簡易檢索 / 詳目顯示

研究生: 林育全
Lin, Yu-Quan
論文名稱: 可可莢殼酸洗前處理對其衍製活性碳特性之影響
Effect of acid pretreatment of cocoa pod husk on its characterization of derived activated carbon
指導教授: 李柏旻
Li, Po-min
蔡文田
Tasi, Wen-Tien
學位類別: 碩士
Master
系所名稱: 工學院 - 生物機電工程系所
Department of Biomechatronics Engineering
畢業學年度: 106
語文別: 中文
論文頁數: 62
中文關鍵詞: 可可莢殼酸洗處理物理活化活性碳孔洞性質
外文關鍵詞: Cocoa pod husk, Acid treatment, Physical activation, Activated carbon, Pore property
DOI URL: http://doi.org/10.6346/THE.NPUST.BE.002.2018.E08
相關次數: 點閱:20下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統
  • 本研究以可可莢殼(CPH)作為製備活性碳之前驅料源,而為了提高對活性碳(AC)的吸附能力,實驗以酸洗前後做為比較,藉由近似分析、元素分析及熱重分析比較其酸洗前後之物性差異。再將酸洗前處理所得之產品(CPH-A)施以物理活化來製備高比表面積的活性碳產品(AC-CPH-A),並進一步比較其孔洞性值。從研究結果可發現酸洗處理可以去除90%以上主要由鉀鹽礦物組成之灰分。研究結果也近一步表明,酸處理會使孔洞更加發達,進而使得比表面積和孔體積的增加。像是從650℃所衍製的活性碳中可發現,BET比表面積從1.1 m2/g (AC-CPH-650)上升至355.8 m2/g (AC-CPH-A-650)。並且隨著活化溫度的提高及活化時間增加,雖其產率變小,但其孔洞特性呈現升高的正相關性,即得到的比表面積值也越高,最高可達1,464 m2/g (AC-CPH-A-900-120),顯見酸洗前處理料源、活化溫度與停留時間皆會對製作活性碳之特性有相當的影響。最後將以可可莢殼酸洗後衍製之活性碳於不同劑量及起始染料濃度條件下,進行對甲烯藍染料之吸附效能分析,發現起始濃度越高其平衡吸附量也越大,並且可可莢殼所製活性碳具有比商業化活性碳更好的吸附效能。

    In order to enhance adsorption capacity of activated carbon (AC) from cocoa pod husk (CPH), CPH was first leached by acid and then used as a precursor (CPH-A) for preparing ACs by physical activation at activation temperature of 650-900℃ and holding time of 0-120 min in this work. Based on the proximate analysis, mineral compositions, thermogravimetric analysis and thermochemical properties, the differences between CPH and CPH-A were investigated. The chemical and pore properties of the resulting ACs were further studied. The results showed that the pre-treatment of CPH with hydrochloric acid led to removal of over 90% of the ash content in the CPH, mainly composed of potassium minerals. The Brunauer-Emmet-Teller (BET) surface area of the AC derived from CPH-A at 650℃ is 355.8 m2/g (AC-CPH-A-650), significantly larger than that (i.e., 1.1 m2/g) of the AC derived from CPH (AC-CPH-650). The higher activation temperature (e.g., 900℃) and longer holding time are beneficial to the pore development of the resulting AC, but have relatively low yields. The maximal BET surface area reached 1,464 m2/g for AC-CPH-A-900-120. As compared to commercial AC, the resulting AC indicated better equilibrium adsorption capacities under various initial methylene blue concentrations.

    目錄
    中文摘要 I
    Abstract II
    謝誌 III
    目錄 IV
    表目錄 V
    圖目錄 VII
    壹、 緒論 1
    一、 研究緣起 1
    二、 研究背景 1
    三、 研究目的 2
    貳、 文獻回顧 3
    一、 國內外對於可可莢殼再利用做法 3
    二、 活性碳介紹 6
    (一) 活性碳原料 6
    (二) 活性碳種類 6
    (三) 活性碳製造 8
    (四) 活性碳應用 9
    三、 活性碳材料之物理特性與化學特性 9
    (一) 物理特性 9
    (二) 化學特性 13
    四、 可可莢殼衍製活性碳及其吸附應用 15
    (一) 物理吸附 (Physical adsorption) 15
    (二) 化學吸附 (Chemical adsorption) 15
    (三) 交換吸附 (Exchange adsorption) 15
    (四) 平衡吸附 16
    (五) 動態吸附 17
    參、 材料與方法 18
    一、 實驗方法及流程簡介 18
    二、 實驗材料 19
    三、 實驗設備 19
    四、 實驗步驟與方法 29
    (一) 可可莢殼前處理 29
    (二) 可可莢殼酸洗處理 29
    (三) 可可莢殼特性分析 29
    (四) 可可莢殼衍製活性碳製備方法 30
    (五) 可可莢殼衍製活性碳特性分析 31
    (六) 可可莢殼衍製活性碳吸附效能分析 31
    肆、 結果與討論 32
    一、 可可莢殼特性分析 32
    (一) 近似分析、元素分析及熱值 32
    (二) 灰份組成分析 33
    (三) 熱重量分析 35
    二、 可可莢殼衍製活性碳特性分析 36
    (一) 物理特性分析 36
    (二) 化學特性分析 44
    三、 可可莢殼衍製活性碳吸附效能分析 47
    (一) 不同吸附劑量之比較 48
    (二) 不同起始濃度之比較 48
    (三) 不同攪拌轉速之比較 48
    (四) 不同pH值之比較 48
    (五) 不同吸附材之比較 49
    伍、 結論與建議 55
    一、 結論 55
    二、 建議 55
    參考文獻 56
    作者簡介 62

    參考文獻
    林景正,2007,「活性碳的碳化和活化機制介紹」,化工技術,第174期,第179-197頁
    柯澤豪、洪凱炫,2002,「活性碳纖維的研發與最新應用」,化工技術,第107期,第134-154頁。
    張元銘,2016,生技工廠綠藻渣活化再生為活性碳材料,博士論文,國立屏東科技大學,生物資源博士班,屏東。
    蔡文田,1994,含揮發性有機物廢氣之活性碳吸附與觸媒焚化處理研究,博士論文,國立台灣大學,環境工程學研究所,台北。
    蔡文田、張慶源,1993,「活性碳及其在空氣污染防治之應用」,環境工程會刊,第3期,第65-83頁。
    簡大濰,2016,檳榔樹桿活性碳與商用活性碳之吸附特性探討,碩士論文,國立聯合大學,環境與安全衛生工程學系碩士班,苗栗。
    蘇育任,2017,商用活性碳對於亞甲基藍及芬普尼之吸附研究,碩士論文,崑山科技大學,材料工程研究所,台南。
    Abioye, A. M. and Ani, F. N., 2015, "Recent development in the production of activated carbon electrodes from agricultural waste biomass for supercapacitors: a review," Renewable and Sustainable Energy Reviews, Vol. 52, pp. 1282-1293.
    Adeyi, O., 2010, "Proximate composition of some agricultural wastes in Nigeria and their potential use in activated carbon production," Journal of Applied Sciences and Environmental Management, Vol. 14, No. 1, pp. 55-58.
    Afrane, G., 1992, "Leaching of caustic potash from cocoa husk ash," Bioresource Technology, Vol. 41, No. 2, pp. 101-104.
    Ahmad, F., Daud, W. M. A. W., Ahmad, M. A., and Radzi, R., 2012, "Cocoa (Theobroma cacao) shell-based activated carbon by CO2 activation in removing of Cationic dye from aqueous solution: Kinetics and equilibrium studies," Chemical Engineering Research and Design, Vol. 90, No. 10, pp. 1480-1490.
    Ahmad, F., Daud, W. M. A. W., Ahmad, M. A., and Radzi, R., 2013a, "The effects of acid leaching on porosity and surface functional groups of cocoa (Theobroma cacao)-shell based activated carbon," Chemical Engineering Research and Design, Vol. 91, No. 6, pp. 1028-1038.
    Ahmad, F., Daud, W. M. A. W., Ahmad, M. A., Radzi, R., and Azmi, A. A., 2013b, "The effects of CO2 activation, on porosity and surface functional groups of cocoa (Theobroma cacao)–Shell based activated carbon," Journal of Environmental Chemical Engineering, Vol. 1, No. 3, pp. 378-388.
    Azizah, A., Ruslawati, N. N., and Tee, T. S., 1999, "Extraction and characterization of antioxidant from cocoa by-products," Food Chemistry, Vol. 64, No. 2, pp. 199-202.
    Bajwa, A., Balakrishnan, M., Svensson, G., and Batra, V. S., 2016, "Removal of volatile organic compounds over bagasse ash derived activated carbons and monoliths," Journal of Environmental Chemical Engineering, Vol. 4, No. 2, pp. 1561-1573.
    Bansal, R. C., Donnet, J. B., and Stoeckli, F., 1988, Active Carbon, Marcel Dekker, New York.
    Bello, O. S., Siang, T. T., and Ahmad, M. A., 2012, "Adsorption of Remazol Brilliant Violet‐5R reactive dye from aqueous solution by cocoa pod husk‐based activated carbon: Kinetic, equilibrium and thermodynamic studies," Asia‐Pacific Journal of Chemical Engineering, Vol. 7, No. 3, pp. 378-388.
    Cruz, G., Pirilä, M., Huuhtanen, H., Carrión, L., Alvarenga, E., and Keiski, R., 2012, "Production of activated carbon from cocoa (Theobroma cacao) pod husk," Journal of Civil and Environmental Engineering, Vol. 2, No. 2.
    Ebeling, J. M., and Jenkins, B. M., 1985, "Physical and chemical properties of biomass fuels," Transactions of the ASAE, Vol. 28, No. 3, pp. 898-0902.
    Fan, X., and Zhang, X., 2008, "Adsorption properties of activated carbon from sewage sludge to alkaline-black," Materials Letters, Vol. 62, No. 10-11, pp. 1704-1706.
    Gregg, S. J., and Sing, K.S.W., 1982, Adsorption, Surface Area and Porosity, 2rd ed., Academic Press, London.
    Guo, Z., Fan, J., Zhang, J., Kang, Y., Liu, H., Jiang, L., and Zhang, C., 2016, "Sorption heavy metal ions by activated carbons with well-developed microporosity and amino groups derived from Phragmites australis by ammonium phosphates activation," Journal of the Taiwan Institute of Chemical Engineers, Vol. 58, pp. 290-296.
    Hameed, B., Mahmoud, D., and Ahmad, A., 2008, "Equilibrium modeling and kinetic studies on the adsorption of basic dye by a low-cost adsorbent: Coconut (Cocos nucifera) bunch waste," Journal of Hazardous Materials, Vol. 158, No. 1, pp. 65-72.
    Ho, Y. S., Chiang, C. C., and Hsu, Y. C., 2001, "Sorption kinetics for dye removal from aqueous solution using activated clay," Separation Science and Technology, Vol. 36, No. 11, pp. 2473-2488.
    Ioannidou, O. and Zabaniotou, A., 2007, "Agricultural residues as precursors for activated carbon production—a review, "Renewable and Sustainable Energy Reviews, Vol. 11, No. 9, pp. 1966-2005.
    Jenkins, B., Baxter, L., Miles Jr, T., and Miles, T., 1998, "Combustion properties of biomass," Fuel Processing Technology, Vol. 54, No. 1-3, pp. 17-46.
    Li, W., Zhang, L. B., Peng, J. H., Li, N., and Zhu, X. Y., 2008, "Preparation of high surface area activated carbons from tobacco stems with K2CO3 activation using microwave radiation," Industrial Crops and Products, Vol. 27, No. 3, pp. 341-347.
    Ma, Y., 2017, "Comparison of activated carbons prepared from wheat Straw via ZnCl2 and KOH Activation," Waste and Biomass Valorization, Vol. 8, No. 3, pp. 549-559.
    Marsh, H. and Reinoso, F. R., 2006, Activated Carbon, Elsevier, Amsterdam.
    Martínez-Ángel, J. D., Villamizar-Gallardo, R. A., and ORTíZ-RODRíGUEZ, O., 2015, "Characterization and evaluation of cocoa (Theobroma cacao L.) pod husk as a renewable energy source," Agrociencia, Vol. 49, No. 3.
    Mckay, G., 1995, Use of Adsorbents for the Removal of Pollutants from Wastewater, CRC press, Boca Raton, Fla, USA.
    Oddoye, E. O., Agyente-Badu, C. K., and Gyedu-Akoto, E., 2013, "Cocoa and its by-products: Identification and utilization," in Chocolate in Health and Nutrition, Waston, R., Preedy, V. R., Zibadi, S. (eds.), pp. 23-37, Springer, New York.
    Okiyama, D. C., Navarro, S. L., and Rodrigues, C. E., 2017, "Cocoa shell and its compounds: Applications in the food industry," Trends in Food Science and Technology, Vol. 63, pp. 103-112.
    Pastor-Villegas, J. and Duran-Valle, C., 2002, "Pore structure of activated carbons prepared by carbon dioxide and steam activation at different temperatures from extracted rockrose," Carbon, Vol. 40, No. 3, pp. 397-402.
    Poulopoulos, S. G. and Inglezakis, V. J., 2006, Adsorption, Ion Exchange and Catalysis: Design of Operations and Environmental Applications, Elsevier, Amsterdam.
    Redgwell, R., Trovato, V., Merinat, S., Curti, D., Hediger, S., and Manez, A., 2003, "Dietary fibre in cocoa shell: Characterisation of component polysaccharides," Food Chemistry, Vol. 81, No. 1, pp. 103-112.
    Rufford, T. E., Fiset, E., Hulicova-Jurcakova, D., and Zhu, Z. H., 2014, "Biomass-derived carbons for supercapacitor electrodes," In: Rufford, T. E., Zhu, J., Hulicova-Jurcakova, D. (eds.), Green Carbon Materials: Advances and Applications, Pan Stanford, Singapore, pp. 93-113.
    Sessa, D. J., and Palmquist, D. E., 2009, "Decolorization/deodorization of zein via activated carbons and molecular sieves," Industrial Crops and Products, Vol. 30, No. 1, pp. 162-164.
    Simpson, B., Oldham, J., and Martin, A., 1985, "Extraction of potash from cocoa pod husks," Agricultural Wastes, Vol. 13, No. 1, pp. 69-73.
    Smith, J. M., 1981, Chemical Engineering Kinetics, 3rd ed., McGraw-Hill, New York.
    Teng, H., and Hsu, L. Y., 1999, "High-porosity carbons prepared from bituminous coal with potassium hydroxide activation," Industrial and Engineering Chemistry Research, Vol. 38, No. 8, pp. 2947-2953.
    Tsai, C. H., Tsai, W. T., Liu, S. C., and Lin, Y.-Q., 2018, "Thermochemical characterization of biochar from cocoa pod husk prepared at low pyrolysis temperature," Biomass Conversion and Biorefinery, Vol. 8, No. 2, pp. 237-243.
    Tsai, W. T., and Chen, H. R., 2010, "Removal of malachite green from aqueous solution using low-cost chlorella-based biomass," Journal of Hazardous Materials, Vol. 175, No. 1-3, pp. 844-849.
    Tsai, W. T., Hsu, H. C., Su, T. Y., Lin, K. Y., Lin, C. M., and Dai, T. H., 2007, "The adsorption of cationic dye from aqueous solution onto acid-activated andesite," Journal of Hazardous Materials, Vol. 147, No. 3, pp. 1056-1062.
    Vriesmann, L. C., Amboni, R. D. D. M. C., and de Oliveira Petkowicz, C. L., 2011, "Cacao pod husks (Theobroma cacao L.): Composition and hot-water-soluble pectins," Industrial Crops and Products, Vol. 34, No. 1, pp. 1173-1181.
    Vriesmann, L. C., Teófilo, R. F., and de Oliveira Petkowicz, C. L., 2012, "Extraction and characterization of pectin from cacao pod husks (Theobroma cacao L.) with citric acid," LWT-Food Science and Technology, Vol. 49, No. 1, pp. 108-116.
    Wigmans, T., 1989, "Industrial aspects of production and use of activated carbons," Carbon, Vol. 27, No. 1, pp. 13-22.
    Yahya, M. A., Al-Qodah, Z., and Ngah, C. Z., 2015, "Agricultural bio-waste materials as potential sustainable precursors used for activated carbon production: a review," Renewable and Sustainable Energy Reviews, Vol. 46, No. pp. 218-235.
    Yun, C. H., Park, Y. H., and Park, C. R., 2001, "Effects of pre-carbonization on porosity development of activated carbons from rice straw," Carbon, Vol. 39, No. 4, pp. 559-567.
    Zhou, S., Yang, Q., and Runge, T. M., 2015, "Ambient-temperature sulfuric acid pretreatment to alter structure and improve enzymatic digestibility of alfalfa stems," Industrial Crops and Products, Vol. 70, pp. 410-416.

    下載圖示
    QR CODE