簡易檢索 / 詳目顯示

研究生: 陳金權
Chen, Chin-Chuan
論文名稱: 水稻耕種方法與溫室氣體排放之研究
Research on Greenhouse Gas Emission for Different Paddy Rice Cultivation Techniques
指導教授: 王裕民
Wang, Yu-Min
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程系所
Department of Civil Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 56
中文關鍵詞: 益生菌水稻強化栽培系統全球暖化溫室效應二氧化碳排放甲烷氧化亞氮
外文關鍵詞: SPRI, Global Warming, Greenhouse Effect, Carbon Dioxide Emissions, Methane, Nitrous Oxide
研究方法: 研究區域概述 、 溫室氣體排放估算 、 情境模擬
DOI URL: http://doi.org/10.6346/NPUST202200369
相關次數: 點閱:63下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統
  • 因應氣候變遷於全球之影響,為降低全球暖化速度,國際間投力於2050淨零碳排,台灣各產業也積極響應,水稻產業與淨零碳排之關係為值得吾人探討的課題。本研究針對我國主要糧食作物稻米進行溫室氣體排放之調查,並採用農民現行的三種水稻農法進行比較:慣行農法、乾溼交替(alternate wetting and drying, AWD)、益生菌水稻強化栽培系統(system of probiotic rice intensification, SPRI),本研究採取現地訪查的方式了解各農法於栽培期間(育種至收割)所需使用之機具、流程與肥料,並藉由蒐集文獻取得甲烷及氧化亞氮於水稻田間的排放係數,進一步計算各農法栽培期間之溫室氣體排放。
    計算結果顯示,水稻耕作使用SPRI農法之溫室氣體排放最低值,其二氧化碳當量為2370.63公斤,與慣行農法之二氧化碳當量7786.33公斤比較減少了70%,與AWD農法之二氧化碳當量3918.11公斤比較則減少了39%,為更了解農法變化下溫室氣體減少的原因,本研究將溫室氣體排放因子分為運輸能源、物料、肥料、機械能源及灌溉等六大部分,探討各因子所占影響百分比。結果可知,稻田溫室氣體排放受灌溉管理影響最為明顯,其中SPRI灌溉用水的改變得以減少慣行用水稻田二氧化碳當量排放之91%,而SPRI施肥條件的改變得以減少慣行施肥二氧化碳當量排放之60%。
    由本研究結果發現,農法的改變對於水稻栽培溫室氣體排放值的影響甚大,因此若將農法進行調整可以在產量不改變的狀況下,讓育種至收割期間溫室氣體的排放量降低,對地球的溫室效應有相當程度的貢獻。

    To reduce the rate of global warming in response to the global impact of climate change. International investment in net-zero carbon emissions by 2050 . Various industries in Taiwan also responded positively to the idea that the relationship between rice industry and net zero carbon emissions is a subject worthy of my exploration.This study investigates the greenhouse gas emissions of rice, a major food crop in Taiwan, and uses three types of farmers' current rice farming methods for comparison: conventional farming, alternate wetting and drying (AWD), an a system of probiotic rice intensification (SPRI ).The study was conducted by means of on-site visits to uderstand the tools, processes and fertilizers required for each agricultural method during cultivation, and the values of methane and nitrous oxide emissions in rice fields were also obtained through literature collection to calculate of greenhouse gas emissions for each agricultural method.
    The calculation results show that the lowest greenhouse gas emission value is the SPRI agricultural method for rice cultivation, the CO2 eq of this is 2370.63 kg. This is a 70% reduction compared to the conventional agricultural method of 7786.33 kg of CO2 eq, and 39% reduction compared to the AWD method of 3918.11 kg of CO2 eq. To understand the reasons of reducing greenhouse gases with changing agricultural practices. This study divides the greenhouse gas (GHG) emission factors into six parts: transportation energy, material, fertilizer, mechanical energy and irrigation, to explore the percentage of influence of each factor. The results of the study show that the main impacts are irrigation water and fertilizer use, greenhouse gas emission from rice field is most significantly affected by irrigation management.
    Of this, changes in SPRI irrigation water reduced 91% of CO2-equivalent emissions from conventional paddy fields and changes in fertilizers by 60 %. Greenhouse gas emission differences are mainly affected by irrigation water and fertilizer use.
    This study found that use different agricultural methods had a significant impact on the value of greenhouse gas emissions from rice cultivation. Therefore, if the farming method is adjusted, the greenhouse gas emissions during cultivation can be reduced without changing the yield, and contribute to the Earth's greenhouse effect.

    摘要 I
    Abstract III
    謝致 V
    第1章 緒論 1
    第2章 文獻回顧 4
    2.1水稻傳統灌溉 4
    2.2 乾溼交替農法(alternate wetting and drying , AWD) 6
    2.3 益生菌水稻強化栽培系統(system of probiotic rice intensification, SPRI) 6
    2.4水稻田溫室氣體排放 8
    第3章 研究材料與方法 14
    3.1研究區域概述 16
    3.2溫室氣體排放估算 18
    3.2.1採用之水稻品種 18
    3.2.2水稻栽培背景 18
    3.2.3田間使用機械 19
    3.2.4 溫室氣體排放係數 21
    3.3情境模擬 24
    3.3.1稻種(A) 25
    3.3.2整地(B) 25
    3.3.3插秧(C) 25
    3.3.4栽培管理(D) 25
    3.3.5收割(E) 29
    第4章 結果與討論 33
    4.1水稻田栽培二氧化碳當量估算結果 33
    4.2情境分析 40
    4.3溫室氣體排放估算之研究限制 47
    第5章 結論與建議 48
    5.1結論 48
    5.2建議 49
    參考文獻 50

    江志峰,2015,「台灣地區水稻氮肥效應之比較與肥料推薦系統建立」,104年土壤肥力與植物營養應用回顧與展望研討會論文集,第55-69頁。
    江志豐,2019,作物土壤管理與施肥技術–水稻篇,行政院農業委員會農業試驗所,台中,第24頁。
    行政院農委會,https://www.coa.gov.tw/index.php 。(May 6,2022)
    吳永培,郭素真,林柄男,2017,「機能米品種的育成」,農業生技產業季刊,第47卷,第33頁。
    吳秉諭,何姿穎,陳琦玲,2013,「因應氣侯變遷-農業生產管理與溫室氣體減排」,農政與農情,第252期,第6-10頁。
    吳重儀,2002,水稻田甲烷散發量之推估,碩士論文,國立臺灣大學,生物環境系統工程學系暨研究所,台北。
    呂奇峰,羅正宗,2014,「節水栽培對水稻產量及品質之影響」,臺南區農業改良場研究彙報,第64卷,第10-19頁。
    林羿汝,邱儀婷,陳清田,李振誥,2017,「灌溉管理操作對水稻生長期距及灌溉用水效能影響之研究」,農業工程學報,第63卷,第4期,第35-48頁。
    柯光瑞,2005,台灣北部現行耕作制度對農田土壤溫室氣體(CO2、CH4、N2O)釋出之影響,碩士論文,國立臺灣大學,農業化學研究所,台北。
    科技部,中央研究院環境變遷研究中心,交通部中央氣象局, 臺灣師範大學地球科學系,國家災害防救科技中心,2021,「IPCC 氣候變遷第六次評估報告之科學重點摘錄與臺灣氣候變遷評析更新報告」,台灣氣候變遷科學團隊,第 3 頁。
    徐陽春,沈其榮,雷寶坤,儲國良,王全洪,2000,「水旱輪作下長期免耕和施用有機肥對土壤某些肥力性狀的影響」,應用生態學報,第11卷,第4期,第549-552頁。
    國立屏東科技大學,2019年2月,水稻益生菌強化系統種出最優發芽米種,https://wp.npust.edu.tw/2019/02/21/focus-1503/ (June 15,2022)
    許宏昌,蔡思聖,吳文欽,徐仲禹,黃佳興,范美玲,2018,「節水灌溉方法對於東部水稻田適用性之初步研究」,花蓮區農業改良場研究彙報,第36卷,第1-11頁。
    陳宗禮,2012,提升水分生產力與氮肥利用效率及降低甲烷是放量的水稻栽培整合技術(第3年/全程3年)(編號:102農科-9.2.1-糧.Z1(6))。台北市:行政院農業委員會農糧署。
    陳亮清,卜慶翔,楊台富,2014,「有機米產品碳足跡計算」,東南學報,第39期,第209-221頁。
    馮浦捷,鄭丞孝,莊秉潔,陳琦玲,黃穎俊,黨美齡,林卷樺,2015,「台灣地區水稻田全年度甲烷通量觀測-以台中霧峰為例」,大氣科學,第43卷,第3期,第221-232頁。
    黃山內,林經偉,劉瑞美,2000,「全期湛水與間歇灌溉處理對台灣水稻田甲烷釋放之影響」,土壤與環境,第3卷,第3期,第217-225頁。
    經濟部水利署,https://www.wra.gov.tw/。(May 6,2022)
    錢元晧,賴朝明,楊盛行,2010,「台灣水田, 旱田與濕地土壤氧化亞氮之釋放通量及其減量對策」,土壤與環境,第13卷,第1-2期,第23-42頁。
    羅秋雄,張金城,2005,作物施肥手冊,行政院農業委員會農糧署,第13-16頁。
    Ahemad, M., and Kibret, M., 2014, “Mechanisms and applications of plant growth promoting rhizobacteria: current perspective,” Journal of King saud University-science, Vol.26, No.1, pp.1-20.
    Baldocchi, D., Detto, M., Sonnentag, O., Verfaillie, J., Teh, Y. A., Silver, W., and Kelly, N. M., 2012, “The challenges of measuring methane fluxes and concentrations over a peatland pasture,” Agricultural and Forest Meteorology, Vol.153, pp.177-187.
    Bargaz, A., Lyamlouli, K., Chtouki, M., Zeroual, Y., and Dhiba, D., 2018, “Soil microbial resources for improving fertilizers efficiency in an integrated plant nutrient management system,” Frontiers in microbiology, Vol.9, pp.1606.
    Barison, J., and Uphoff, N., 2011, “Rice yield and its relation to root growth and nutrient-use efficiency under SRI and conventional cultivation: an evaluation in Madagascar,” Paddy and Water Environment, Vol.9, No.1, pp.65-78.
    Bouman, B. A., Humphreys, E., Tuong, T. P., and Barker, R., 2007, “Rice and water,” Advances in agronomy, Vol.92, pp.187-237.
    Brevik, E. C., 2012, “Soils and climate change: gas fluxes and soil processes,” Soil Horizons, Vol.53, No.4, pp.12-23.
    Ehhalt, D. H., and Schmidt, U., 1978, “Sources and sinks of atmospheric methane,” Pure and Applied Geophysics, Vol.116. No.2, pp.452-464.
    Etiope, G., and Klusman, R. W., 2002, “Geologic emissions of methane to the atmosphere,” Chemosphere, Vol.49, No.8, pp.777-789.
    Food and Agriculture Organization of the United Nations, FAO., https://www.fao.org/home/en
    Gunaseelan, V. N., 1997, “Anaerobic digestion of biomass for methane production: a review,” Biomass and bioenergy, Vol.13, No.1-2, pp.83-114.
    Hamilton-Miller, J. M. T., 2003, “The role of probiotics in the treatment and prevention of Helicobacter pylori infection,” International journal of antimicrobial agents, Vol.22 No.4,pp. 360-366.
    IPCC AR6, https://www.ipcc.ch/report/sixth-assessment-report-working-group-i/
    Islam, M. S., Peng, S., Visperas, R. M., Ereful, N., Bhuiya, M. S. U., & Julfiquar, A. W., 2007, “Lodging-related morphological traits of hybrid rice in a tropical irrigated ecosystem,” Field crops research, Vol.101, No.2, pp.240-248.
    Jacoby, R., Peukert, M., Succurro, A., Koprivova, A., and Kopriva, S., 2017, “The role of soil microorganisms in plant mineral nutrition—current knowledge and future directions,” Frontiers in plant science, Vol8, pp.1617.
    Linquist, B. A., Anders, M. M., Adviento‐Borbe, M. A. A., Chaney, R. L., Nalley, L. L., Da Rosa, E. F., and Van Kessel, C., 2015, “Reducing greenhouse gas emissions, water use, and grain arsenic levels in rice systems,” Global change biology, Vol.21, No.1, pp.407-417.
    Linquist, B., Van Groenigen, K. J., Adviento‐Borbe, M. A., Pittelkow, C., and Van Kessel, C., 2012, “An agronomic assessment of greenhouse gas emissions from major cereal crops,” Global Change Biology, Vol.18, No.1, pp.194-209.
    Lofton, D. D., Whalen, S. C., and Hershey, A. E., 2014, “Effect of temperature on methane dynamics and evaluation of methane oxidation kinetics in shallow Arctic Alaskan lakes,” Hydrobiologia, Vol.721, No.1, pp.209-222.
    Mehta, S., and Nautiyal, C. S., 2001, “An efficient method for qualitative screening of phosphate-solubilizing bacteria,” Current microbiology, Vol.43, No.1, pp.51-56.
    Netz, B., Davidson, O. R., Bosch, P. R., Dave, R., & Meyer, L. A., 2007, “Climate change 2007: Mitigation. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Summary for Policymakers,” Climate change 2007: Mitigation. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Summary for Policymakers.
    Peng, S. Q., Zhang, W., Hou, H., Wang, H. W., Chen, A., and Wei, W., 2019, “Effects of reduction and deep placement of nitrogen fertilizer on rice yield and N2O emissions from double cropping paddy field,” Shengtaixue Zazhi, Vol.38, pp.153-160.
    Peng, S. Z., Yang, S. H., Xu, J. Z., Luo, Y. F., and Hou, H. J., 2011, “Nitrogen and phosphorus leaching losses from paddy fields with different water and nitrogen managements,” Paddy and water environment, Vol.9, No.3, pp.333-342.
    Peng, S., Bouman, B., Visperas, R. M., Castañeda, A., Nie, L., and Park, H. K., 2006, “Comparison between aerobic and flooded rice in the tropics: agronomic performance in an eight-season experiment, ” Field Crops Research, Vol.96 No.2-3, pp.252-259.
    Rafaralahy, S., 2002, “An NGO perspective on SRI and its origins in Madagascar,” Assessment of the System for Rice Intensification (SRI), Proceedings of an International Conference, Sanya, China, April, 1-4, 2002.
    Rengel, Z., and Marschner, P., 2005, “Nutrient availability and management in the rhizosphere: exploiting genotypic differences. New Phytologist, Vol.168, No.2, pp.305-312.
    Ritchie, H., Roser, M., and Rosado, P., 2020, “CO₂ and greenhouse gas emissions,” Our world in data.
    Satyanarayana, A., Thiyagarajan, T. M., and Uphoff, N., 2007, “Opportunities for water saving with higher yield from the system of rice intensification,” Irrigation Science, Vol.25, No.2, pp.99-115.
    Sheehy, J. E., Peng, S., Dobermann, A., Mitchell, P. L., Ferrer, A., Yang, J., and Huang, J., 2004, “Fantastic yields in the system of rice intensification: fact or fallacy? ,” Field Crops Research, Vol.88, No.1, pp.1-8.
    Shi, H., Cai, S., Sun, Z., and Shi, Y., 2021, “Water‐use efficiency and greenhouse gas emissions of rice affected by water saving and nitrogen reduction,” Agronomy Journal, Vol.113, No.6, pp.4777-4792.
    Thakur, A. K., Rath, S., Patil, D. U., and Kumar, A., 2011, “Effects on rice plant morphology and physiology of water and associated management practices of the system of rice intensification and their implications for crop performance, ” Paddy and water Environment, Vol.9, No.1, pp.13-24.
    Umesha, S., Singh, P. K., and Singh, R. P., 2018, “Microbial biotechnology and sustainable agriculture,” in Biotechnology for sustainable agriculture, pp. 185-205, Woodhead Publishing.
    UN Climate Change, 2021, https://unfccc.int/process-and-meetings/the-paris-agreement/nationally-determined-contributions-ndcs/nationally-determined-contributions-ndcs/ndc-synthesis-report
    Wassmann, R., Papen, H., and Rennenberg, H., 1993, “Methane emission from rice paddies and possible mitigation strategies,” Chemosphere, Vol.26, No.1-4, pp.201-217.
    Yang, C. C., 2009, “The purpose and essentials of the application of microbial fertilizer,” National Chung Hsing University Agricultural journal, 69.
    Yang, S. S., and Chang, H. L., 2001, “Methane emission from paddy fields in Taiwan,” Biology and Fertility of Soils, Vol.33, No.2, pp.157-165.
    Yang, S. S., Liu, C. M., Lai, C. M., and Liu, Y. L., 2003, “Estimation of methane and nitrous oxide emission from paddy fields and uplands during 1990–2000 in Taiwan,” Chemosphere,Vol.52, No.8, pp.1295-1305.
    Yang, S., Xie, L., Zheng, S., Li, J., & Yuan, J., 2009, “Effects of nitrogen rate and transplanting density on physical and chemical characteristics and lodging resistance of culms in hybrid rice,” Acta Agronomica Sinica, Vol.35, No.1, pp.93-103.
    Zahir, Z. A., Munir, A., Asghar, H. N., Shaharoona, B., and Arshad, M., 2008, “Effectiveness of rhizobacteria containing ACC deaminase for growth promotion of peas (Pisum sativum) under drought conditions,” Journal of Microbiology and Biotechnology, Vol.18, No.5, pp.958-963.
    Zhang, W., Wu, L., Wu, X., Ding, Y., Li, G., Li, J., and Wang, S., 2016, “Lodging resistance of japonica rice (Oryza Sativa L.): morphological and anatomical traits due to top-dressing nitrogen application rates,” Rice, Vol.9, No.1, pp.1-11.
    Zhao, L., Wu, L., Li, Y., Animesh, S., Zhu, D., and Uphoff, N., 2010, “Comparisons of yield, water use efficiency, and soil microbial biomass as affected by the system of rice intensification,” Communications in Soil Science and Plant Analysis, Vol.41, No.1, pp.1-12.

    下載圖示
    QR CODE