簡易檢索 / 詳目顯示

研究生: 楊子謙
Yang, Tzu-Chian
論文名稱: 固體廢棄物焚化衍生飛灰中之戴奧辛類化合物分佈特性
The Distribution Characteristics of Dioxin-like Compounds in Fly Ash from Solid Waste Incineration
指導教授: 林傑
Lin, Chieh
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程與科學系所
Department of Environmental Science and Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 74
中文關鍵詞: 戴奧辛類化合物都市固體廢棄物焚化爐事業廢棄物焚化爐分佈特性戴奧辛生成機制
外文關鍵詞: Dioxin-like Compounds, Municipal Solid Waste Incineration, Industrial Waste Incineration, Distribution Characteristics, Dioxin Generation Mechanism
DOI URL: http://doi.org/10.6346/NPUST202200337
相關次數: 點閱:33下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統
  • 本研究為探討廢棄物焚化廠焚化衍生飛灰中戴奧辛類化合物分佈、毒性當量及特徵剖面。結果顯示,廢棄物焚化爐(MSWI)和事業廢棄物焚化爐(IWI)兩廠之袋式灰與混合灰PCDD/Fs濃度皆以OCDD濃度最高物種,MSWI袋式灰和混合灰濃度分別為1.44 ng/g和1.31 ng/g,IWI袋式灰和混合灰濃度分別為0.0213±0.00546 ng/g和0.0200±0.00759 ng/g,兩廠之袋式灰與混合灰中PCDFs濃度均大於PCDDs,表示戴奧辛類生成機制皆為De Novo反應大於Precursor反應。MSWI袋式灰與混合灰毒性當量濃度分別為0.0657 ng WHO -TEQ/g和0.0357 ng WHO -TEQ/g,IWI袋式灰與混合灰毒性當量濃度分別為1.42×10-3±2.40×10-4 ng WHO -TEQ/g和7.69×10-4±1.32×10-4 ng WHO -TEQ/g。MSWI袋式灰與混合灰毒性當量濃度分別為0.0786 ng WHO -TEQ/g和0.0317 ng WHO -TEQ/g,IWI袋式灰與混合灰毒性當量濃度分別為3.13E×10-3±4.19×10-4 ng WHO -TEQ/g和1.70×10-3±4.42×10-4 ng WHO -TEQ/g。毒性主要貢獻物皆為PCDFs,其次為PCDDs、DL-PCBs。MSWI污防前與袋式灰之PCDD和PCDF比值皆小於1,表示兩者戴奧辛類生成機制相同為De Novo反應大於Precursor反應;排放管道與袋式灰之PCDD和PCDF比值不相似,排放管道戴奧辛類生成機制為Precursor反應大於De Novo反應。IWI污防前、排放管道和袋式灰之PCDD和PCDF比值不相似,表示戴奧辛類生成機制不相似,IWI污防前和排放管道戴奧辛類生成機制為Precursor反應大於De Novo反應;IWI袋式灰戴奧辛類生成機制相似為De Novo反應大於Precursor反應。利用微環境模式模擬兩座焚化廠之袋式集塵器之戴奧辛化合物分佈,發現到實際值和模擬值的濃度趨勢MSWI較IWI相似。

    This study investigate the distribution of dioxins in the incineration-derived fly ash of waste incineration plants. The results showed that the PCDD/Fs concentrations of baghouse filter ash and mixed ash from municipal solid waste incineration(MSWI)and industrial waste incineration(IWI)has the highest concentration of OCDD. The concentrations of MSWI baghouse filter ash and mixed ash were 1.44 ng/g and 1.31 ng/g respectively, while the concentrations of IWI baghouse filter ash and mixed ash were 0.0213±0.00546 ng/g and 0.0200±0.00759 ng/g respectively. The PCDFs concentrations in the baghouse filter ash and mixed ash of the two plants were both higher than PCDDs concentrations, indicating that the formation mechanism of dioxin-like is more in line with De Novo reaction than Precursor reaction. The PCDD/Fs concentrations of MSWI baghouse filter ash and mixed ash were 0.0657 ng WHO -TEQ/g and 0.0357 ng WHO -TEQ/g respectively, while the concentrations of IWI baghouse filter ash and mixed ash were 1.42×10-3±2.40×10-4 ng WHO-TEQ/g and 7.69×10-4±1.32×10-4 ng respectively. The PCDD/Fs TEQ concentrations in MSWI baghouse filter ash and mixed ash were 0.0786 ng WHO -TEQ/g and 0.0317 ng WHO-TEQ/g respectively, while the TEQ concentrations of IWI baghouse filter ash and mixed ash were 3.13E×10-3±4.19×10-4 ng WHO-TEQ/g and 1.70×10-3±4.42×10-4 ng WHO-TEQ/g respectively. PCDFs has a higher toxicity contribution proportion in ash, followed by PCDDs and PCBs. The ratios of PCDD and PCDF between MSWI pre-fouling and baghouse filter ash were below 1, indicated that they have the same dioxin-like generation mechanism, which is more in line with the De Novo Synthesis than the Precursor reaction, while the ratios of PCDD and PCDF between the discharge pipelines and baghouse filter ash were different, indicated that the dioxin-like generation mechanism is more in line with the Precursor reaction than the De Novo Synthesis. The PCDD and PCDF ratios of IWI pre-fouling, discharge pipelines and baghouse filter ash were different, indicated that they have different generation mechanism of dioxin-like. The generation mechanism of dioxin-like of IWI pre-fouling and discharge pipeline is more in line with the Precursor Reaction than the De Novo Synthesis; while the generation mechanism of dioxin-like of IWI baghouse filter ash is more in line with the De Novo Synthesis than the Precursor reaction. The micro-environment model is used to simulate the distribution of dioxin compounds in baghouse filter ash collectors of two incineration plants, it demonstrates that the actual concentration trend and the stimulated concentration trend of MSWI was similar as compared to IWI.

    摘要 I
    Abstract III
    謝誌 V
    目錄 VI
    表目錄 X
    圖目錄 XII
    第一章 前言 1
    1.1 研究緣起 1
    1.2 研究目的 1
    第二章 文獻回顧 3
    2.1 戴奧辛類化合物(Dioxin-like compounds) 3
    2.2 戴奧辛(Dioxin;PCDD/Fs) 4
    2.2.1 戴奧辛之基本特性 4
    2.2.2 戴奧辛之毒性 4
    2.3 戴奧辛之來源 6
    2.3.1 戴奧辛在環境中之傳輸和暴露途徑 7
    2.4 多氯聯苯(Polychlorinated Biphenyls, PCBs) 8
    2.4.1 多氯聯苯之基本特性 8
    2.4.2 多氯聯苯之毒性 10
    2.4.3 多氯聯苯之來源 10
    2.4.4 多氯聯苯之環境分佈和暴露途徑 14
    2.5 戴奧辛類化合物之毒性當量 15
    2.6 焚化過程中戴奧辛類化合物之生成機制 18
    2.6.1 爐外低溫再合成反應(De Novo Synthesis) 19
    2.6.2 前驅物異相催化反應合成效應(Precursor) 19
    2.7 焚化廢棄物後之副產物 22
    2.7.1 飛灰 24
    2.7.2 底渣 24
    2.8 焚化系統之污染防治設備 25
    2.8.1 集塵器型式 25
    2.8.2 粉狀活性碳噴注 27
    第三章 材料和方法 28
    3.1 廢棄物焚化設施 28
    3.2 採樣規劃 29
    3.2.1 飛灰樣品之採樣 31
    3.2.2 排放管道樣品之採樣 31
    3.3 飛灰樣品之戴奧辛類化合物分析方式 32
    3.3.1 飛灰樣品前處理方法 32
    3.3.2 殘餘相中戴奧辛類化合物之萃取 33
    3.3.3 樣品萃取液之濃縮 33
    3.3.4 多層矽膠管柱之淨化 33
    3.3.5 活性碳管柱淨化 34
    3.4 排放管道樣品分析 35
    3.5 微環境模擬袋式集塵器 35
    第四章 結果與討論 37
    4.1 飛灰中戴奧辛類化合物 37
    4.1.1 MSWI袋式灰與混合灰中戴奧辛類化合物濃度 37
    4.1.2 MSWI袋式灰與混合灰中戴奧辛類化合物毒性當量濃度 40
    4.1.3 MSWI混合灰之戴奧辛類化合物濃度占比 44
    4.1.4 IWI袋式灰和混合灰中戴奧辛類化合物濃度 46
    4.1.5 IWI袋式灰和混合灰中戴奧辛類化合物毒性當量濃度 50
    4.1.6 IWI袋式灰和混合灰之戴奧辛類化合物濃度占比 55
    4.2 排放管道濃度與袋式灰濃度 57
    4.2.1 MSWI排放管道濃度 57
    4.2.2 IWI排放管道濃度 60
    4.3 利用微環境模式模擬袋式集塵器之戴奧辛化合物分佈 63
    第五章 結論與建議 65
    5.1 結論 65
    5.2 建議 67
    參考文獻 68

    朱信,簡聰文,2002,「燃燒與空氣污染物」,科學發展,第355期,行政院國家科學委員會,第18~21頁
    朱翊慈,2018,逸壓模式對類戴奧辛化合物之分佈應用研究,碩士論文,國立屏東科技大學,環境工程與科學系所,屏東。
    行政院環保署,1991,「垃圾處理方案」。
    余宗賢,2004,固化法於飛灰重金屬及戴奧辛之穩定化研究,碩士論文,國立高雄第一科技大學,環境與安全衛生工程所,高雄。
    李彥芬,2004,戴奧辛類化合物於飛灰中之生成與控制研究,碩士論文,國立屏東科技大學,環境工程與科學系所,屏東。
    宋德高,1995,臺灣地區環境中含氯毒性有機化合物分析研究,碩士論文,國立清華大學,化學研究所,新竹。
    吳宛錚,2006,Photo-Fenton程序降解絕緣油中多氯聯苯之研究,碩士論文,國立屏東科技大學,環境工程與科學系所,屏東。
    許菁芳,2000,油症患者血液中多氯聯苯、多氯戴奧辛、多氯夫喃同源物濃度與肝功能異常之相關性研究,碩士論文,國立成功大學環境醫學研究所,台南。
    章裕民,1996,焚化處理技術,文京圖書公司,台北。
    陳宏明,2019,粉狀活性碳噴注及袋式集塵效率對戴奧辛類化合物於廢棄物焚化設施中質量分佈之影響,碩士論文,國立屏東科技大學,環境工程與科學系所,屏東。
    陳宜伶,2002,氧化鈦(Ⅳ)覆鍍方法對多氯聯苯光催化效應之影響,碩士論文,國立屏東科技大學,環境工程與科學系所,屏東。
    陳建呈,2009,前驅物對戴奧辛類化合物催化生成效應之研究,碩士論文,國立屏東科技大學,環境工程與科學系所,屏東。
    楊宜寧,2004,高屏溪河口與近岸海域沉積物中多氯聯苯與六氯苯化合物含量分析之研究,碩士論文,國立中山大學,海洋環境及工程學系研究所,高雄。
    劉肇昀,2014,調查石化工業區周界養殖漁塭之類戴奧辛化合物,碩士論文,國立屏東科技大學,環境工程與科學系研究所,屏東。
    錢建嵩,2010,「流體化床焚化爐與戴奧辛控制」,科學發展,450期,行政院國家科學委員會,第12-19頁。
    謝函潔,2001,垃圾焚化飛灰吸附有機物與重金屬鉛、鎘的探討,碩士論文,國立臺灣大學,環境工程學研究所,台北。
    Altarawneh, M., Dlugogorski, B. Z., Kennedy, E. M., and Mackie, J. C., 2009, “Mechanisms for formation, chlorination, dechlorination and destruction of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs),” Progress in Energy and Combustion Science, Vol. 35(3), pp. 245-274.
    Ballschmiter, K., Braunmiller, I., Niemczyk, R., and Swerev, M., 1988, “Reaction pathways for the formation of polychloro-dibenzodioxins (PCDD) and —dibenzofurans (PCDF) in combustion processes: II. Chlorobenzenes and chlorophenols as precursors in the formation of polychloro-dibenzodioxins and —dibenzofurans in flame chemistry,” Chemosphere, Vol. 17(5), pp. 995-1005.
    Bell, J. G., Zhao, X., Uygur, Y., and Thomas, K. M., 2011, “Adsorption of Chloroaromatic Models for Dioxins on Porous Carbons: The Influence of Adsorbate Structure and Surface Functional Groups on Surface Interactions and Adsorption Kinetics,” The Journal of Physical Chemistry C, Vol. 115(6), pp. 2776-2789.
    Bernal, J. L., Del Nozal, M. J., Toribio, L., and Brogeras, J., 1992, “Polychlorinated biphenyls analysis in sediments from Castile and Leon reservoirs,” Toxicological and Environmental Chemistry, Vol. 35(3-4),pp. 137-148.
    Buekens, A. and Huang, H., 1998, “Comparative Evaluation of Techniques for Controlling the Formation and Emission of Chlorinated Dioxin Furans in Municipal Waste Incineration,” Journal of Hazardous Materials,Vol. 62(1), pp. 1-33.
    Buonanno, G., Scungio, M., Stabile, L., and Tirler, W., 2012, “Ultrafine particle emission from incinerators: The role of the fabric filter,” Journal of the Air and Waste Management Association, Vol. 62(1), pp. 103-111.
    Cains, P. W., McCausland, L. J., Fernandes, A. R. and Dyke, P., 1997, “Polychlorinated dibenzo-p-dioxins and dibenzofurans formation in incineration: Effects of fly ash and carbon source”, Environmental Science and Technology, Vol. 31(3) , pp. 776-785.
    Chevreuil, M., Blanchard, M., Teil, M. J., and Chesterikoff, A., 1998, “Polychlorobiphenyl behaviour in the water/sediment system of the Seine river, France.” Water Research, Vol. 32(4), pp. 1204-1212.
    Faroon, O., and Olson, J. N., 2000, “Toxicological profile for polychlorinated biphenyls (PCBs),” Atlanta, GA: U.S. Department of Health and Human Services, Public Health Service.
    Griffin, R. D., 1986, “ A new theory of dioxin formation in municipal solid waste combustion,” Chemosphere, Vol. 15(9-12), pp. 1987-1990.
    Hutzinger, O., Safe, S., and Zikto, V., 1974, The Chemistry of PCB’s, CRC Press, Boca Raton.
    INDRO, 2017, “What is industrial dust collector and baghouse filter bag,” INDRO, Available at:https://www.filterworkshop.com/info/what-is-industrial-dust-collector-and-baghouse-filter-bag-i00277i1.html, 22 November 2017
    Jones, A. M., and Harrison, R. M., 2016, “Emission of ultrafine particles from the incineration of municipal solid waste: A review,” Atmospheric Environment, Vol. 140, pp. 519-528.
    Kalajzic, T., Bianchi, M., Muntau, H., and Kettrup, A., 1998, “Polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs) in the sediments of an Italian drinking water reservoir,” Chemosphere, Vol 36(7), pp. 1615-1625.
    Kim, E. J., Oh, J. E., and Chang, Y. S., 2003, “Effects of forest fire on the level and distribution of PCDD/Fs and PAHs in soil,” Science of The Total Environment, Vol. 311(1-3), No. 1-3, pp. 177-189.
    Klamer, J., Laane, R. W. P. M., and Marquenie, J. M., 1991, “Sources and fate of PCBs in the North Sea: a review of available data,” Water Science and Technology, Vol. 24(10), pp. 77-85.
    Krishna, S. M., and Krishnamurthy, N., 2018, “Emerging Post Combustion Technologies for Coal Fired Thermal Power Plants,” Power Research, Vol. 14(2), pp. 184-190.
    Landers, J. P., and Bunce, N. J., 1991, “The Ah receptor and the mechanism of dioxin toxicity,” The Biochemical journal, Vol. 276 (Pt 2), pp. 273–287.
    Lemieux, P. M., Lee, C. W., Ryan, J. V., and Lutes, C. C., 2001, “Bench-scale studies on the simultaneous formation of PCBs and PCDD/Fs from combustion systems,” Waste Management, Vol. 21(5), pp. 419-425.
    Lind, T., Hokkinen, J., and Jokiniemi, J. K., 2007, “Fine particle and trace element emissions from waste combustion — Comparison of fluidized bed and grate firing,” Fuel Processing Technology, Vol. 88(7), pp. 737-746.
    Luijk, R., D. M. Akkerman, P. Slot, K. Olie, and F. Kapteijn., 1994, “Mechanism of formation of polychlorinated dibenzo-p-dioxins and dibenzofurans in the catalyzed combustion of carbon,” Environmental Science and Technology, Vol. 28(2), pp. 312-321.
    McKay, G., 2002, “Dioxin characterisation, formation and minimisation during municipal solid waste (MSW) incineration: review,” Chemical Engineering Journal, Vol 86(3), pp. 343-368.
    Metcalfe, J., Stock, M. K., Barron, D. H. Maternal physiology during gestation. In:Knobil E., Neill J, Ewing J. J, Greenwald G.S., Markert, C.L., Pfaff, D.W., 1988, “The Physiology of Reproduction,”New York: Raven Press, pp. 2145-2176.
    Milligan, M. S., and Altwicker, E., 1993, “The relationship between de novo synthesis of polychlorinated dibenzo-p-dioxins and dibenzofurans and low-temperature carbon gasification in fly ash,” Environmental Science and Technology, Vol. 27(8), pp. 1595-1601.
    Robertson, L. W., and Hansen, L. G. (Eds.)., 2001, PCBs: Recent Advances in Environmental Toxicology and Health Effects, University Press of Kentucky.
    Schecter McLachlan M. S., 1997, “A simple model to predict the accumulation of PCDD/Fs in an agricultural food chain,” Chemosphere, Vol. 34(1236-1276), pp. 1263-1276.
    Sinkkonen, S., and Paasivirta, J., 2000, “Degradation half-life times of PCDDs, PCDFs and PCBs for environmental fate modeling,” Chemosphere, Vol. 40(9), pp. 943-949.
    Stieglitz, L., 1998, “Selected Topics on the De Novo Synthesis of PCDD/PCDF on Fly Ash,” Environmental Engineering Science, Vol. 15(1), pp. 5-18.
    Tuppurainen, K., Asikainen, A., Ruokojärvi, P., and Ruuskanen, J., 2003, “Perspectives on the Formation of Polychlorinated Dibenzo-p-dioxins and Dibenzofurans during Municipal Solid Waste (MSW) Incineration and Other Combustion Processes,” Accounts of Chemical Research, Vol. 36(9), pp. 652-658.
    US EPA., 1996, “PCBs:Cancer Dose-Response Assessment and Application to Environmental Mixtures” National Center for Environmental Assessment Office of Research and Development U.S. Environmental Protection Agency Washington, DC, EPA-600-P-96-001F.
    Van den Berg, M., Birnbaum, L. S., Denison, M., De Vito, M., Farland, W., Feeley, M., Fiedler, H., Hakansson, H., Hanberg, A., Haws, L., Rose, M., Safe, S., Schrenk, D., Tohyama, C., Tritscher, A., Tuomisto, J., Tysklind, M., Walker, N., and Peterson, R. E., 2006, “The 2005 World Health Organization Reevaluation of Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-Like Compounds,” Toxicological Sciences, Vol. 93(2), pp. 223-241.
    Vogg, H., and Stieglitz, L., 1986, “Thermal behavior of PCDD/PCDF in fly ash from municipal incinerators,” Chemosphere, Vol. 15(9-12), pp. 1373-1378.
    Weber, R., Iino, F., Imagawa, T., Takeuchi, M., Sakurai, T., and Sadakata, M., 2001, “Formation of PCDF, PCDD, PCB, and PCN in de novo synthesis from PAH: Mechanistic aspects and correlation to fluidized bed incinerators,” Chemosphere, Vol. 44(6), pp. 1429-1438.
    Wiater, I., 2000, “Products, rates, and mechanism of the gas-phase condensation of phenoxy radicals between 500-840 K,” European Journal of Organic Chemistry, Vol. 2000(6), pp. 921–928.
    Wiles, C., and Shepherd, P., 1999, Beneficial use and recycling of municipal waste combustion residues-a comprehensive resource document, National Renewable Energy Lab. (NREL), Golden, CO (United States).
    WHO, 2016, “Dioxins and their effects on human health,” World Health Organization, Available at:https://www.who.int/news-room/fact-sheets/detail/dioxins-and-their-effects-on-human-health, Accessed 4 October 2016.

    下載圖示
    QR CODE