簡易檢索 / 詳目顯示

研究生: 王惟嘉
Wang, Wei -Jia
論文名稱: 鹽分逆境下腐植酸對綠薄荷生長之影響
Effects of Humic Acid on Growth of Spearmint (Mentha spicata L.) under Salinity Stress
指導教授: 林永鴻
學位類別: 碩士
Master
系所名稱: 農學院 - 農園生產系所
Department of Plant Industry
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 71
中文關鍵詞: 氯化鈉耐鹽指數葉綠素類胡蘿蔔素類黃酮
外文關鍵詞: NaCl, salt tolerance index, chlorophyll, carotenoid, flavonoids
DOI URL: http://doi.org/10.6346/NPUST202300067
相關次數: 點閱:39下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統
  • 綠薄荷(Mentha spicata L.)為唇形科(Lamiaceae)多年生草本植物,薄荷精油為最具有商業化價值的十大精油之一,栽培需求日益增加,但由於灌溉管理不當、排水不良、地下水位上升及化學肥料過度使用,導致耕地鹽化,而使得作物生長不佳。本研究處理以0、100及200 mM氯化鈉(sodium chloride)及3種腐植酸(humic aicd, HA)濃度(0、0.1及0.5 g L-1 HA)處理14天後,探討HA於鹽分逆境對綠薄荷生長性狀及植化素之變化,進而評估HA於鹽分逆境緩解綠薄荷損傷之效果。研究結果顯示,在100 mM NaCl下,施用HA可提高綠薄荷的耐鹽指數,且綠薄荷經0.1及0.5 g L-1 HA處理14天後相較於對照組,其地上部鮮重皆顯著提高49%,而地上部乾重提高32%及36%;另外100 mM NaCl下,經0.1 g L-1 HA處理綠薄荷之葉綠素及類胡蘿蔔素分別為2.22及0.35 mg g-1 FW,相較於其他處理顯著提高,且與未施用NaCl的情況相比,0.1 g L-1 HA處理能維持葉綠素含量,且0.1及0.5 g L-1 HA處理之類黃酮含量皆顯著提高;而在200 mM NaCl,綠薄荷經HA處理後類胡蘿蔔素含量皆顯著下降,且綠薄荷經0.5 g L-1 HA後耐鹽指數顯著下降。綜合上述,HA雖可提高綠薄荷對鹽害之耐受性,由於HA會隨著環境而產生變化,因此,於水耕中施用HA仍需配合生長適溫及適當鈉離子含量才能提高綠薄荷對鹽分逆境之耐受性。

    Spearmint (Mentha spicata L.) is a perennial herb of the Lamiaceae family. Mint essential oil is one of the top ten essential oils with the most commercial value. The demand for cultivation is increasing. However, due to improper irrigation management, poor drainage, rise of groundwater table and the overuse of chemical fertilizers have led to salinization of the cropland, which has resulted in poor crop growth. In this study, the experimental treatments included sodium chloride at four levels (0, 100, 150, 200 mM NaCl) and three humic aicd (HA) concentrations (0, 0.1 and 0.5 g L-1 HA) for 14 days to investigate the effect of HA on the growth characteristics and phytochemicals of spearmint. The changes of HA were further evaluated to alleviate the damage of spearmint under salt stress. The results of the study showed that under 100 mM NaCl, the application of HA could improve the salt tolerance index of spearmint, and in terms of fresh weight and dry weight, the fresh weight of the shoot was significantly increased by 49%, however, the dry weight of the shoot biomass increased by 32% and 36%. In addition, 100 mM NaCl, the chlorophyll and carotenoid of spearmint treated with 0.1 g L-1 HA were 2.22 and 0.35 mg g-1 FW, respectively, which were significantly higher than other treatments, and compared with the case without NaCl application, 0.1 g L-1 HA treatment could maintain the chlorophyll content, and the flavonoid content of 0.1 and 0.5 g L-1 HA treatment were significantly increased. At 200 mM NaCl, the carotenoid content of spearmint decreased significantly after HA treatment, and the salt tolerance index was markedly decreased in spearmint with application of 0.5 g L-1 HA. In conclusion, although HA can improve the tolerance of spearmint to salt damage. Because HA will change along with the environment, the application of HA in hydroponic solution still needs to be considered for the growth temperature and appropriate sodium concentration to improve the tolerance of spearmint to salinity stress.

    摘要 I
    Abstract II
    謝誌 III
    目錄 IV
    圖目錄 VI
    表目錄 VII
    壹、前言 1
    貳、文獻回顧 3
    一、綠薄荷之介紹 3
    二、綠薄荷之成分 3
    三、綠薄荷之應用 4
    四、鹽分逆境(salinity stress) 5
    (一)土壤鹽鹼化形成之原因 5
    (二)鹽分逆境對植物的影響 6
    (三)植物抗逆境能力 9
    五、腐植酸(humic acid, HA) 10
    (一)腐植酸的形成 10
    (二)腐植酸的結構 14
    (三)腐植酸之應用 16
    參、材料與方法 18
    一、實驗架構 18
    二、試驗材料 20
    (一)植物材料 20
    (二)腐植酸提取 20
    三、試驗處理 24
    四、植物生長調查 27
    (一)農藝性狀調查 27
    (二)產量調查 27
    五、耐鹽指數(salt tolerance index, STI) 27
    六、葉片相對含水率(leaf relative water content, RWC) 27
    七、光合色素分析 28
    八、酚類化合物含量分析 28
    (一)總酚含量測定 28
    (二)類黃酮含量測定 29
    九、植物營養元素之分析 29
    (一)氮 30
    (二)磷 30
    (三)鉀、鈣、鎂、鐵、鋅及鈉含量測定 30
    十、統計分析 30
    肆、結果 32
    一、鹽分逆境下腐植酸對綠薄荷生長之調查 32
    (一)鹽分逆境下腐植酸對綠薄荷農藝性狀之調查 32
    (二)鹽分逆境下腐植酸對綠薄荷產量之調查 37
    三、鹽分逆境下腐植酸對綠薄荷耐鹽指數 39
    四、鹽分逆境下腐植酸對綠薄荷葉片相對含水率之影響 41
    五、鹽分逆境下腐植酸對綠薄荷光合色素之分析 43
    六、鹽分逆境下腐植酸對綠薄荷酚類化合物之影響 47
    七、鹽分逆境下腐植酸對綠薄荷植物營養元素之影響 49
    伍、討論 54
    一、鹽分逆境下腐植酸對綠薄荷生長之影響 54
    二、鹽分逆境下腐植酸對綠薄荷葉片相對含水率之影響 55
    三、鹽分逆境下腐植酸對綠薄荷植化素之影響 56
    四、鹽分逆境下腐植酸對綠薄荷植物營養元素之影響 57
    陸、結論 60
    柒、參考文獻 61

    行政院農委會農糧署。2019。肥料管理整合系統。2023年1月18日,取自:https://fims.afa.gov.tw/WFR/PublicFun/QueryFertBrand.aspx
    林永鴻。2008。腐植酸對作物生長的影響。高雄區農業專訊 66: 14-15。
    林景和。1992。市售腐植酸肥料品質研究。臺中區農業改良場研究彙報35: 47-57。
    張淑賢。1981。本省現行植物分析法。作物需肥診斷技術。行政院農業委員會農業試驗所 13: 9-26。
    Abbas, P. G., S. Rehman, M. H. Siddiqui, H. M. Ali, M. A. Farooq, and Y. L. Chen. 2022. Potassium and humic acid synergistically increase salt tolerance and nutrient uptake in contrasting wheat genotypes through ionic homeostasis and activation of antioxidant enzymes. Plants-Basel 11: 263.
    Agathokleous, E., Z. Z. Feng, and J. Peñuelas. 2020. Chlorophyll hormesis: Are chlorophylls major components of stress biology in higher plants? Sci. Total Environ. 726:138637.
    Aira, M., L. Sampedro, F. Monroy, and J. Domínguez. 2008. Detritivorous earthworms directly modify the structure, thus altering the functioning of a microdecomposer food web. Soil Biol. Biochem. 40: 2511-2516.
    Akladious, S. A., and H. I. Mohamed. 2018. Ameliorative effects of calcium nitrate and humic acid on the growth, yield component and biochemical attribute of pepper (Capsicum annuum) plants grown under salt stress. Sci. Hortic. 236: 244-250.
    Ali-Shtayeh, M. S., R. M. Jamous, S. Y. Abu-Zaitoun, A. I. Khasati, and S. R. Kalbouneh. 2019. Biological properties and bioactive components of Mentha spicata L. essential oil: focus on potential benefits in the treatment of obesity, alzheimer's disease, dermatophytosis, and drug-resistant infections. Evid. Based Complement. Alternat. Med. 2019: 3834265.
    Ampong, K., M. S. Thilakaranthna, and L. Y. Gorim. 2022. Understanding the role of humic acids on crop performance and soil health. Front. Agron. 4: 848621.
    Aydin, A., C. Kant, and M. Turan. 2012. Humic acid application alleviate salinity stress of bean (Phaseolus vulgaris L.) plants decreasing membrane leakage. Afr. J. Agric. Res. 7: 1073-1086.
    Baalousha, M., M. Motelica-Heino, and P. L. Coustumer. 2006. Conformation and size of humic substances: effects of major cation concentration and type, pH, salinity, and residence time. Colloid. Surface. A. 272: 48-55.
    Banjarnahor, S. D. S., and N. Artanti. 2014. Antioxidant properties of flavonoids. Medical J. Indones. 23: 239-244.
    Berbara, R. L. L., and A. C. García. 2014. Humic substances and plant defense metabolism. p. 297-319. In: Ahmad P., and M. R. Wani (eds.) Physiological Mechanisms and Adaptation Strategies in Plants Under Changing Environment. Springer, New York.
    Boguta, P., V. D'Orazio, N. Senesi, Z. Sokołowska, and K. Szewczuk-Karpisz. 2019. Insight into the interaction mechanism of iron ions with soil humic acids. The effect of the pH and chemical properties of humic acids. J. Environ. Manage. 245: 367-374.
    Brahmi, F., M. Khodir, C. Mohamed, and D. Pierre. 2017. Chemical composition and biological activities of Mentha species. p.47-80. In: El-Shemy, H. A. (e.d.) Aromatic and Medicinal Plants-Back to Nature. InTechOpen, London.
    Brodowska, M. S., M. Wyszkowski, and N. Kordala. 2022. Use of organic materials to limit the potential negative effect of nitrogen on maize in different soils. Materials 15: 5755.
    Cabot, C., J. V. Sibole, J. Barceló, and C. Poschenrieder. 2014. Lessons from crop plants struggling with salinity. Plant Sci. 226: 2-13.
    Caretto, S., V. Linsalata, G. Colella, G. Mita, and V. Lattanzio. 2015. Carbon fluxes between primary metabolism and phenolic pathway in plant tissues under stress. Int. J. Mol. Sci. 16: 26378-26394.
    Chang, C. C., M. H. Yang, H. M. Wen, and J. C. Chern. 2002. Estimation of total flavonoid content in propolis by two complementary colorimetric methods. 3: 178-182.
    Chang, R. R., R. Mylotte, M. H. B. Hayes, R. Mclnerney, and Y. M. Tzou. 2014. A comparison of the compositional differences between humic fractions isolated by the IHSS and exhaustive extraction procedures. Naturwissenschaften 101: 197-209.
    Choi, Y., and M. Chiang. 2015. Effects of NaCl treatment on growth and antioxidant activity of mints. J. People Plants Environ. 18: 53-60.
    Cirlini, M., P. Mena, M. Tassotti, K. A. Herrlinger, K. M. Nieman, C. Dall’Asta, and D. D. Rio. 2016. Phenolic and volatile composition of a dry Spearmint (Mentha spicata L.) extract. Molecules 21: 1007.
    Cristina, G., E. Camelin, C. Ottone, S. F. Garofalo, L. Jorquera, M. Castro, D. Fino, M. C. Schiappacasse, and T. Tommasi. 2020. Recovery of humic acids from anaerobic sewage sludge: extraction, characterization and encapsulation in alginate beads. I. J. Biol. Macromol. 164: 277-285.
    de Castro, T. A. T., R. L. L. Berbara, O. C. H. Tavares, D. F. D. G. Mello, E. G. Pereira, C. D. C. B. de Souza, L. M. Espinosa, and A. C. Garcíaa. 2021. Humic acids induce a eustress state via photosynthesis and nitrogen metabolism leading to a root growth improvement in rice plants. Plant Physiol. Biochem. 162: 171-184.
    de Melo, B. A. G., F. L., Motta, and M. H. A. Santana. 2016. Humic acids: structural properties and multiple functionalities for novel technological developments. Mater. Sci. Eng. C. 62: 967-974.
    Dinçsoy, M., and F. Sönmez. 2019. The effect of potassium and humic acid applications on yield and nutrient contents of wheat (Triticum aestivum L. var. Delfii) with same soil properties. J. Plant Nutr. 42: 2757-2772.
    El Goumi, Y., M. Fakiri, O. Lamsaouri, and M. Benchekroun. 2014. Salt stress effect on seed germination and some physiological traits in three Moroccan barley (Hordeum vulgare L.) cultivars. J. Mater. Environ. Sci. 5: 625-6322.
    El-Moukhtari, A., C. Cabassa-Hourton, M. Farissi, and A. Savouré. 2020. How does proline treatment promote salt stress tolerance during crop plant development? Front. Plant Sci. 11: 1127.
    Fadel, D., S. Kintzios, A. S. Economou, G. Moschopoulou, and H. I. A. Constantinidou. 2010. Effect of different strength of medium on organogenesis, phenolic accumulation and antioxidant activity of spearmint (Mentha spicata L.). Open Hortic. J. 3: 31-35.
    Gulmezoglu, N., and E. Izci. 2020. Ionic responses of bean (Phaseolus vulgaris L.) plants under salinity stress and humic acid applications. Not. Bot. Horti Agrobot. Cluj Napoca 48: 1317-1331.
    Hanc, A., V. Enev, T. Hrebeckova, M. Klucakova, and M. Pekar. 2019. Characterization of humic acids in a continuous-feeding vermicomposting system with horse manure. Waste Manage. 99: 1-11.
    Hartwigsen, J. A., and M. R. Evans. 2019. Humic acid seed and substrate treatments promote seedling root development. Hortscience 35: 1231-1233.
    Hassan, S., and U. Mathesius. 2012. The role of flavonoids in root-rhizosphere signalling: opportunities and challenges for improving plant-microbe interactions. J. Exp. Bot. 63: 3429-3444.
    Havaux, M. 2014. Carotenoid oxidation products as stress signals in plants. Plant J. 79: 597-606.
    Henao-Rojas, J. C., E. O., S. Isaza, I. A. Madronero-Solarte, K. Sierra, I. C. Zapata-Vahos, J. F. Betancur-Pérez, J. W. Arboleda-Valencia, and A. M. Gallego. 2022. Towards bioprospection of commercial materials of Mentha spicata L. using a combined strategy of metabolomics and biological activity analyses. Molecules 27: 3559.
    Hosseini, S. J., Z. Tahmasebi-Sarvestani, H. Pirdashti, S. A. M. Modarres-Sanavy, A. Mokhtassi-Bidgoli, S. Hazrati, and S. Nicola. 2021. Investigation of yield, phytochemical composition, and photosynthetic pigments in different mint ecotypes under salinity stress. Food Sci. Nutr. 9: 2620-2643.
    Jimenez, R. R., and J. K. Ladha. 1993. Automated elemental analysis: A rapid and reliable but expensive measurement of total carbon and nitrogen in plant and soil samples. Commun. Soil Sci. Plant Anal. 24: 1897-1924.
    Khan, T. A., M. Saleem, and Q. Fariduddin. 2022. Recent advances and mechanistic insights on Melatonin-mediated salt stress signaling in plants. Plant Physiol. Biochem. 188: 97-107.
    Kiani, R., A. Arzani, and S. A. M. Mirmohammady Maibody. 2021. Polyphenols, flavonoids, and antioxidant activity involved in salt tolerance in wheat, Aegilops cylindrica and their amphidiploids. Front. Plant Sci. 12: 646221.
    Kleber, M. and J. Lehmann. 2019. Humic substances extracted by alkali are invalid proxies for the dynamics and functions of organic matter in terrestrial and aquatic ecosystems. J. Environ. Qual. 48: 207-216.
    Kumari, P., V. Kumar, R. Kumar, and S. K. Pahuja. 2021. Sorghum polyphenols: plant stress, human health benefits, and industrial applications. Planta 254: 47.
    Li, Z., H. Yang, X. Q. Wu, K. Guo, and J. Li. 2015. Some aspects of salinity responses in peppermint (Mentha × piperita L.) to NaCl treatment. Protoplasma 252: 885-899.
    Liang, W. J., X. L. Ma, P. Wan, and L. Y. Liu. 2018. Plant salt-tolerance mechanism: A review. Biochem. Biophys. Res. Commun. 495: 286-291.
    Lichtenthaler, H. K. 1987. Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. p. 350-382. In: Packer, L., and R. Douce (eds.) Methods in Enzymology. Academic Press, New York.
    Lin, Y. H., and Y. T. Chang. 2020. Humic acid may retard damages of cells in strawberry apices in high saline environment. Phytoprotection 100: 22-27.
    Liu, M., C. Wang, X. Liu, Y. Lu, and Y. Wang. 2020. Saline-alkali soil applied with vermicompost and humic acid fertilizer improved macroaggregate microstructure to enhance salt leaching and inhibit nitrogen losses. Appl. Soil Ecol. 156: 103705.
    Liu, W. X., Y. Feng, S. H. Yu, Z. Q. Fan, X. L. Li, J. Y. Li, and H. F. Yin. 2021. The flavonoid biosynthesis network in plants. Int. J. Mol. Sci. 22: 12824.
    Mahboubi, M. 2018. Mentha spicata L. essential oil, phytochemistry and its effectiveness in flatulence. J. Tradit. Complement. Med. 11: 75-81.
    Mahendran, G., S. K. Verma, and L. U. Rahman. 2021. The traditional uses, phytochemistry and pharmacology of spearmint (Mentha spicata L.): A review. J. Ethnopharmacol. 278: 114266.
    Manach, C., A. Scalbert, C. Morand, C. Rémésy, and L. Jiménez. 2004. Polyphenols: food sources and bioavailability. Am. J. Clin. Nutr. 79: 727-747.
    Matuszak-Slamani, R., R. Bejger, J. Cieśla, A. Bieganowski, M. Koczańska, A. Gawlik, D. Kulpa, M. Sienkiewicz, M. Włodarczyk, and D. Gołębiowska. 2017. Influence of humic acid molecular fractions on growth and development of soybean seedlings under salt stress. Plant Growth Regul. 83: 465-477.
    Miller, R. 2017. ROS are good. Trends Plant Sci. 22: 11-19.
    Mora, V., R. Baigorri, E. Bacaicoa, A. M. Zamarreño, and J. M. García-Mina. 2012. The humic acid-induced changes in the root concentration of nitric oxide, IAA and ethylene do not explain the changes in root architecture caused by humic acid in cucumber. Environ. Exp. Bot. 76: 24-32.
    Olaetxea, M., V. Mora, A. C. García, L. A. Santos, R. Baigorri, M.a Fuentes, M. Garnica, R. L. L. Berbara, A. M. Zamarreño, and J. M. Garcia-Minaa. 2016. Root-shoot signaling crosstalk involved in the shoot growth promoting action of rhizospheric humic acids. Plant Signal. Behav. 11: e1161878.
    Olaetxea, M., V. Mora, R. Baigorri, A. M. Zamarreño, and J. M. García-Mina. 2021. The singular molecular conformation of humic acids in solution influences their ability to enhance root hydraulic conductivity and plant growth. Molecules 26: 3.
    Ondrasek, G., S. Rathod, K. K. Manohara, C. Gireesh, M. S. Anantha, A. S. Sakhare, B. Parmar, B. K. Yadav, N. Bandumula, F. Raihan, A. Zielińska-Chmielewska, C. Meriño-Gergichevich, M. Reyes-Díaz, A. Khan, O. Panfilova, A. S. Fuentealba, S. M. Romero, B. Nabil, C. C. Wan, J. Shepherd, and J. Horvatinec. 2022. Salt stress in plants and mitigation approaches. Plants 11: 717.
    Ounoki, R., F. Ágh, R. Hembrom, R. Ünnep, B. Szögi-Tatár, A. Böszörményi, and K. Solymosi. 2021. Salt stress affects plastid ultrastructure and photosynthetic activity but not the essential oil composition in spearmint (Mentha spicata L. var. crispa “Moroccan”). Front. Plant Sci. 12: 739467.
    Ozfidan-Konakci, C., E. Yildiztugay, M. Bahtiyar, and M. Kucukoduk. 2018. The humic acid-induced changes in the water status, chlorophyll fluorescence and antioxidant defense systems of wheat leaves with cadmium stress. Ecotoxicol. Environ. Saf. 155: 66-75.
    Panche, A. N., A. D. Diwan, and S. R. Chandra. 2016. Flavonoids: an overview. J. Food Sci. 5: e47.
    Park, H. J., W. Y. Kim, and A. D. J. Yun. 2016. A new insight of salt stress signaling in plant. Mol. Cells. 39: 447-459.
    Ramel, F., S. Birtic, C. Ginies, L. Soubigou-Taconnat, C. Triantaphylidès, and M. Havaux. 2012. Carotenoid oxidation products are stress signals that mediate gene responses to singlet oxygen in plants. Proc. Natl. Acad. Sci. U.S.A. 109: 5535-5540.
    Reitsema, R. E., P. Meire, and J. Schoelynck. 2018. The future of freshwater macrophytes in a changing world: dissolved organic carbon quantity and quality and its interactions with macrophytes. Front. Plant Sci. 9: 629.
    Rostami, G., M. Moghaddam, E. S. Pooya, and L. Ajdanian. 2019. The effect of humic acid foliar application on some morphophysiological and biochemical characteristics of spearmint (Mentha spicata L.) in drought stress conditions. Environ. Stress. Crop Sci. 12: 95-110.
    Saebelfeld, M., L. Minguez, J. Griebel, Mark O. Gessner. and J. Wolinska. 2017. Humic dissolved organic carbon drives oxidative stress and severe fitness impairments in Daphnia. Aquat. Toxicol. 182: 31-38.
    Salehi, B., Z. Stojanović-Radić, J. Matejić, F. Sharopov, H. Antolak, D. Kręgiel, S. Sen, M. Sharifi-Rad, K. Acharya, R. Sharifi-Rad, M. Martorell, A. Sureda, N. Martins, and J. Sharifi-Rad. 2018. Plants of genus Mentha: from farm to food factory. Plants 7: 70.
    Shaffer, L., and R. von Wandruszka. 2015. Temperature induced aggregation and clouding in humic acid solutions. Adv. Environ. Chem. 2015: 543614.
    Shen, J., M.-J. Guo, Y.-G. Wang, X.-Y. Yuan, Y.-Y. Wen, X.-E. Song, S.-Q. Dong, and P.-Y. Guo. 2020. Humic acid improves the physiological and photosynthetic characteristics of millet seedlings under drought stress. Plant Signal. Behav. 15: 1774212.
    Sierra, K., L. Naranjo, L. Carrillo-Hormaza, G. Franco, and E. Osorio. 2022. Spearmint (Mentha spicata L.) phytochemical profile: impact of pre/post-harvest processing and extractive recovery. Molecules 27: 2243.
    Singh, B., and R. A. Sharma. 2015. Plant terpenes: defense responses, phylogenetic analysis, regulation and clinical applications. 3 Biotech, 5: 129-151.
    Singh, P., and A. K. Pandey. 2018. Prospective of essential oils of the genus Mentha as biopesticides: a review. Front. Plant Sci. 9: 1295.
    Slika, H., H. Mansour, N. Wehbe, S. A. Nasser, R. Iratni, G. Nasrallah, A. Shaito, T. Ghaddar, F. Kobeissy, and A. H. Eid. 2022. Therapeutic potential of flavonoids in cancer: ROS-mediated mechanisms. Biomed. Pharmacother. 146: 112442.
    Steinberg, C. E. W., S. Kamara, V. Y. Prokhotskaya, L. Manusadžianas, T. A. Karasyova, M. A. Timofeyev, Z. Jie, A. Paul, T. Meinelt, V. F. Farjalla, A. Y. O. Matsuo, B. K. Burnison, and R. Menzel. 2006. Dissolved humic substances − ecological driving forces from the individual to the ecosystem level? Freshw. Biol. 51: 1189-1210.
    Steinberg, C. E. W., Steinberg, T. Meinelt, M. A. Timofeyev, M. Bittner, and R. Menzel. 2008. Humic substances part 2: interactions with organisms. Environ. Sci. Pollut. Res. 15: 128-135.
    Stevenson, F. J. 1994. Humus chemistry. genesis, composition. John Wiley and Sons, New York. 512pp.
    Vimolmangkang, S., W. Sitthithaworn, D. Vannavanich, S. Keattikunpairoj, and C. Chittasupho. 2009. Productivity and quality of volatile oil extracted from Mentha spicata and M. arvensis var. piperascens grown by a hydroponic system using the deep flow technique. J. Nat. Med. 64: 31-35.
    Wang, Q., J. Y. Wen, J. X. Zheng, J. Q. Zhao, C. S. Qiu, D. Xiao, L. Mu, and X. W. Liu. 2021. Arsenate phytotoxicity regulation by humic acid and related metabolic mechanisms. Ecotoxicol. Environ. Saf. 207: 111379.
    Yang, F., and M. Antonietti. 2020. Artificial humic acids: sustainable materials against climate change. Adv. Sci. 7: 1902992.
    Yang, F., C. Y. Tang, and M. Antonietti. 2021. Natural and artificial humic substances to manage minerals, ions, water, and soil microorganisms. Chem. Soc. Rev. 50: 6221-6239.
    Yang, Y. Q., and Y. Guo. 2017. Elucidating the molecular mechanisms mediating plant salt-stress responses. New Phytol. 217: 523-539.
    Žatko, D., J. Vašková, L. Vaško, and P. Patlevič. 2014. The effect of humic acid on the content of trace element in mitochondria. Am. J. Anim. Vet. Sci. 9: 315-319.
    Zeljković, S. Ć., C. E. Aucique-Perez, N. Štefelová, and N. D. Diegoa. 2022. Optimizing growing conditions for hydroponic farming of selected medicinal and aromatic plants. Food Chem. 375: 131845.
    Zhao, S. S., Q. K. Zhang, M. Y. Liu, H. P. Zhou, C. L. Ma, and P. P. Wang. 2021. Regulation of plant responses to salt stress. Int. J. Mol. Sci. 22: 4609.

    下載圖示
    QR CODE