簡易檢索 / 詳目顯示

研究生: 林欣儀
Lin, Xin-Yi
論文名稱: 利用質譜分析技術自鱉蛋水解物中篩選具有抑制酪胺酸磷酸酶活性之磷酸化胜肽
Screening of protein tyrosine phosphatase 1B inhibitory phosphopeptides derived from enzymatic hydrolysates of Pelodiscus sinensis using mass spectrometry
指導教授: 徐睿良
Hsu, Jue-Liang
學位類別: 碩士
Master
系所名稱: 農學院 - 生物科技系
Department of Biological Science and Technology
畢業學年度: 106
語文別: 中文
論文頁數: 44
中文關鍵詞: 胰島素阻抗鱉蛋第二型糖尿病酪胺酸磷酸酶磷酸化胜肽
外文關鍵詞: Insulin resistance, type 2 diabetes, Soft shell turtle eggs, Protein tyrosine phosphatase 1B, phosphorylated peptide
DOI URL: http://doi.org/10.6346/THE.NPUST.BST.004.2018.D01
相關次數: 點閱:107下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統
  • 糖尿病為一種常見的新陳代謝疾病,尤以胰島素阻抗為表徵的第二型糖尿病為主,酪胺酸磷酸酶(PTPT1B)已被證實為影響胰島素訊息傳遞之負向調控因子。因此,酪胺酸磷酸酶之抑制劑,已逐漸成為治療第二
    型糖尿病之新藥標的。

      鱉(Pelodiscus sinensis),俗稱甲魚,富含豐富的營養成分具有提高人體免疫力以及促進新陳代謝之功效。根據文獻記載鱉蛋水解物中的短鏈胜肽,具備有效的降低血壓之保健功能。然而,鱉蛋蛋白水解物中磷酸
    化胜肽之活性則尚未被驗證。

      本研究之目的在於建立鱉蛋磷酸化胜肽最佳純化方法並篩選製備具抑制酪胺酸磷酸酶(PTP1B)活性之磷酸化胜肽。在本研究中利用嗜熱菌蛋白酶(Thermolysin)及胰蛋白酶(Trypsin)兩種不同酵素將鱉蛋蛋白進行水解後,透過45μm、5μm及14nm三種不同粒徑的二氧化鈦(TiO2)純化製備取得磷酸化胜肽,進而評估其PTP1B抑制活性。結果顯示,兩種酵素水解物,經由45μm二氧化鈦的純化下具有較高的PTP1B抑制活性。將水解物用質譜儀鑑定出其磷酸化胜肽後,挑選出源自於鱉蛋主要蛋白vitellogenin-1-like具有相同序列但磷酸化位點不同之胜肽,並利用固相胜肽合成儀合成出標準胜肽加以進行身分驗證,並進行PTP1B活性測試,結果顯示,具兩個磷酸根之胜肽FK10-PP具有較佳之IC50值83.41µM±5.26µM。酵素抑制動力學研究,FK10-PP為非競爭型抑制,且本研究利用分子模擬對接(Molecular docking)模擬FK10-PP與PTP1B之作用,結果顯示,FK10-PP所對接之位點非PTP1B之活性中心,進一步證實FK10-PP為非競爭型抑制劑。本研究結果證實,鱉蛋經嗜熱菌蛋白酶水解所生成之磷酸化胜肽具有抑制PTP1B之活性,有利於未來開發降血糖功效之保健食品。

    Diabetes is one of the common metabolic diseases. Insulin resistance is the major factor responsible for type 2 diabetes, and protein tyrosine phosphatase 1B (PTPT1B) has been shown to be a negative regulator of insulin resistance. Therefore, the inhibitors of protein tyrosine phosphatase 1B can be
    considered as a therapeutic target of type 2 diabetes.

      Pelodiscus sinensis, commonly known as the soft-shelled turtle, is rich in nutrients that enhance the body's immunity and promote metabolism. According to previous study, peptides derived from soft-shelled turtle hydrolysate showed health benifits for lowering blood pressure. However, the activity of phosphorylated peptides derived from soft-shelled turtle egg has
    not yet been reported.

      The aim of this study was to establish an optimal method for the purification of phosphorylated peptides from the hydrolysate of soft-shelled turtle yolk (SSY) proteins and to screen and prepare phosphorylated peptides that can inhibit the activity of protein tyrosine phosphatase 1B. The SSY proteins were hydrolyzed using thermolysin or trypsin, and then purified using titanium dioxide beads (TiO2) of 5 μm, 45 μm and 14 nm in diameter, respectively. The activities of phosphorylated peptides were then evaluated for in vitro PTP1B inhibitory activity. The results indicated that both enzymatic hydrolysates after TiO2 (45μm) enrichment showed the best PTP1B inhibitory activity.The hydrolysate was identified by a mass spectrometer as a phosphorylated peptide. Pick out peptides from the Soft shell turtle eggs vitellogenin-1-like that have the same sequence but different phosphorylation sites, and synthesize standard peptides to perform PTP1B activity tests. The phosphate peptide FK10-PP has a preferred IC50 value of 83.41 μM ± 5.26 μM. The results of enzyme inhibition kinetics showed that FK10-PP was a non-competitive type. In this study, molecular docking was used to simulate the interaction between FK10-PP and PTP1B. The results showed that the docking site of FK10-PP was not in PTP1B active site. It was further confirmed that FK10-PP is a non-competitive inhibitor. In this study, we concluded that thermolysin hydrolysate of SSTE contained the phosphorylated peptides which is potential for food development.

    中文摘要 I
    Abstract III
    謝誌 V
    目錄 VI
    圖目錄 IX
    表目錄 X
    第一章 前言 1
    1.1研究背景 1
    1.2研究動機 2
    第二章 文獻回顧 3
    2.1 糖尿病 3
    2.1.1胰島素阻抗(insulin resistance) 4
    2.1.2.第一型糖尿病(Type 1 diabetes mellitus,T1DM) 4
    2.1.2第二型糖尿病(Type 2 diabetes mellitus,T2DM) 4
    2.2 酪胺酸磷酸酶(Protein-tyrosine phosphatase 1B,PTP1B) 5
    2.2.1 酪胺酸磷酸酶(PTP1B)負向調控胰島素訊息傳遞機制 5
    2.2.2 酪胺酸磷酸酶體外活性測試 6
    2.3 蛋白質磷酸化作用 6
    2.4 磷酸化胜肽富集技術 7
    2.5 層析法(chromatography) 8
    2.6 質譜儀 9
    2.6.1 串聯式質譜 10
    2.6.2 離子源(Ion Source) 10
    2.6.3 質量分析器(Mass Analyzer) 10
    2.7 固相胜肽合成(Solid-phase peptide synthesis,SPPS) 11
    2.8 酵素動力學 12
    2.9分子對接模擬(Molecular Docking) 12
    2.10 鱉蛋 13
    第三章 材料與方法 14
    3.1 化學藥品與試劑 14
    3.2 實驗器材與設備 14
    3.3 實驗架構 15
    3.4 蛋白質製備 16
    3.5 蛋白質水解 16
    3.6 逆相高效能液相層析儀(RP-HPLC)水解效率驗證 17
    3.7 二氧化鈦富集磷酸化胜肽 17
    3.8 體外酪胺酸磷酸酶(PTP1B)抑制活性測試 18
    3.9 離子阱串聯式質譜(LC-MS/MS)定性分析 18
    3.9 固相微波胜肽合成(Solid phase peptide synthesis, SPPS) 20
    3.10 酵素抑制動力學 21
    3.11 分子對接模擬 21
    3.12 統計方法 22
    第四章 結果 23
    4.1 水解物經不同粒徑二氧化鈦(TiO2)純化之PTP1B抑制活性 23
    4.2 水解物經二氧化鈦(TiO2)純化與未純化之PTP1B抑制活性 25
    4.3經不同蛋白水解酶水解之水解物的PTP1B抑制活性 25
    4.3離子阱串聯式質譜定性分析 26
    4.4合成抑制PTP1B活性肽之序列與IC50驗證 30
    4.5 抑制肽之酵素抑制動力學 33
    4.6分子模擬對接(Molecular Docking) 35
    第五章 討論 38
    第六章 結論 40
    參考文獻 41

    Ali MY, Jannat S, Jung HA, Jeong HO, Chung HY, Choi JS (2016) Coumarins from Angelica decursiva inhibit alpha-glucosidase activity and protein tyrosine phosphatase 1B. Chemico-Biological Interactions 252:93-101.

    Attard TJ, O’Brien-Simpson N, Reynolds EC (2007) Synthesis of Phosphopeptides in the Fmoc Mode. International Journal of Peptide Research and Therapeutics 13 (4):447-468.

    Bellou V, Belbasis L, Tzoulaki I, Evangelou E (2018) Risk factors for type 2 diabetes mellitus: An exposure-wide umbrella review of meta-analyses. Public Library of Science13(3):e0194127.

    Cao X, Yang X, Wang P, Liang Y, Liu F, Tuerhong M, Jin DQ, Xu J, Lee D, Ohizumi Y, Guo Y (2017) Polycyclic phloroglucinols as PTP1B inhibitors from Hypericum longistylum: Structures, PTP1B inhibitory activities, and interactions with PTP1B. Bioorganic Chemistry 75:139-148.

    Eizirik DL, Op de Beeck A (2018) Coxsackievirus and Type 1 Diabetes Mellitus: The Wolf's Footprints. Trends in Endocrinology & Metabolism, 29 (3):137-139.

    Harris PWR, Williams GM, Shepherd P, Brimble MA (2008) The Synthesis of Phosphopeptides Using Microwave-assisted Solid Phase Peptide Synthesis. International Journal of Peptide Research and Therapeutics 14 (4):387-392.

    Ho CS, Lam CW, Chan MH, Cheung RC, Law LK, Lit LC, Ng KF, Suen MW, Tai HL (2003) Electrospray ionisation mass spectrometry: principles and clinical applications. The Clinical biochemist Reviews 24 (1):3-12

    Jiang D, Li X, Lv X, Jia Q (2018) A magnetic hydrazine-functionalized dendrimer embedded with TiO2 as a novel affinity probe for the selective enrichment of low-abundance phosphopeptides from biological samples. Talanta.

    Li X-S, Yuan B-F, Feng Y-Q (2016) Recent advances in phosphopeptide enrichment: Strategies and techniques. Trends in Analytical Chemistry 78:70-83.

    Li X, Kohn M (2016) Prediction and verification of novel peptide targets of protein tyrosine phosphatase 1B. Bioorganic & Medicinal Chemistry 24 (15):3255-3258.

    M S (2002) Protein tyrosine phosphatase 1B: a new target for the treatment of obesity and associated co-morbidities. Internal Medicine (251):467-475.

    Mercan F, Bennett AM (2010) Analysis of protein tyrosine phosphatases and substrates. Current Protocols in Molecular Biology 18:Unit 18 16.

    Na B, Nguyen PH, Zhao BT, Vo QH, Min BS, Woo MH (2016) Protein tyrosine phosphatase 1B (PTP1B) inhibitory activity and glucosidase inhibitory activity of compounds isolated from Agrimonia pilosa. Pharmaceutical Biology 54 (3):474-480.

    Pink M, Verma N, Polato F, Bonn GK, Baba HA, Rettenmeier AW, Schmitz-Spanke S (2011) Precipitation by lanthanum ions: a straightforward approach to isolating phosphoproteins. Journal of Proteomics 75 (2):375-383.

    Proenca C, Freitas M, Ribeiro D, Sousa JLC, Carvalho F, Silva AMS, Fernandes PA, Fernandes E (2018) Inhibition of protein tyrosine phosphatase 1B by flavonoids: A structure - activity relationship study.Food and Chemical Toxicology 111:474-481.

    Ramirez-Espinosa JJ, Rios MY, Lopez-Martinez S, Lopez-Vallejo F, Medina-Franco JL, Paoli P, Camici G, Navarrete-Vazquez G, Ortiz-Andrade R, Estrada-Soto S (2011) Antidiabetic activity of some pentacyclic acid triterpenoids, role of PTP-1B: in vitro, in silico, and in vivo approaches. European Journal of Medicinal Chemistry 46 (6):2243-2251.

    Rawendra RD, Aisha, Chang CI, Aulanni'am, Chen HH, Huang TC, Hsu JL (2013) A novel angiotensin converting enzyme inhibitory peptide derived from proteolytic digest of Chinese soft-shelled turtle egg white proteins. Journal of Proteomics 94:359-369.

    Reinders J, Sickmann A (2005) State-of-the-art in phosphoproteomics. Proteomics 5 (16):4052-4061.

    Spanopoulos D, Barrett B, Busse M, Roman T, Poole C (2018) Prescription of DPP-4 Inhibitors to Type 2 Diabetes Mellitus Patients With Renal Impairment: A UK Primary Care Experience. Clinical Therapeutics 40 (1):152-154.

    Sun JP, Fedorov AA, Lee SY, Guo XL, Shen K, Lawrence DS, Almo SC, Zhang ZY (2003) Crystal structure of PTP1B complexed with a potent and selective bidentate inhibitor. Journal of Biological Chemistry 278 (14):12406-12414.

    Tan XF, Uddin Z, Park C, Song YH, Son M, Lee KW, Park KH (2017) Competitive protein tyrosine phosphatase 1B (PTP1B) inhibitors, prenylated caged xanthones from Garcinia hanburyi and their inhibitory mechanism. Bioorganic & Medicinal Chemistry 25 (8):2498-2506.

    Uddin Z, Song YH, Ullah M, Li Z, Kim JY, Park KH (2018) Isolation and Characterization of Protein Tyrosine Phosphatase 1B (PTP1B) Inhibitory Polyphenolic Compounds From Dodonaea viscosa and Their Kinetic Analysis. Frontiers in Chemistry 6:40.

    Xu Y, Bao T, Han W, Chen W, Zheng X, Wang J (2016) Purification and identification of an angiotensin I-converting enzyme inhibitory peptide from cauliflower by-products protein hydrolysate. Process Biochemistry 51 (9):1299-1305.

    Xuan-Yu Meng H-XZ, Mihaly Mezei , and Meng Cui (2011) Molecular Docking: A powerful approach for structure-based drug discovery. Current Computer-Aided Drug Design 7 (2):146-157

    Yip SC, Saha S, Chernoff J (2010) PTP1B: a double agent in metabolism and oncogenesis. Trends in Biochemical Sciences 35 (8):442-449.

    Zhang W, Hong D, Zhou Y, Zhang Y, Shen Q, Li JY, Hu LH, Li J (2006) Ursolic acid and its derivative inhibit protein tyrosine phosphatase 1B, enhancing insulin receptor phosphorylation and stimulating glucose uptake. Biochim Biophys Acta 1760 (10):1505-1512.

    下載圖示
    QR CODE