簡易檢索 / 詳目顯示

研究生: 黃朝敏
Huang,Chao-Min
論文名稱: 評估施用養豬廢水厭氧消化沼液土壤重金屬污染與風險
Assessment of Heavy Metal Contamination and Risk in Soil with Application of Pig Farms Liquefied Slurry from Anaerobic Digestion
指導教授: 陳庭堅
Chen,Ting-Chien
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程與科學系所
Department of Environmental Science and Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 73
中文關鍵詞: 沼液BCR序列萃取法重金屬風險評估地質累積指標(Igeo)潛在生態風險指標(PERI)
DOI URL: http://doi.org/10.6346/NPUST202200255
相關次數: 點閱:52下載:12
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統
  • 經濟起飛對於動物性蛋白質的需求增加,這也使得畜牧產業的蓬勃發展。雖然滿足了人類對動物性蛋白的需求,也在過程中對環境造成污染。畜牧產業產生之畜牧廢水若未經處理被排放至水體中,很容易造成水體之污染。為了防止廢水污染,在農作物種植過程施用畜牧廢水所含的營養源(氮磷鉀)取代作物生長需要的化學肥料。畜牧廢水經過廢水程序處理,放流水部分含有微量重金屬,若直接施灌於農地可能會對農地的土壤造成重金屬含量增加的風險。
    本研究探討養豬場厭氧發酵的沼渣與沼液中重金屬濃度與評估施用農地可能的重金屬風險。同時利用BCR序列萃取法探討沼渣重金屬之結合狀態,以及評估潛在的重金屬風險。環境污染與風險指標含地質累積指標(Igeo)、潛在生態風險指標(PERI)、全量風險指數(GRI)等指標。結果顯示沼液中部分重金屬對環境是具有嚴重風險與污染程度,但沼液施灌之土壤,短期土壤重金屬仍屬於低風險與污染。然而將沼液長期施灌於土壤,仍需評估對土壤造成之風險。

    With the economic development and the rapid population growth, the demand for animal protein has also increased, leading to the vigorous development of the animal husbandry industry. However, it meets the human need for animal protein, it also causes a little pollution to the environment. If the livestock wastewater produced is discharged into the water body without treatment, it will easily cause water pollution. To avoid severe water pollution of livestock wastewater, which is used to replace the chemical fertilizers required for crop growth. The treated livestock wastewaters containing nitrogen, phosphorus, and potassium are applied to farmlands. Although the treated livestock wastewater has decomposed the organic matter, it may still contain trace heavy metals in the discharge water. Therefore, if it is directly irrigated on farmland, it may cause the risk of increased heavy metal content in farmland soil.
    This study investigated the concentration of heavy metals in biogas residue and biogas slurry from anaerobic digestion of pig wastes. It is intended to evaluate the possible risk of heavy metals in agricultural land. At the same time, the BCR sequence extraction method was used to explore the binding state of heavy metals in biogas residues and evaluate the potential risk of heavy metals. Some environmental pollution and risk indicators are used to assess the risk of applied biogas slurry on farmland, such as geoaccumulation index (Igeo), potential ecological risk index (PERI), and global risk index (GRI). The results show that some heavy metals in biogas slurry have severe risks and pollution to the environment. However, in the soil where biogas slurry is irrigated, these heavy metals in short-term soil have remained at low risk and pollution. However, the biogas slurry is applied to the farmland soil for a long time; it still needs to assess the possible risk caused the heavy metal risk in the slurry.

    摘要 I
    Abstract II
    誌謝 IV
    目錄 V
    表目錄 IX
    圖目錄 XII
    第一章 前言 1
    1.1研究緣起 1
    1.2研究目的 2
    第二章 文獻回顧 3
    2.1養豬廢水概況 3
    2.1.1屏東養豬業概況 3
    2.1.2養豬廢水處理單元 3
    2.2台灣農地利用現況 5
    2.3施灌畜牧廢水對土壤性質影響 6
    2.4BCR序列萃取 6
    2.5重金屬 8
    2.5.1重金屬來源 8
    2.5.2重金屬污染危害 8
    2.6風險評估 10
    第三章 材料與方法 11
    3.1樣本來源 11
    3.1.1養豬廢水 11
    3.1.2農田土壤 12
    3.2實驗藥品與器材 13
    3.2.1藥品與器材 13
    3.2.2實驗設備 13
    3.3實驗流程 14
    3.4實驗方法 15
    3.4.1液相基本性質測定 15
    3.4.2液相總固體(Total solid, TS) 15
    3.4.3液相懸浮固體(Suspended solid, SS) 16
    3.4.4 固相pH測定 16
    3.4.5 固相有機質(OM)測定 16
    3.5金屬元素分析 17
    3.5.1液相金屬分析 17
    3.5.2王水消化法 17
    3.5.3 BCR序列萃取法 17
    3.6數據之品保品管 18
    3.6.1檢量線製作 18
    3.6.2方法偵測極限 19
    3.7風險評估指標 20
    3.7.1地質累積指標(Geoaccumulation index, Igeo) 20
    3.7.2污染因子(Contamination factor, CF) 20
    3.7.3修正污染程度指標(Modified degree of contamination, mCd) 20
    3.7.4污染負荷指標(Pollution load index, PLI) 21
    3.7.5潛在生態風險指數(Potential ecological risk index, PERI) 21
    3.7.6 風險評估代碼(Risk assessment code, RAC) 22
    3.7.7各別污染因子(Individual contamination factor, ICF) 22
    3.7.8全量風險指數(Global risk index, GRI) 23
    3.7.9各別生態風險(Individual ecological risk, IER) 23
    3.7.10全量生態風險(Global Ecological risk, GER) 23
    第四章 結果與討論 25
    4.1基本性質分析 25
    4.1.1液相之基本性質 25
    4.1.2固相之基本性質 27
    4.1.3土壤之基本性質 27
    4.2重金屬分析 30
    4.2.1液相重金屬濃度 30
    4.2.2固相重金屬全量濃度 32
    4.2.3土壤重金屬全量濃度 34
    4.3重金屬分率分析 36
    4.3.1養豬廢水固態金屬分率 36
    4.3.2土壤重金屬分率 43
    4.4重金屬全量風險指標 50
    4.4.1地質累積指標(Igeo) 50
    4.4.2污染因子(CF)、修正污染程度(mCd)、污染負荷指標(PLI) 52
    4.4.3潛在生態風險指標(PERI) 55
    4.5重金屬分率風險指標 58
    4.5.1風險評估代碼(RAC) 58
    4.5.2各別污染因子(ICF)、全量風險指數(GRI) 60
    4.5.3各別生態風險(IER)、全量生態風險(GER) 63
    第五章 結論與建議 66
    5.1結論 66
    5.2建議 67
    參考文獻 68

    張仁福,1998,土壤污染防治學,高雄復文圖書出版社,第325-340頁。
    陸運姵,2005,台灣地區土壤重金屬汙染調查方法之相關性研究,碩士論文,逢甲大學,環境與科學學系,台中。
    王一雄,1997,土壤環境汙染與農藥,明文書局,第111-260頁。
    行政院農業委員會,2021,養豬頭數調查報告。
    鄧雅謓,2003,飲用水中三鹵甲烷生成及其致癌風險評估,碩士論文,國立台灣大學,環境衛生研究所,第125頁,台北。
    許惠悰,2006,風險評估與風險管理第二版,新文京開發出版股份有限公司,台北。
    戴伯宇,2020,銅(Ⅱ)與鎘(Ⅱ)在不同分子量土壤腐植質錯合探討,碩士論文,國立屏東科技大學,環境工程與科學系,屏東。
    翁駿杰,2018,豬廢水處理程序重金屬之固液相分佈研究,碩士論文,國立屏東科技大學,環境工程與科學系,屏東。
    張智全,2018,豬廢水營養源(氮及磷)隨著廢水處理程序變化,碩士論文,國立屏東科技大學,環境工程與科學系,屏東。
    吳佳豪,2021,探討雲林地區施灌不同類型畜牧廢水對農田土壤品質影響評估,碩士論文,朝陽科技大學,環境工程與管理系,台中。
    Abd El-Azim, H. and El-Moselhy, K. M., 2005, “Determination and Partitioning of Metals in Sediments Along the Suez Canal by Sequential Extraction,” Journal of Marine Systems, Vol. 56, No. 3-4, pp. 363-374.
    Arisekar, U., Shakila, R. J., Shalini, R., Jeyasekaran, G., Keerthana, M., Arumugam, N., Almansour, A. I., and Perumal, K., 2022, “Distribution and Ecological Risk Assessment of Heavy Metals Using Geochemical Normalization Factors in the Aquatic Sediments,” Chemosphere, Vol. 294, No. p. 133708.
    Bernet, N. and Béline, F., 2009, “Challenges and Innovations on Biological Treatment of Livestock Effluents,” Bioresource technology, Vol. 100, No. 22, pp. 5431-5436.
    Borba, C., Guirardello, R., Silva, E., Veit, M., and Tavares, C., 2006, “Removal of Nickel (II) Ions from Aqueous Solution by Biosorption in a Fixed Bed Column: Experimental and Theoretical Breakthrough Curves,” Biochemical Engineering Journal, Vol. 30, No. 2, pp. 184-191.
    Bortone, G., 2009, “Integrated Anaerobic/Aerobic Biological Treatment for Intensive Swine Production,” Bioresource Technology, Vol. 100, No. 22, pp. 5424-5430.
    Boughriet, A., Proix, N., Billon, G., Recourt, P., and Ouddane, B., 2007, “Environmental Impacts of Heavy Metal Discharges from a Smelter in Deûle-Canal Sediments (Northern France): Concentration Levels and Chemical Fractionation,” Water, Air, and Soil Pollution, Vol. 180, No. 1, pp. 83-95.
    Cattaneo, M., Finzi, A., Guido, V., Riva, E., and Provolo, G., 2019, “Effect of Ammonia Stripping and Use of Additives on Separation of Solids, Phosphorus, Copper and Zinc from Liquid Fractions of Animal Slurries,” Science of The Total Environment, Vol. 672, No. pp. 30-39.
    Chen, J., Liu, Y.-S., Zhang, J.-N., Yang, Y.-Q., Hu, L.-X., Yang, Y.-Y., Zhao, J.-L., Chen, F.-R., and Ying, G.-G., 2017, “Removal of Antibiotics from Piggery Wastewater by Biological Aerated Filter System: Treatment Efficiency and Biodegradation Kinetics,” Bioresource technology, Vol. 238, No. pp. 70-77.
    Chiou, C. T., Peters, L. J., and Freed, V. H., 1979, “A Physical Concept of Soil-Water Equilibria for Nonionic Organic Compounds,” Science, Vol. 206, No. 4420, pp. 831-832.
    de Andrade Passos, E., Alves, J. C., dos Santos, I. S., Jose do Patrocínio, H. A., Garcia, C. A. B., and Costa, A. C. S., 2010, “Assessment of Trace Metals Contamination in Estuarine Sediments Using a Sequential Extraction Technique and Principal Component Analysis,” Microchemical Journal, Vol. 96, No. 1, pp. 50-57.
    Duan, B., Zhang, W., Zheng, H., Wu, C., Zhang, Q., and Bu, Y., 2017, “Disposal Situation of Sewage Sludge from Municipal Wastewater Treatment Plants (WWTPs) and Assessment of the Ecological Risk of Heavy Metals for its Land Use in Shanxi, China,” International Journal of Environmental Research and Public Health, Vol. 14, No. 7, p. 823.
    Evans, G. M. and Furlong, J. C., 2003, “Environmental Biotechnology: Theory and Application,” Journal of the Air & Waste Management Association, Vol. 53, No. 11, pp. 1418-1419.
    Farkas, A., Erratico, C., and Viganò, L., 2007, “Assessment of the Environmental Significance of Heavy Metal Pollution in Surficial Sediments of the River Po,” Chemosphere, Vol. 68, No. 4, pp. 761-768.
    Formentini, T. A., Mallmann, F. J. K., Pinheiro, A., Fernandes, C. V. S., Bender, M. A., Da Veiga, M., Dos Santos, D. R., and Doelsch, E., 2015, “Copper and Zinc Accumulation and Fractionation in a Clayey Hapludox Soil Subject to Long-term Pig Slurry Application,” Science of the Total Environment, Vol. 536, No. pp. 831-839.
    González-Fernández, C., Nieto-Diez, P. P., León-Cofreces, C., and García-Encina, P. A., 2008, “Solids and Nutrients Removals from the Liquid Fraction of Swine Slurry Through Screening and Flocculation Treatment and Influence of these Processes on Anaerobic Biodegradability,” Bioresource Technology, Vol. 99, No. 14, pp. 6233-6239.
    Guo, Z., Zhang, J., Fan, J., Yang, X., Yi, Y., Han, X., Wang, D., Zhu, P., and Peng, X., 2019, “Does Animal Manure Application Improve Soil Aggregation? Insights from Nine Long-Term Fertilization Experiments,” Science of the Total Environment, Vol. 660, No. pp. 1029-1037.
    Jensen, J., Larsen, M. M., and Bak, J., 2016, “National Monitoring Study in Denmark Finds Increased and Critical Levels of Copper and Zinc in Arable Soils Fertilized with Pig Slurry,” Environmental Pollution, Vol. 214, No. pp. 334-340.
    Kumar, V., Sharma, A., Kaur, P., Sidhu, G. P. S., Bali, A. S., Bhardwaj, R., Thukral, A. K., and Cerda, A., 2019, “Pollution Assessment of Heavy Metals in Soils of India and Ecological Risk Assessment: A State-of-the-Art,” Chemosphere, Vol. 216, No. pp. 449-462.
    Møller, H., Lund, I., and Sommer, S., 2000, “Solid–Liquid Separation of Livestock Slurry: Efficiency and Cost,” Bioresource technology, Vol. 74, No. 3, pp. 223-229.
    Meng, J., Li, J., Li, J., Deng, K., Nan, J., and Xu, P., 2017, “Effect of Reflux Ratio on Nitrogen Removal in a Novel Upflow Microaerobic Sludge Reactor Treating Piggery Wastewater with High Ammonium and Low COD/TN Ratio: Efficiency and Quantitative Molecular Mechanism,” Bioresource Technology, Vol. 243, No. pp. 922-931.
    Muller, G., 1969. Index of Geoaccumulation in Sediments of the Rhine River. Geojournal 2, 108-118.
    Mulligan, C., Yong, R., and Gibbs, B., 2001, “Remediation Technologies for Metal-Contaminated Soils and Groundwater: an Evaluation,” Engineering geology, Vol. 60, No. 1-4, pp. 193-207.
    Naseem, R. and Tahir, S., 2001, “Removal of Pb (II) from Aqueous/Acidic Solutions by Using Bentonite as an Adsorbent,” Water research, Vol. 35, No. 16, pp. 3982-3986.
    Nriagu, J. O. and Pacyna, J. M., 1988, “Quantitative Assessment of Worldwide Contamination of Air, Water and Soils by Trace Metals,” nature, Vol. 333, No. 6169, pp. 134-139.
    Obernosterer, I. and Benner, R., 2004, “Competition Between Biological and Photochemical Processes in the Mineralization of Dissolved Organic Carbon,” Limnology and Oceanography, Vol. 49, No. 1, pp. 117-124.
    Ópezalonso, M., Benedito, J., Miranda, M., Castillo, C., Hernández, J., and Shore, R., 2000, “The Effect of Pig Farming on Copper and Zinc Accumulation in Cattle in Galicia (North-Western Spain),” The veterinary journal, Vol. 160, No. 3, pp. 259-266.
    Pellerin, B. A., Hernes, P. J., Saraceno, J., Spencer, R. G., and Bergamaschi, B. A., 2010, “Microbial Degradation of Plant Leachate Alters Lignin Phenols and Trihalomethane Precursors,” Journal of environmental quality, Vol. 39, No. 3, pp. 946-954.
    Qian, X., Wang, Z., Shen, G., Chen, X., Tang, Z., Guo, C., Gu, H., and Fu, K., 2018, “Heavy Metals Accumulation in Soil after 4 years of Continuous Land Application of Swine Manure: a Field-Scale Monitoring and Modeling Estimation,” Chemosphere, Vol. 210, No. pp. 1029-1034.
    Rogival, D., Scheirs, J., and Blust, R., 2007, “Transfer and Accumulation of Metals in a Soil–Diet–Wood Mouse Food Chain Along a Metal Pollution Gradient,” Environmental Pollution, Vol. 145, No. 2, pp. 516-528.
    Santos, L., Pinto, A., Filipe, O., Cunha, Â., Santos, E. B., and Almeida, A., 2016, “Insights on the Optical Properties of Estuarine DOM–Hydrological and Biological Influences,” PloS one, Vol. 11, No. 5, p. e0154519.
    Schlegel, A. J., Assefa, Y., Bond, H. D., Haag, L. A., and Stone, L. R., 2017, “Changes in Soil Nutrients after 10 years of Cattle Manure and Swine Effluent Application,” Soil and Tillage Research, Vol. 172, No. pp. 48-58.
    Stedmon, C. A., Thomas, D. N., Granskog, M., Kaartokallio, H., Papadimitriou, S., and Kuosa, H., 2007, “Characteristics of Dissolved Organic Matter in Baltic Coastal Sea Ice: Allochthonous or Autochthonous Origins?,” Environmental science & technology, Vol. 41, No. 21, pp. 7273-7279.
    Ting, Y., Huang, H.-j., and Lai, F.-y., 2017, “Pollution Hazards of Heavy Metals in Sewage Sludge from Four Wastewater Treatment Plants in Nanchang, China,” Transactions of Nonferrous Metals Society of China, Vol. 27, No. 10, pp. 2249-2259.
    Tomlinson, D., Wilson, J., Harris, C., and Jeffrey, D., 1980, “Problems in the Assessment of Heavy-Metal Levels in Estuaries and the Formation of a Pollution Index,” Helgoländer meeresuntersuchungen, Vol. 33, No. 1, pp. 566-575.
    Tytła, M., 2019, “Assessment of Heavy Metal Pollution and Potential Ecological Risk in Sewage Sludge from Municipal Wastewater Treatment Plant Located in the Most Industrialized Region in Poland—Case Study,” International Journal of Environmental Research and Public Health, Vol. 16, No. 13, p. 2430.
    Tytła, M., 2020, “Identification of the Chemical forms of Heavy Metals in Municipal Sewage Sludge as a Critical Element of Ecological Risk Assessment in Terms of its Agricultural or Natural Use,” International Journal of Environmental Research and Public Health, Vol. 17, No. 13, p. 4640.
    Vanotti, M., Szogi, A., and Vives, C., 2008, “Greenhouse Gas Emission Reduction and Environmental Quality Improvement from Implementation of Aerobic Waste Treatment Systems in Swine Farms,” Waste Management, Vol. 28, No. 4, pp. 759-766.
    Wan, Y., Huang, Q., Wang, Q., Ma, Y., Su, D., Qiao, Y., Jiang, R., and Li, H., 2020, “Ecological Risk of Copper and Zinc and Their Different Bioavailability Change in Soil-Rice System as Affected by Biowaste Application,” Ecotoxicology and Environmental Safety, Vol. 192, No. p. 110301.
    Xu, Z., Li, J., Pan, Y., and Chai, X., 2016, “Human Health Risk Assessment of Heavy Metals in a Replaced Urban Industrial Area of Qingdao, China,” Environmental monitoring and assessment, Vol. 188, No. 4, pp. 1-12.
    Yu, K.-C., Tsai, L.-J., Chen, S.-H., and Ho, S.-T., 2001, “Chemical Binding of Heavy Metals in Anoxic River Sediments,” Water Research, Vol. 35, No. 17, pp. 4086-4094.
    Zhang, W., Lang, Q., Wu, S., Li, W., Bah, H., and Dong, R., 2014, “Anaerobic Digestion Characteristics of Pig Manures Depending on Various Growth Stages and Initial Substrate Concentrations in a Scaled Pig Farm in Southern China,” Bioresource technology, Vol. 156, No. pp. 63-69.
    Zhao, J., Huang, J., Guan, M., Zhao, Y., Chen, G., and Tian, X., 2016, “Mathematical Simulating the Process of Aerobic Granular Sludge Treating High Carbon and Nitrogen Concentration Wastewater,” Chemical Engineering Journal, Vol. 306, No. pp. 676-684.

    下載圖示
    QR CODE