Wind Engineering and Industrial Aerodynamics, Vol. 98, Iss. 12, pp. 784-799.
    15. Kvåle, K. A., Øiseth, O., and Rönnquist, A., 2017, “Covariance-driven stochastic subspace identification of an end-supported pontoon bridge under varying environmental conditions,” Dynamics of Civil Structures Vol. 2, pp. 107-115. Springer.
    16. Zhao, H., Gao, Y., Liu, H., and Li, L., 2019, “Fault diagnosis of wind turbine bearing based on stochastic subspace identification and multi-kernel support vector machine,” Journal of Modern Power Systems and Clean Energy, Vol. 7, Iss. 2, pp. 350-356.
    17. Li, J., Zhu, X., Law, S.-S., and Samali, B., 2019, “Indirect bridge modal parameters identification with one stationary and one moving sensors and stochastic subspace identification,” Journal of Sound and Vibration, Vol. 446, pp. 1-21.
    18. Priori, C., De Angelis, M., and Betti, R., 2018, “On the selection of user-defined parameters in data-driven stochastic subspace identification,” Mechanical Systems and Signal Processing, Vol. 100, pp. 501-523.
    19. Li, S., Wang, J.-T., Jin, A.-Y., and Luo, G.-H., 2020, “Parametric analysis of SSI algorithm in modal identification of high arch dams,” Soil Dynamics and Earthquake Engineering, Vol. 129, pp. 105929.
    20. Bakir, P. G., 2011, “Automation of the stabilization diagrams for subspace based system identification,” Expert Systems with Applications, Vol. 38, Iss. 12, pp. 14390-14397.
    21. Zhang, G., Tang, B., and Tang, G., 2012, “An improved stochastic subspace identification for operational modal analysis,” Measurement, Vol. 45, Iss. 5, pp. 1246-1256.
    22. Qin, S., Kang, J., and Wang, Q., 2016, “Operational modal analysis based on subspace algorithm with an improved stabilization diagram method,” Shock and Vibration, Vol. 2016.
    23. He, Y., Li, Z., Fu, J., Wu, J., and Ng, C., 2021, “Enhancing the performance of stochastic subspace identification method via energy-oriented categorization of modal components,” Engineering Structures, Vol. 233, pp. 111917.
    24. Zhao, X. and Ye, B., 2011, “Selection of effective singular values using difference spectrum and its application to fault diagnosis of headstock,” Mechanical Systems and Signal Processing, Vol. 25, Iss. 5, pp. 1617-1631.
    25. Yang, W.-X. and Peter, W. T., 2003, “Development of an advanced noise reduction method for vibration analysis based on singular value decomposition,” Ndt & E International, Vol. 36, Iss. 6, pp. 419-432.
    26. Lakshmi, K., Rao, A. R. M., and Gopalakrishnan, N., 2017, “Singular spectrum analysis combined with ARMAX model for structural damage detection,” Structural Control and Health Monitoring, Vol. 24, Iss. 9, pp. e1960.
    27. Allemang, R. J., 2003, “The modal assurance criterion–twenty years of use and abuse,” Sound and vibration, Vol. 37, Iss. 8, pp. 14-23.
    28. Pappa, R. S., Elliott, K. B., and Schenk, A., 1993, “Consistent-mode indicator for the eigensystem realization algorithm,” Journal of Guidance, Control, and Dynamics, Vol. 16, Iss. 5, pp. 852-858.
    29. Benowitz, B. A., 2013, Modeling and simulation of random processes and fields in Civil Engineering and Engineering Mechanics. Columbia University.
    30. De Angelis, M., Lus, H., Betti, R., and Longman, R. W., 2002, “Extracting physical parameters of mechanical models from identified state-space representations,” J. Appl. Mech., Vol. 69, Iss. 5, pp. 617-625.
    31. Lin, C.-S., 2017, “Parametric estimation of systems with modal interference,” Archive of Applied Mechanics, Vol. 87, Iss. 11, pp. 1845-1857.
    32. Willam, T. T. and Dahleh, M. D., 2014, Theory of Vibration with Application. Pearson.
    33. Young, D. and Felgar, R. P., 1949, “Tables of characteristic functions representing nomal modes of vibration of a beam.”
    34. Linghu, J., Kang, L., Liu, M., Hu, B., and Wang, Z., 2019, “An improved model equation based on a gaussian function trinomial for state of charge estimation of lithium-ion batteries,” Energies, Vol. 12, Iss. 7, pp. 1366.

    下載圖示
    QR CODE