簡易檢索 / 詳目顯示

研究生: 劉翠屏
Liu,Tsui-Ping
論文名稱: 高效液相層析結合感應耦合電漿質譜儀檢測飼料中砷型態
Determination of arsenic species in livestock feed by high performance liquid chromatography coupled with inductively coupled plasma-mass spectrometry
指導教授: 徐睿良
Hsu,Jue-Liang
學位類別: 碩士
Master
系所名稱: 農學院 - 食品生技碩士學位學程在職專班
Executive Master of Food Biotechnology
畢業學年度: 107
語文別: 中文
論文頁數: 50
中文關鍵詞: 微波輔助萃取超音波輔助萃取萃取效率砷型態
外文關鍵詞: microwave-assisted extraction (MAE), ultrasound-assisted extraction (UAE), extraction efficiency, arsenic species
DOI URL: http://doi.org/10.6346/THE.NPUST.FB.001.2019.D01
相關次數: 點閱:22下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統
  • 砷的生物毒性取決於化學結構形態,重金屬總砷濃度是飼料品質監測重要的檢測項目,用總量標準評估飼料中砷的污染情況和動物暴露水準,無法完全反映砷污染的的真實狀況。以溶劑(50% MeOH、25% EtOH和2% HNO3)微波輔助萃取及酵素(pepsin、amylase、bromelain及papain)超音波輔助萃取進行萃取效率比較,溶劑萃取以50% MeOH (萃取率=98.03%)及酵素萃取以bromelain (萃取率=99.45%)皆有較高萃取效果。選擇 bromelain搭配超音波萃取法具較短萃取時間、減少物種轉換及化學變化、高萃取效率及準確性等優點,為最適用之萃取方式。經方法確效,以高效液相層析儀分離物種,搭配感應偶合電漿質譜儀偵測定量,可於25分鐘內分離9種砷型態(AsB、AsC、AsⅢ、AsⅤ、DMA、MMA、p-ASA、4-HPAA及ROX),並應用於飼料樣品分析。

    The biological toxicities of arsenic species depend on their chemical structures and charge states. The total arsenic concentration in heavy metals is an important test item for feed quality monitoring. The measurement of total aresenic concentration is adequate to assess the contamination of arsenic in feed and the level of animal exposure, however it cannot fully reflect the state of arsenic pollution. By comparing the microwave-assisted extraction (MAE) with solvent in which three kinds of solvent including 50% MeOH, 25% EtOH and 2% HNO3 were used individually, and the ultrasonic-assisted extraction (UAE) with enzyme (using four kinds of proteases including pepsin, amylase, bromelain and papain) for optimization of extraction efficiency, the result indicated that the MAE using 50% MeOH and UAE with bromelain gave the highest extraction efficiency (98.03% and 99.45%, respectively). According to our result, the introduction of bromelain in UAE with enzyme showed a shorter extraction time, reducing species conversion, high extraction efficiency and accuracy, which implied that bromelain-based UAE is the most suitable extraction method. After sample preparation, the arsenic containing sample was analyzed using high-performance liquid chromatography (HPLC) coupled with inductively coupled plasma mass spectrometer (ICP-MS). The method validation indicated that the separation of arsenic species using HPLC and the detection and quantification using ICP-MS can provide an efficient analysis of nine arsenic species (AsB, AsC, AsIII, AsV, DMA, MMA, p-ASA, 4-HPAA and ROX) within 25 minutes. Moreover, this method was further applied to feed sample analysis.

    摘要 I
    AbstractII
    謝誌 IV
    目錄 V
    圖目錄 VII
    表目錄 VIII
    壹、前言 1
    1.1研究背景 1
    1.2研究動機 5
    貳、文獻探討 6
    2.1飼料中的砷 6
    2.2海洋生物中的砷 7
    2.3食物中的砷 7
    2.4環境中的砷 9
    2.5萃取方法探討 10
    2.6檢測方法開發 12
    叁、材料與方法 13
    3.1實驗架構 13
    3.2儀器設備 15
    3.3試劑藥品與溶液配製 15
    3.3.1 試劑藥品 15
    3.3.2 標準品配製 15
    3.3.3沖提溶液的配製 16
    3.4參考物質及樣品 17
    3.5砷物種分析 17
    3.5.1 微波輔助萃取效能比較 17
    3.5.2酵素超音波輔助萃取效能比較 17
    3.6總砷分析 18
    3.7.品質管制 18
    3.7.1偵測極限(LOD)及定量極限(LOQ) 18
    3.7.2準確度(accuracy)分析 18
    3.7.3精密度(precision)分析 18
    3.7.4添加回收試驗(spike recovery) 18
    3.8飼料樣品砷濃度分析 19
    3.8.1 砷型態分析 19
    肆、結果與討論 21
    4.1層析條件最適化探討 21
    4.1.1不同梯度模式對層析結果之影響 21
    4.1.2液相層析沖提流速之影響 25
    4.2溶劑搭配微波輔助萃取法 29
    4.3酵素超音波輔助萃取法 30
    4.4校正曲線、偵測極限與定量極限的估計 35
    4.5精密度及準確度分析 36
    4.6真實樣品分析 38
    4.7 討論 40
    伍、結論 42
    參考文獻 43
    作者介紹 49

    蔡瑤璇(2013)液相層析結合感應耦合電漿質譜儀與電噴灑質譜儀於食用藻類中砷物種與水樣及果汁中銻物種之分析應用。Page 136。
    吳哲維(2014))液相層析結合感應耦合電漿質譜儀於魚肉中砷物種及功能性飲料和營養補給品中鈷物種之分析應用。Page 133。
    劉殷孝(2014)液相層析結合感應耦合電漿質譜儀於海藻中含砷化合物及對含鉻化合物之分析應用。Page 125。
    鄭雅瑜(2015)液相層析結合感應耦合電漿質譜儀於環境水樣與食米樣品中砷物種分析及酒品中含鉻化合物之分析應用。Page 104。
    嚴可軒(2016)液相層析結合化學蒸氣生成感應偶合電漿質譜儀於海藻及食用米中無機砷物種之分析應用。Page 109。
    Arroyo-Abad, U., S. Lischka, C. Piechotta, J. Mattusch, and T. Reemtsma. 2013. Determination and identification of hydrophilic and hydrophobic arsenic species in methanol extract of fresh cod liver by RP-HPLC with simultaneous ICP-MS and ESI-Q-TOF-MS detection. Food Chem. 141(3):3093-3102.

    Althobiti, R. A., N. W. Sadiq, and D. Beauchemin. 2018. Realistic risk assessment of arsenic in rice. Food Chem. 257:230-236.

    Bishop, D. P., D. J. Hare, D. Clases, and P. A. Doble. 2018. Applications of liquid chromatography-inductively coupled plasma-mass spectrometry in the biosciences: A tutorial review and recent developments. TrAC, Trends Anal. Chem. 104:11-21.

    Chapman, H. D. and Z. B. Johnson. 2002. Use of Antibiotics and Roxarsone in Broiler Chickens in the USA: Analysis for The Years 1995 to 2000. Poult. Sci. 81(3):356-364.

    Chen, D., H. Zhang, Y. Tao, Y. Wang, L. Huang, Z. Liu, Y. Pan, D. Peng, X. Wang, M. Dai, and Z. Yuan. 2011. Development of a high-performance liquid chromatography method for the simultaneous quantification of four organoarsenic compounds in the feeds of swine and chicken. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 879(11-12):716-720.

    Cheng, Y. Y., N. C. Huang, Y. T. Chang, J. M. Sung, K. H. Shen, C. C. Tsai, and H. R. Guo. 2017. Associations between arsenic in drinking water and the progression of chronic kidney disease: A nationwide study in Taiwan. J. Hazard. Mater. 321:432-439.

    Chu, Y. L. and S. J. Jiang. 2011. Speciation analysis of arsenic compounds in edible oil by ion chromatography-inductively coupled plasma mass spectrometry. J. Chromatogr. A 1218(31):5175-5179.

    Contreras-Acuña, M., T. García-Barrera, M. A. García-Sevillano, and J. L. Gómez-Ariza. 2014. Arsenic metabolites in human serum and urine after seafood (Anemonia sulcata) consumption and bioaccessibility assessment using liquid chromatography coupled to inorganic and organic mass spectrometry. Microchem. J. 112:56-64.

    Cui, J., Y.-b. Xiao, L. Dai, X.-h. Zhao, and Y. J. F. A. M. Wang. 2013. Speciation of organoarsenic species in food of animal origin using accelerated solvent extraction (ASE) with determination by HPLC-hydride generation-atomic fluorescence spectrometry (HG-AFS). Food Analytical Methods 6(2):370-379.

    EFSA. 2009. Scientific Opinion on Arsenic in Food. EFSA Journal 7(10).

    FDA. 2015. FDA Announces Pending Withdrawal of Approval of Nitarsone.

    Gao, Y., P. Baisch, N. Mirlean, F. M. Rodrigues da Silva Junior, N. Van Larebeke, W. Baeyens, and M. Leermakers. 2018. Arsenic speciation in fish and shellfish from the North Sea (Southern bight) and Acu Port area (Brazil) and health risks related to seafood consumption. Chemosphere 191:89-96.

    Garcia-Salgado, S., M. A. Quijano, and M. M. Bonilla. 2012. Arsenic speciation in edible alga samples by microwave-assisted extraction and high performance liquid chromatography coupled to atomic fluorescence spectrometry. Anal. Chim. Acta 714:38-46.

    Islam, S., M. M. Rahman, M. A. Rahman, and R. Naidu. 2017. Inorganic arsenic in rice and rice-based diets: Health risk assessment. Food Control 82:196-202.
    Jia, X., D. Gong, J. Wang, F. Huang, T. Duan, and X. Zhang. 2016. Arsenic speciation in environmental waters by a new specific phosphine modified polymer microsphere preconcentration and HPLC-ICP-MS determination. Talanta 160:437-443.

    Leufroy, A., L. Noel, V. Dufailly, D. Beauchemin, and T. Guerin. 2011. Determination of seven arsenic species in seafood by ion exchange chromatography coupled to inductively coupled plasma-mass spectrometry following microwave assisted extraction: method validation and occurrence data. Talanta 83(3):770-779.

    Liu, Q., X. Lu, H. Peng, A. Popowich, J. Tao, J. S. Uppal, X. Yan, D. Boe, and X. C. Le. 2018. Speciation of arsenic – A review of phenylarsenicals and related arsenic metabolites. TrAC, Trends Anal. Chem. 104:171-182.

    Liu, Q., H. Peng, X. Lu, and X. C. Le. 2015a. Enzyme-assisted extraction and liquid chromatography mass spectrometry for the determination of arsenic species in chicken meat. Anal. Chim. Acta 888:1-9.
    Liu, X., W. Zhang, Y. Hu, and H. Cheng. 2013. Extraction and detection of organoarsenic feed additives and common arsenic species in environmental matrices by HPLC–ICP-MS. Microchem. J. 108:38-45.

    Liu, X., W. Zhang, Y. Hu, E. Hu, X. Xie, L. Wang, and H. Cheng. 2015b. Arsenic pollution of agricultural soils by concentrated animal feeding operations (CAFOs). Chemosphere 119:273-281.

    Molin, M., S. M. Ulven, H. M. Meltzer, and J. Alexander. 2015. Arsenic in the human food chain, biotransformation and toxicology--Review focusing on seafood arsenic. J. Trace Elem. Med Biol. 31:249-259.

    Monasterio, R. P., J. A. Londonio, S. S. Farias, P. Smichowski, R. G. J. J. o. a. Wuilloud, and f. chemistry. 2011. Organic solvent-free reversed-phase ion-pairing liquid chromatography coupled to atomic fluorescence spectrometry for organoarsenic species determination in several matrices. J. Agric. Food Chem 59(8):3566-3574.

    Moreda-Pineiro, A., J. Moreda-Pineiro, P. Herbello-Hermelo, P. Bermejo-Barrera, S. Muniategui-Lorenzo, P. Lopez-Mahia, and D. Prada-Rodriguez. 2011. Application of fast ultrasound water-bath assisted enzymatic hydrolysis--high performance liquid chromatography-inductively coupled plasma-mass spectrometry procedures for arsenic speciation in seafood materials. J. Chromatogr. A 1218(39):6970-6980.

    Narukawa, T., T. Suzuki, K. Inagaki, and A. Hioki. 2014. Extraction techniques for arsenic species in rice flour and their speciation by HPLC-ICP-MS. Talanta 130:213-220.

    Pereira, E. R., T. S. de Almeida, D. L. Borges, E. Carasek, B. Welz, J. Feldmann, and J. D. Campo Menoyo. 2016. Investigation of chemical modifiers for the direct determination of arsenic in fish oil using high-resolution continuum source graphite furnace atomic absorption spectrometry. Talanta 150:142-147.

    Sanz, E., R. Muñoz-Olivas, and C. Cámara. 2005. A rapid and novel alternative to conventional sample treatment for arsenic speciation in rice using enzymatic ultrasonic probe. Anal. Chim. Acta 535(1-2):227-235.

    Saucedo-Velez, A. A., L. Hinojosa-Reyes, M. Villanueva-Rodriguez, A. Caballero-Quintero, A. Hernandez-Ramirez, and J. L. Guzman-Mar. 2017. Speciation analysis of organoarsenic compounds in livestock feed by microwave-assisted extraction and high performance liquid chromatography coupled to atomic fluorescence spectrometry. Food Chem. 232:493-500.

    Sele, V., J. J. Sloth, B. Holmelid, S. Valdersnes, K. Skov, and H. Amlund. 2014. Arsenic-containing fatty acids and hydrocarbons in marine oils - determination using reversed-phase HPLC-ICP-MS and HPLC-qTOF-MS. Talanta 121:89-96.

    Taylor, V., B. Goodale, A. Raab, T. Schwerdtle, K. Reimer, S. Conklin, M. R. Karagas, and K. A. Francesconi. 2017. Human exposure to organic arsenic species from seafood. Sci. Total Environ. 580:266-282.

    USFDA (U.S. Food and Drug Administration), 2014. Withdrawal of Approval of NewAnimal Drug Applications for Combination Drug Medicated Feeds Containing anArsenical Drug. Fed. Reg. 79, 10974–10976.

    Vinatoru, M., T. J. Mason, and I. Calinescu. 2017. Ultrasonically assisted extraction (UAE) and microwave assisted extraction (MAE) of functional compounds from plant materials. TrAC, Trends Anal. Chem. 97:159-178.

    Wang, P., G. Zhao, J. Tian, X. J. J. o. a. Su, and f. chemistry. 2010. High-performance liquid chromatography− inductively coupled plasma mass spectrometry based method for the determination of organic arsenic feed additives and speciation of anionic arsenics in animal feed. J. Agric. Food Chem 58(9):5263-5270.

    Whaley-Martin, K. J., I. Koch, and K. J. Reimer. 2012. Arsenic species extraction of biological marine samples (Periwinkles, Littorina littorea) from a highly contaminated site. Talanta 88:187-192.

    Yao, L., L. Huang, Z. He, C. Zhou, W. Lu, and C. Bai. 2016. Delivery of roxarsone via chicken diet-->chicken-->chicken manure-->soil-->rice plant. Sci. Total Environ. 566-567:1152-1158.

    Zaman, M., A. Ehtram, S. K. Chaturvedi, S. Nusrat, and R. H. Khan. 2016. Amyloidogenic behavior of different intermediate state of stem bromelain: A biophysical insight. Int. J. Biol. Macromol. 91:477-485.

    Zmozinski, A. V., T. Llorente-Mirandes, J. F. Lopez-Sanchez, and M. M. da Silva. 2015. Establishment of a method for determination of arsenic species in seafood by LC-ICP-MS. Food Chem. 173:1073-1082.

    下載圖示
    QR CODE