簡易檢索 / 詳目顯示

研究生: 安妮莎
Annisa Oktafianti Nurlatifah
論文名稱: 分析苦瓜萃取物對腸道上皮細胞的效果 以探討可能的降血糖機制
Characterization of The Effect of Bitter Melon Extract on Intestinal Cells for the Exploration of Potential Hypoglycaemic Mechanism thereof
指導教授: 鄭雪玲
Hsueh-Ling Cheng
學位類別: 碩士
Master
系所名稱: 農學院 - 生物科技系
Department of Biological Science and Technology
畢業學年度: 106
語文別: 英文
論文頁數: 66
中文關鍵詞: 苦瓜提取物降血糖功能血糖intestinal L 細胞IEC-18細胞NCI-H716細胞
外文關鍵詞: bitter melon fruit extract, hypoglycaemic function, blood glucose, bitter taste receptors, IEC-18 cells, NCI-H716 cells
DOI URL: http://doi.org/10.6346/THE.NPUST.BST.008.2018.D01
相關次數: 點閱:24下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統
  • 摘要

    學號 : M10518027
    論文題目 :分析苦瓜萃取物對腸道上皮細胞的效果
    以探討可能的降血糖機制
    頁數 : 66
    學校名稱 :國立屏東科技大學 所別:生物科技系
    畢業日期及摘要別:
    研究生 : 安妮莎 指導教授: 鄭雪玲士Harijono
    論文摘要內容:
    苦瓜(Momordica Charantia L.)被認為具有降血糖作用,在一些地區的傳統醫學上已經被用來治療糖尿病。然而其降糖作用的機制尚未完全了解。腸道上皮細胞在調節血糖方面有著重要的作用。腸道上皮細胞分泌與控制血糖和食慾有關的激素。此外,小腸和大腸的血糖消耗共同對降低血糖有重要作用。本研究的目的是研究苦瓜提取物對與控制血糖有關的腸道上皮細胞代謝的影響。當人類結直腸腺癌細胞株NCI-H716培養於含有苦瓜提取物的培養液時,細胞內鈣離子濃度會明顯增加,雖然胰高血糖素像是peptide-1(GLP-1)的分泌沒有增加。ELISA試驗顯示,苦瓜提取物可能刺激活化細胞的鈣離子信號通路,進而提升GLP-1分泌。同時大鼠小腸上皮細胞株IEC-18給予苦瓜提取物時,細胞不會促進葡萄糖攝取。但在胰島素阻抗性IEC-18細胞給於20 ng/ml TNF-α及 100 nM 胰島素時,細胞會促進葡萄糖攝取。在給予苦瓜提取物濃度大約50到200 ug/ml時IEC-18有不錯的促進葡萄糖吸收效果,然而BME降血糖效果不如對照組的troglitazone和rosiglitazone作用明顯。這些數據顯示,苦瓜提取物在低濃度下促進葡萄糖攝取,但不影響胰島素阻抗性IEC-18細胞中胰島素信號通路的Akt蛋白。基於此研究結果,可以得出BME可能不是胰島素增敏劑,但它可以做為胰島素的取代物。本研究的結果顯示IRS-1、Akt AS160活化的可能性; 胰島素阻抗性細胞中的PI3K抑製的可能性。
    關鍵詞:苦瓜提取物、降血糖功能、血糖、intestinal L 細胞、IEC-18細胞、NCI-H716細胞。

    ABSTRACT

    Student ID : M10518027
    Title of Thesis : Characterization of The Effect of Bitter Melon Extract on Intestinal Cells for the Exploration of Potential Hypoglycaemic Mechanism thereof
    Total Pages : 66
    Name of Institute : National Pingtung University of Science and Technology
    Name of Department : Biological Science and Technology
    Date of Graduation : July 2018
    Degree Confered : Master
    Name of Student : Annisa Oktafianti Nurlatifah
    Advisor : Prof. Hsueh-Ling Cheng, PhD
    Prof. Dr. Ir. Harijono, M.App.Sc
    The content of this abstract in this thesis :
    Bitter melon (Momordica Charantia L.) has been suggested to have a hypoglycaemic effect but the underlying mechanism is not completely understood. The intestinal tissues play an important role in regulating the level of blood glucose. Whereas the effect of bitter melon on the tissues has not been characterized. The aim of this study is to investigate the effect of bitter melon extract (BME) on the metabolism of intestinal cells relating to the control of blood glucose. IEC-18 cells, a rat intestinal epithelial cell line, and NCI-H716 cells, a human intestinal enteroendocrine were used as models in this study. The results showed that BME did not affect the glucose consumption of normal IEC-18 cells, but obviously promoted the glucose uptake of insulin-resistant IEC-18 cells induced by tumor necrosis factor-α (TNF-α). The data further suggested that BME worked as an insulin substitute, but not insulin sensitizer, in insulin resistant IEC-18 cells. This affect may be mediated by the activation of AMP – activated protein kinase. Meanwhile, BME resulted in an increase in cytosolic [Ca2+] in NCI-H716 cells and promoted glucagon-like-peptide-1 (GLP-1) secretion from the cells. Overall, the data suggested that bitter melon could stimulate GLP-1 secretion from enteroendocrine cells, and promote the glucose consumption of intestinal epithelial cells. These may be part of the mechanism underlying the hypoglycaemic function thereof.
    Keywords : bitter melon fruit extract, hypoglycaemic function, blood glucose, bitter taste receptors, IEC-18 cells, NCI-H716 cells

    TABLE OF CONTENTS
    Contents
    摘要 I
    ABSTRACT III
    ACKNOWLEDEMENT V
    TABLE OF CONTENTS VI
    LIST OF FIGURES IX
    LIST OF TABLES X
    I. INTRODUCTION 1
    1.1 Background 1
    1.2 Aim of the study and research frame 2
    1.3 Future Impact 3
    II. LITERATURE REVIEW 6
    2.1 Introduction of blood glucose regulation 6
    2.2 Insulin Resistance 10
    2.3 AMPK 13
    2.4 The Role of The Intestinal Cells in Regulating Blood Glucose 14
    2.5 The Hypoglycaemic Function of Momordica charantia 15
    2.6 Bitter Taste Receptors 16
    2.7 Medicines for treating diabetes clinically 18
    III.MATERIALS AND METHODS 21
    3.1 Materials 21
    3.1.1 Cell Line 21
    3.1.2 Media 21
    3.1.2.1 RPMI 1640 21
    3.1.2.2 Modified Eagle Medium (MEM) 21
    3.1.2.3 Dulbecco’s Modified Eagle Medium (DMEM) - high glucose 22
    3.1.3 Bitter Melon Extract (BME) 22
    3.1.4 Reagent for Cell Treatment 23
    A. Tumor Necrosis Factor-α (TNF-α) 23
    B. Insulin 23
    C. Metformin 23
    D. Thiazolidinediones (TZD) 23
    E. Denatonium Benzoate (DB) 23
    3.1.5 Reagent for Western Blotting Analysis 24
    A. Cell Lysis Buffer 24
    B. SDS-PAGE (Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis) 24
    C. 10X TGS Buffer (SDS-PAGE Running Buffer) 25
    D. Transfer Buffer (Western Blotting Running Buffer) 25
    E. 1X PBS Buffer 26
    F. 10X PBS-Tween 20 Buffer (Western Blotting Washing Solution) 26
    G. 2X Sample Buffer (SDS-PAGE Protein Sample Buffer) 27
    H. Substrate for horseradish peroxidase-conjugated secondary antibodies 27
    I. Molecular –Weight Markers 27
    J. Antibody 27
    3.1.6 Other Chemical and Reagents 28
    3.2 Instruments 29
    3.2.1 Instruments for Cell Culturing 29
    3.2.2 Instruments for Western Blotting and Protein Analysis 29
    3.2.3 Instruments for Glucose Uptake Assay 30
    3.2.4 Instruments for WST-1 Assay 30
    3.2.5 Instruments for Calcium Imaging Assay 30
    3.2.6 Instruments for ELISA Assay 30
    3.2.7 Miscellaneous 30
    3.3 Experimental Procedures 30
    3.3.1 Cell Culture 30
    3.3.2 Cytotoxicity assay 31
    3.3.3 Western Blot Analysis 32
    3.3.4 Glucose Uptake Assay 34
    3.3.5 Calcium imaging assay 35
    3.3.6 GLP-1 ELISA Assay 36
    3.3.7 Statistical Analysis 36
    IV. RESULTS 37
    4.1 The effect of bitter melon extract on normal IEC-18 cells 37
    4.1.2 The insulin sensitivity of IEC-18 cells 38
    4.2 The effect of bitter melon extract on insulin-resistant IEC-18 cells 40
    4.3 The molecular mechanism of BME in IEC-18 cells 45
    4.4 The toxicity of troglitazone to IEC-18 cells 47
    4.5 The effect of bitter melon extract on intestinal enteroendocrine L cells 48
    V. DISCUSSION 52
    VI. CONCLUSION 57
    REFERENCES 58
    Information of Author 66

    REFERENCES

    Ahmed, I., Lakhani, M. S., Gillett, M., John, A., & Raza, H. 2001. Hypotriglyceridemic and hypocholesterolemic effects of anti-diabetic Momordica charantia (karela) fruit extract in streptozotocin-induced diabetic rats. Diabetes Research and Clinical Practice 51(3) : 155-161.
    Altinterim, B. 2012. Bitter melon (Momordica charantia) and the effects of diabetes disease. Journal of Agricultural 26 (2) : 65-69.
    Berridge, M.V., Herst, P.M. and Tan, A.S. 2005. Tetrazolium dyes as tools in cell biology: new insights into their cellular reduction. Biotechnology annual review 11 : 127-152.
    Cantley, L.C. 2002. The phosphoinositide 3-kinase pathway. Science 296 (5573) : 1655-1657.
    Castellano, J. M., Guinda, A., Delgado, T., Rada, M., & Cayuela, J. A. 2013. Biochemical basis of the antidiabetic activity of oleanolic acid and related pentacyclic triterpenes. Diabetes 62 (6) : 1791-1799.
    Chang, C.I., Chou, C.H., Liao, M.H., Chen, T.M., Cheng, C.H., Anggriani, R., Tsai, C.P., Tseng, H.I. and Cheng, H.L. 2015. Bitter melon triterpenes work as insulin sensitizers and insulin substitutes in insulin-resistant cells. Journal of Functional Foods 13 : 214-224.
    Chang, C. I., Tseng, H. I., Liao, Y. W., Yen, C. H., Chen, T. M., Lin, C. C., & Cheng, H. L. 2011. In vivo and in vitro studies to identify the hypoglycaemic constituents of Momordica charantia wild variant WB24. Food Chemistry 125 : 521–528.
    Chang, C. I., Hsu, C. M., Li, T. S., Huang, S. D., Lin, C. C., Yen, C. H., Chou, C. H., & Cheng, H. L. 2014. Constituents of the stem of Cucurbita moschata exhibit antidiabetic activities through multiple mechanisms. Journal of Functional Foods 10 : 260–273.
    Cheng, H.L., Huang, H.K., Chang, C.I., Tsai, C.P., Chou, C.H. 2008. A cell-based screening identifies compounds from the stem of Momordica charantia that overcome insulin resistance and activate AMP-activated protein kinase. Journal of Agricultural and Food Chemistry 56 : 6835-6843.
    Chojkier, M. 2005. Troglitazone and liver injury: In search of answers. Hepatology 41 : 237–246.
    Dans, A.M., Villarruz, M.V., Jimeno, C.A., Javelosa, M.A., Chua, J., Bautista, R., Velez, G.G. 2007. The Effect of Momordica Charantia Capsule Preparation on Glycemic Control in Type 2 Diabetes Mellitus Needs Further Studies. Journal of Clinical Epidemiology 60 (6) : 554-559.
    Defronzo, RA. 2004. Pathogenesis of type 2 diabetes mellitus. The Medical Clinics of North America 88 (4) : 787-835.
    Dreyer, H. C., Drummond, M. J., Pennings, B., Fujita, S., Glynn, E. L., Chinkes, D. L., & Rasmussen, B. B. 2008. Leucine-enriched essential amino acid and carbohydrate ingestion following resistance exercise enhances mTOR signaling and protein synthesis in human muscle. American Journal of Physiology-Endocrinology And Metabolism 294 (2) : E392-E400.
    Deitch, E. A., Haskel, Y., Cruz, N., Xu, D., & Kvietys, P. R. 1995. Caco-2 and IEC-18 intestinal epithelial cells exert bactericidal activity through an oxidant-dependent pathway. Shock (Augusta, Ga.) 4(5) : 345-350.
    Duizer, E., Penninks, A. H., Stenhuis, W. H., & Groten, J. P. 1997. Comparison of permeability characteristics of the human colonic Caco-2 and rat small intestinal IEC-18 cell lines. Journal of controlled release 49 (1) : 39-49.
    Duffy, V. B., Davidson, A. C., Kidd, J. R., Kidd, K. K., Speed, W. C., Pakstis, A. J., & Bartoshuk, L. M. 2004. Bitter receptor gene (TAS2R38), 6‐n‐propylthiouracil (PROP) bitterness and alcohol intake. Alcoholism: Clinical and Experimental Research 28 (11) : 1629-1637.
    Fuangchan, A., Sonthisombat, P., Seubnukarn, T., Chanouan, R., Chotchaisuwat, P., Sirigulsatien, V., Ingkaninan, K., Plianbangchang, P., Haines, S.T. 2011. Hypoglycemic Effect of Bitter Melon Compared With Metformin in Newly Diagnosed Type 2 Diabetes Patients. Journal of Ethnopharmacology 134 (2) : 422-428.
    Fisslthaler, B., & Fleming, I. 2009. Activation and signaling by the AMP-activated protein kinase in endothelial cells. Circulation research 105 (2) : 114-127.
    Foley, K., Boguslavsky, S. and Klip, A. 2011. Endocytosis, recycling, and regulated exocytosis of glucose transporter 4. Biochemistry 50 (15) : 3048-3061.
    Gee, K. R., Brown, K. A., Chen, W. U., Bishop-Stewart, J., Gray, D., & Johnson, I. 2000. Chemical and physiological characterization of fluo-4 Ca2+-indicator dyes. Cell calcium 27 (2) : 97-106.
    Gokhan K. Ulusoy, Turgay Celik, Hakan Kayir, Murat Gürsoy, Ahmet T. Isik, Tayfun I. Uzbay. 2011. Effects of pioglitazone and retinoic acid in a rotenone model of Parkinson's disease. Brain Research Bulletin 85 (6) : 380-384.
    Grover, J.K., Yadav, S.P. 2004. Pharmacological actions and potential uses of Momordica charantia: a review. Journal of Ethnopharmacology 93 (1) : 123–132.
    H. Matsuno, K. Yudoh, R. Katayama, F. Nakazawa, M. Uzuki, T. Sawai, T. Yonezawa, Y. Saeki, G. S. Panayi, C. Pitzalis, T. Kimura. 2002. The role of TNF‐α in the pathogenesis of inflammation and joint destruction in rheumatoid arthritis (RA): a study using a human RA/SCID mouse chimera. Rheumatology 41 (3) : 329–337.
    Hana Zelová, Jan Hošek. 2013. TNF-α signalling and inflammation: interactions between old acquaintances. Inflammation Research 62 (7) : 641
    Hariharan, M.E.E.N.A., Rajan, S.S. and Srinivasan, R. 1989. Structure of metformin hydrochloride. Acta Crystallographica Section C 45 (6) : 911-913.
    Hotamisligil, G.S., Murray, D.L., Choy, L.N. and Spiegelman, B.M. 1994. Tumor necrosis factor alpha inhibits signaling from the insulin receptor. PNAS 91 (11) : 4854-4858.
    Hotamisligil, G.S., Shargill, N.S., Spiegelman, B.M. 1993. Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science 259 : 87-91
    Iwata, M., Haruta, T., Usui, I., Takata, Y., Takano, A., Uno, T., Kawahara, J., Ueno, E., Sasaoka, T., Ishibashi, O., Kobayashi, M. 2001. Pioglitazone ameliorates tumor necrosis factor alpha induced insulin resistance by a mechanism independent of adipogenic activity of peroxisome proliferators-activated receptor-gamma. Diabetes 50 : 1083 – 1092
    Jakobsen, S.N., hardie, D.G., Morrice, N., Tornqvist, H.E. 2001. 5’-AMP-activated protein kinase phosphorylates IRS-1 on ser-789 in mouse C2C12 myotubes in response to 5-aminoimidazole-4-carboxamide riboside. J. Biol. Chem. 276 : 46912-46916.
    Jian Shen, Martin S. Obin, Liping Zhao. 2013. The gut microbiota, obesity and insulin resistance. Molecular Aspects of Medicine 34 (1) : 39-58.
    Kim, S. H., Hwang, J. T., Park, H. S., Kwon, D. Y., & Kim, M. S. 2013. Capsaicin stimulates glucose uptake in C2C12 muscle cells via the reactive oxygen species (ROS) /AMPK /p38 MAPK pathway. Biochemical and biophysical research communications 439 (1) : 66-70
    Kramer, H.F., Witczak, C.A., Taylor, E.B., Fujii, N., Hirshman, M.F., Goodyear, L.J. 2006. AS160 regulates insulin- and contraction-stimulated glucose uptake in mouse skeletal muscle. Journal of Biological and Chemistry 281: 31478–31485
    Lampson, M. A., Schmoranzer, J., Zeigerer, A., Simon, S. M., and McGraw, T. E. 2001. Molecular 12 : 3489-3501
    Leung, L. 2009. Anti-Diabetic and Hypoglycaemic Effects of Momordica Charantia (Bitter Melon): A Mini Review; British Journal of Nutrition.
    Ling, K. Y., Bhalla, D., & Hollander, D. 1988. Mechanisms of carrageenan injury of IEC18 small intestinal epithelial cell monolayers. Gastroenterology 95(6) : 1487-1495.
    Matsuno, M., Nagatsu, A., Ogihara, Y., Ellis, B.E., Mizukami, H. 2002. CYP98A6 from Lithospermum erythrorhizon encodes 4-coumaroyl-40 -hydroxyphenyllactic acid 3-hydroxylase involved in rosmarinic acid biosynthesis. FEBS Lett. 514 : 219–224
    Miura, T., Itoh, C., Iwamoto, N., Kato, M., Kawai, M., Park, S.R., Suzuki, I. 2001. Hypoglycemic activity of the fruit of the Momordica charantia in type 2 diabetic mice. Journal of Nutrition Science and Vitaminology 47 : 340–344.
    Natali, A. & Ferrannini, E. 2006. Diabetologia. 49: 434.
    Park, J., Kim, K. S., Kim, K. H., Lee, I. S., Jeong, H. S., Kim, Y., & Jang, H. J. 2015. GLP-1 secretion is stimulated by 1, 10-phenanthroline via colocalized T2R5 signal transduction in human enteroendocrine L cell. Biochemical and biophysical research communications 468 (1-2) : 306-311.
    Petersen, M., & Simmonds, M. S. 2003. Rosmarinic acid. Phytochemistry 62 (2) : 121-125.
    Pharm, Stephan Glund Dipl, Juleen R. Z. 2005. Canadian Journal of Diabetes 29 (3) : 239-245
    Popovich, D. G., Li, L., & Zhang, W. 2010. Bitter melon (Momordica charantia) triterpenoid extract reduces preadipocyte viability, lipid accumulation and adiponectin expression in 3T3-L1 cells. Food and Chemical Toxicology 48 (6) : 1619-1626.
    Prabhakar, P. K., & Doble, M. 2011. Mechanism of action of natural products used in the treatment of diabetes mellitus. Chinese Journal of Integrative Medicine 17 (8) : 563.
    Saltiel, A.R. and Kahn, C.R. 2001. Insulin signalling and the regulation of glucose and lipid metabolism. Nature 414 : 799-806.
    Schneidereit, D., Vass, H., Reischl, B., Allen, R. J., & Friedrich, O. 2016. Calcium Sensitive Fluorescent Dyes Fluo-4 and Fura Red under Pressure: Behaviour of Fluorescence and Buffer Properties under Hydrostatic Pressures up to 200 MPa. PloS one 11(10) : 164-509.
    Scheen, .A.J. 2001. Hepatotoxicity with thiazolidinediones: Is it a class effect?. Drug Safety 24 : 873–888.
    Stand Up 2 cancer (SU2C). 2010. Targeting the PI3K Pathway in Women’s Cancers.
    Stanford, I. Kristin and Laurie, J. 2014. Exercise and type 2 diabetes : molecular mechanisms regulating glucose uptake in skeletal muscle. Adv Physiol Educ 38 (4) : 308–314.
    Taha, C., Klip, A. 1999. The insulin signaling pathway. Journal of Membrane Biology 169 : 1-12.
    Tan, A.S. and Berridge, M.V. 2000. Superoxide produced by activated neutrophils efficiently reduces the tetrazolium salt, WST-1 to produce a soluble formazan: a simple colorimetric assay for measuring respiratory burst activation and for screening anti-inflammatory agents. Journal of immunological methods 238 (1-2) : 59-68.
    Tominaga, H., Ishiyama, M., Ohseto F., Sasamoto, K., Hamamoto, T., Suzuki, K. and Watanabe, M. 1999. A water-soluble tetrazolium salt useful for colorimetric cell viability assay. Anal Commun 36 : 47–50.
    Towler, M. C., & Hardie, D. G. 2007. AMP-activated protein kinase in metabolic control and insulin signaling. Circulation research 100 (3) : 328-341.
    Ma, T.Y., Hollander, D, Bhalla, D., Nguyen, H., Krugliak, P. 1992. IEC-18, a non-transformed small intestinal cell line for studying epithelial permeability. Journal of Laboratory and Clinical Medicine 120 : 329-341.
    Medler, Kathryn F. 2015. Calcium Signaling in Taste Cells. Biochimica et Biophysica Acta 1853 : 2025-2032.
    Yan, W., Zhang, H., Liu, P., Wang, H., Liu, J., Gao, C.,& Guo, Y. 2013. Impaired mitochondrial biogenesis due to dysfunctional adiponectin-AMPK-PGC-1α signaling contributing to increased vulnerability in diabetic heart. Basic research in cardiology 108(3) : 329.
    Quaroni, A., & May, RJ. 1980. Establishment and characterization of intestinal epithelial cell cultures. In Methods in Cell Biology
    Quaroni, A., Kirsch, K., & Weiser, MM. 1979. Synthesis of membranes glycoproteins in rat small-intestinal villus cells. Redistribution of L- [1, 5, 6-3H] -fucose-labeled membranes glycoproteins among Golgi, lateral basal and microvillus membranes in vivo. Biochemical Journal 182 (1) : 203-212.
    Vincentini, O., Ciotta, C., Bignami, M., Stammati, A., & Zucco, F. 1996. Normal rat intestinal cells IEC-18: characterization and transfection with immortalizing oncogenes. Cytotechnology 21 (1) : 11-19.

    下載圖示
    QR CODE