簡易檢索 / 詳目顯示

研究生: 林振傑
Lin, Chen-Chieh
論文名稱: 萃取溶劑與發酵對蝶豆花抗糖化能力及抗氧化之影響
Effect of Solvent and Fermentation on the Anti-glycation Ability and Antioxdant Activity of Butterfly Pea (Clitoria terantea)
指導教授: 蔡碧仁
Tsai, Pi-Jen
學位類別: 碩士
Master
系所名稱: 農學院 - 食品科學系所
Department of Food Science
畢業學年度: 106
語文別: 中文
論文頁數: 133
中文關鍵詞: 蝶豆花發酵抗糖化能力多酚化合物
外文關鍵詞: Clitoria ternatea, fermentation, antiglycative ability, polyphenols
DOI URL: http://doi.org/10.6346/THE.NPUST.FS.014.2018.E11
相關次數: 點閱:103下載:17
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統
  • 蝶豆花(Butterfly pea),學名為Clitoria ternatea,花瓣中富含醯基花青素(飛燕草素)、酚酸及類黃酮等,具有高抗氧化活性,是一種非常有潛力的機能性作物。根據文獻,糖化酵素(α-glucosidase及α-amylase)是人體參與碳水化合物(雙糖、多糖及澱粉)代謝時的作用酵素,藉由糖化酵素的抑制,能有助於減少葡萄糖之吸收,來降低餐後血糖,達到降血糖之功效,其中,多酚類化合物被認為是具有抗醣化能力的天然來源。然而,本土蝶豆花在抗糖化能力方面的相關研究甚少,故本研究利用屏東地區栽種之蝶豆花為原料,進行糖化酵素抑制能力之探討,以不同濃度乙醇萃取,並分別進行抗糖化能力(α-glucosidase及α-amylase)、抗氧化成分(總酚、總類黃酮及總花青素)、抗氧化能力(DPPH、FRAP)等分析。最後則利用蝶豆花進行發酵,來探討抗糖化能力及抗氧化力,並分析在發酵過程中SOD-like活性及多酚類化合物含量之變化。
    結果顯示,50% EtOH蝶豆花萃取液具有最高的α-glucosidase抑制率(57.65%),蝶豆花水萃液則具有最高的α-amylase抑制率(70.89%),而在抗氧化成分及能力方面,總酚、總類黃酮及總花青素最高含量分別為3097、813及1035 mg/100g d.w.,並且皆有不錯的DPPH自由基清除能力及FARP三價鐵還原能力。經由HPLC分析多酚類化合物後發現,蝶豆花中具有抗糖化能力的主要酚類化合物包含Gallic acid、Chlorogenic acid及Ferulic acid,而類黃酮化合物則為Morin、Rutin、Vitexin及Quercetin,對於抗糖化能力具有相當大的潛力。
    而發酵過後,皆能提升糖化酵素抑制能力,其中,α-glucosidase與α-amylase的抑制率最高分別達到67%與90%。而抗氧化活性如SOD-like、DPPH及FRAP分別上升1.5、1.13及1.11倍,此外,HPLC分析顯示,大部分多酚類化合物皆有提升,各約提高1.18至4.39倍不等。且經由統計分析結果發現,蝶豆花抗糖化能力與總酚、總類黃酮及SOD-like活性具有高度相關,其中,具有高度相關的多酚類化合物包含Kaempferol、Quercetin、Epicatechin、Rutin及Morin等。
    而在最後利用田口法所得的最適蝶豆花酵素飲料配方之儲藏安定性試驗,其分析項目包含SOD-like、總酚含量及總類黃酮含量,由實驗結果可以得知,個別分析項目殘留80%時,在5℃中各可以存放107.40、135.40及103.82週,皆具有相當不錯的儲藏安定性。
    綜合上述結論,蝶豆花是一種具有抗醣化潛力之天然食材,其中富含許多機能性成分及高抗氧化力,且在經過發酵的加工方式後,能夠釋放出更多多酚類化合物來提高其蝶豆花抗糖化之能力以及抗氧化力,在儲藏安定性試驗中也具有良好的保存能力。對於未來蝶豆花天然來源抗糖化能力之產品開發,可以得到完善的利用,並增加其在保健領域方面之利用性,來提高蝶豆花經濟價值。

    Butterfly pea is one kind of functional plants. Its petals are rich in acylated anthocyanin, which derived from delphinidin, and in phenolic acids and flavonoids as antioxidant. From the previous studies, metabolism of carbohydrates(starch oligosaccharides and disaccharides) in human body was carried on by α-glucosidase and α-amylase. If glucose absorptions and postprandial blood glucose was inhibited can be decreased the α-glucosidase and α-amylase activity. In addition, polyphenolic compounds are considered to be the effective natural source of antiglycative ability. However, very few studies about antiglycative ability of local butterfly pea effect can be found. So in this study, different solvent were used to extract local butterfly pea and analyze their antiglycative ability (α-amylase and α-glucosidase). Antioxidant composition (total phenolic, total flavonoid and total anthocyanin) and antioxidant capacity(DPPH, FRAP) was also be compared. Finally, fermentation was used to increase the antiglycative ability and the change of antioxidant activity, SOD-like activity and polyphenols content during the fermentation were investigated.
    The result showed that 50% EtOH extract is the best for α-glucosidase inhibition(57.65%) and water extract is the best for α-amylase inhibition (70.89%). The content of total phenol, total flavonoid and total anthocyanin may reach 3097, 813, and 1035 mg/100g respectively. We also found that gallic acid、chlorogenic acid and ferulic acid were the major phenolic acid ; morin、rutin、vitexin and quercetin were the major flavonoids in butterfly pea by HPLC analysis.
    After fermentation, the antiglycative ability can effectively increase to 67% and 90% respectively. In the part of antioxidant activity, significanly increase in SOD-like activity, DPPH sceavenging and FRAP was found. According to HPLC analysis, individual polyphenol increased around 1.18 to 4.39 times when compared with the sample without fermentation. Statistical analysis showed that the antiglycative ability was highly correlated with total phenol followed by the total flavonoids. The kaempferol、quercetin、epicatechin、rutin and morin were highly correlated with antiglycative ability especially.
    The last stage used Taguchi method to produce a product, butterfly pea enzyme beverage, And use this product to storage stability test. Analysis item include SOD-like、total phenolic and total flavonoid. Result show that butterfly pea enzyme beverage at 5℃ can be stored for 107.40、135.40 and 103.82 weeks respectively.
    Base on the above results, the butterfly pea is a natural food with antiglycative ability, which is rich in functional compound and high antioxidant. After fermentation processing, it can release more polyphenolic compounds to enhance antiglycative ability and antioxidant capacity. Butterfly pea also showed great storage stability. For the future, development of the natural source to antiglycative ability from butterfly pea, can be fully utilized and development in the field of health and enhanced economic value.

    中文摘要 I
    Abstract III
    誌謝 V
    目錄 VI
    圖索引 X
    表索引 XII
    一、前言 1
    二、文獻回顧 2
    2.1 蝶豆之介紹 2
    2.1.1蝶豆機能性成分 2
    2.1.2蝶豆藥理活性 5
    2.2 多酚類化合物 5
    2.2.1酚酸(Phenolic acids) 6
    2.2.1.1羥基苯甲酸(Hydroxybenzoic acids) 6
    2.2.1.2羥基肉桂酸 (hydroxycinnamic acids) 8
    2.2.2類黃酮(flavonoids) 10
    2.2.2.1黃酮(Flavones) 12
    2.2.2.2黃酮醇(Flavanonols) 12
    2.2.2.3黃烷酮(Flavanones) 12
    2.2.2.4黃烷醇(Flavanols) 13
    2.2.2.5異黃酮(Isoflavones) 13
    2.2.3花青素(Anthocyanins) 13
    2.2.3.1 花青素結構及生理活性 14
    2.2.3.2醯基花青素(Acylated anthocyanin) 17
    2.3糖化酵素 18
    2.3.1 α-葡萄糖苷酶(α-Glucosidase) 18
    2.3.2 α-澱粉酶(α-Amylase) 18
    2.3.3抗糖化能力與調控血糖 19
    2.3.4天然物抑制糖化酵素 20
    2.3.4.1各類多酚類化合物抗糖化能力之IC50 22
    2.3.4.2酚酸抗糖化能力之機制 24
    2.3.4.3類黃酮羥基抗糖化能力之機制 27
    2.6發酵之應用 32
    2.6.1發酵對於抗氧化之影響 32
    2.6.2超氧歧化酶(SOD) 33
    2.6.3超氧歧化酶類似物(SOD-like)應用 35
    三、材料與方法 36
    3.1試驗材料 36
    3.2酵素製備 36
    3.3試驗藥品 36
    3.4試驗儀器 37
    3.5試驗設計 39
    3.5.1不同部位及溶劑對於蝶豆抗氧化及抑制糖化酵素活性之影響 39
    3.5.2不同比例之蝶豆花在發酵過程對於抗糖化能力及抗氧化力之變化 39
    3.5.3蝶豆花酵素最適配方之試驗 40
    3.6試驗方法 44
    3.6.2糖化酵素抑制率分析 44
    3.6.2.1 α-glucosidase 抑制率測定 44
    3.6.2.2 α-amylase抑制率測定 44
    3.6.3抗氧化成分分析 45
    3.6.3.1總多酚含量測定 45
    3.6.3.2總類黃酮含量測定 45
    3.6.3.4總花青素含量測定 46
    3.6.3.3多酚類化合物定性及定量分析 47
    3.6.4抗氧化能力分析 49
    3.6.4.1 DPPH自由基清除能力測定 49
    3.6.4.2 三價鐵還原能力(Frric iron reducing power)測定 49
    3.6.4.3清除超氧陰離子能力(SOD-like)測定 50
    3.6.5品質分析 50
    3.6.5.1色澤分析(Hunter L a b) 50
    3.6.5.2可溶性固形物(Total soluble solids, °Brix) 51
    3.6.5.3 pH值 51
    3.6.5.4酒精度 51
    3.6.6田口法(Taguchi method) 51
    3.6.7官能品評試驗 51
    3.6.8統計分析 54
    四、結果與討論 55
    4.1. 蝶豆不同部位及溶劑對於糖化酵素活性之分析 55
    4.1.1 蝶豆不同部位α-Glucosidase及α-Amylase抑制率 55
    4.1.2不同萃取溶劑對於蝶豆花抑制α-Glucosidase及α-Amylase之分析 55
    4.1.2.1 α-Glucosidase抑制率 57
    4.1.2.2 α-Amylase抑制率 57
    4.2蝶豆花不同溶劑萃取液抗氧化成分之分析 60
    4.2.1總酚含量(Total phenolic content) 60
    4.2.2總類黃酮含量(Total flavonoid content) 63
    4.2.3多酚類化合物之定性及定量分析 64
    4.2.4總花青素含量(Total anthocyanin content) 70
    4.3蝶豆花不同溶劑萃取液抗氧化能力之分析 73
    4.3.1 DPPH自由基清除能力 73
    4.3.2 FRAP三價鐵還原能力 75
    4.4發酵過程中不同比例蝶豆花對於抗糖化能力之影響 77
    4.4.1 α-Glucosidase抑制率 77
    4.4.2 α-Amylase抑制率 79
    4.5發酵過程中不同比例蝶豆花對於抗氧化力之影響 81
    4.5.1 SOD-like活性分析 81
    4.5.2 DPPH自由基清除能力 84
    4.5.3 FRAP三價鐵還原能力 86
    4.6發酵過程中不同比例蝶豆花對於抗氧成分之影響 88
    4.6.1總酚含量 88
    4.6.2總類黃酮含量 91
    4.6.3總花青素含量 93
    4.6.3多酚化合物之定性及定量 95
    4.7相關性分析 99
    4.7.1發酵過程糖化酵素抑制活性與抗氧化力之相關性 99
    4.7.2發酵過程糖化酵素抑制活性與多酚類化合物之相關性 99
    4.8蝶豆花發酵過程中品質分析 102
    4.8.1色澤分析 102
    4.8.2 pH值 103
    4.8.3酒精度 103
    4.8.4可溶性固形物°Brix 106
    4.9蝶豆花酵素飲料製作 106
    4.9.1田口法分析 106
    五、結論 111
    參考文獻 113
    附錄一 132
    作者簡介 133

    潘昱中。2017。不同部位蝶豆類黃酮化合物與酪胺酸酶活性抑制能力之探討。國立屏東科技大學食品科學系碩士學位論文
    Abrashev, R., Feller, G., Kostadinova, N., Krumova, E., Alexieva, Z., Gerginova, M., Spasova, B ., Miteva-Staleva, J., Vassilev, S., & Angelova, M. (2016). Production, purification, and characterization of a novel cold-active superoxide dismutase from the Antarctic strain Aspergillus glaucus 363. Fungal Biology, 120(5): 679-689.
    Adisakwattana, S., Charoenlertkul, P., & Yibchok-anun, S. (2009). α-Glucosidase inhibitory activity of cyanidin-3-galactoside and synergistic effect with acarbose. Journal of Enzyme Inhibition and Medicinal Chemistry, 24(1): 65-69.
    Ali, H. M., Almagribi, W., & Al-Rashidi, M. N. (2016). Antiradical and reductant activities of anthocyanidins and anthocyanins, structure–activity relationship and synthesis. Food Chemistry, 194: 1275-1282.
    Arumugam, M., & Panneerselvam, R. (2012). In vitro propagation and antibacterial activity of Clitoria ternatea Linn. Asian Pacific Journal of Tropical Biomedicine, 2(2): S870-S875.
    Ayyash, M., Johnson, S. K., Liu, S. Q., Al-Mheiri, A., & Abushelaibi, A. (2018). Cytotoxicity, antihypertensive, antidiabetic and antioxidant activities of solid-state fermented lupin, quinoa and wheat by Bifidobacterium species: In-vitro investigations. LWT-Food Science and Technology, 95: 295-302.
    Azima, A. S., Noriham, A., & Manshoor, N. (2017). Phenolics, antioxidants and color properties of aqueous pigmented plant extracts: Ardisia colorata var. elliptica, Clitoria ternatea, Garcinia mangostana and Syzygium cumini. Journal of Functional Foods, 38: 232-241.
    Bai, F. W., Anderson, W. A., & Moo-Young, M. (2008). Ethanol fermentation technologies from sugar and starch feedstocks. Biotechnology Advances, 26(1): 89-105.
    Balasundram, N., Sundram, K., & Samman, S. (2006). Phenolic compounds in plants and agri-industrial by-products: Antioxidant activity, occurrence, and potential uses. Food Chemistry, 99(1): 191-203.
    Bhat, R., Suryanarayana, L. C., Chandrashekara, K. A., Krishnan, P., Kush, A., & Ravikumar, P. (2015). Lactobacillus plantarum mediated fermentation of Psidium guajava L. fruit extract. Journal of Bioscience and Bioengineering, 119(4): 430-432.
    Bosiljkov, T., Dujmić, F., Bubalo, M. C., Hribar, J., Vidrih, R., Brnčić, M., Zlatic, E., Redovniković, R. I., & Jokić, S. (2017). Natural deep eutectic solvents and ultrasound-assisted extraction: Green approaches for extraction of wine lees anthocyanins. Food and Bioproducts Processing, 102: 195-203.
    Cavalcanti, R. N., Santos, D. T., & Meireles, M. A. A. (2011). Non-thermal stabilization mechanisms of anthocyanins in model and food systems-An overview. Food Research International, 44(2): 499-509.
    Cano, A., García-Pérez, M. Á., & Tarín, J. J. (2010). Isoflavones and cardiovascular disease. Maturitas, 67(3): 219-226.
    Chen, M. H., McClung, A. M., & Bergman, C. J. (2017). Phenolic content, anthocyanins and antiradical capacity of diverse purple bran rice genotypes as compared to other bran colors. Journal of Cereal Science, 77: 110-119.
    Chen, G. L., Chen, S. G., Xiao, Y., & Fu, N. L. (2018). Antioxidant capacities and total phenolic contents of 30 flowers. Industrial Crops and Products, 111: 430-445.

    Choudhury, H., Pandey, M., Hua, C. K., Mun, C. S., Jing, J. K., Kong, L., Ern, L. Y., Ashraf, N. A., Kit, S. W., Yee, T. S., Pichika, M. R., Gorain, B., & Pichika, M. R. (2017). An update on natural compounds in the remedy of diabetes mellitus: A systematic review. Journal of Traditional and Complementary Medicine. Journal of Traditional and Complementary Medicine, 8: 361-376.
    Chen, G. L., Chen, S. G., Xie, Y. Q., Chen, F., Zhao, Y. Y., Luo, C. X., & Gao, Y. Q. (2015). Total phenolic, flavonoid and antioxidant activity of 23 edible flowers subjected to in vitro digestion. Journal of Functional Foods, 17: 243-259.
    Chandrasekhar, J., Madhusudhan, M. C., & Raghavarao, K. S. M. S. (2012). Extraction of anthocyanins from red cabbage and purification using adsorption. Food and Bioproducts Processing, 90(4): 615-623.
    Costa, C., Tsatsakis, A., Mamoulakis, C., Teodoro, M., Briguglio, G., Caruso, E., Tsoukalas, D., Margina, D., Dardiotis, E., Kouretasg, D., & Fenga, C. (2017). Current evidence on the effect of dietary polyphenols intake on chronic diseases. Food and Chemical Toxicology, 110: 286-299.
    Cusano, E., Simonato, B., & Consonni, R. (2018). Fermentation process of apple juice investigated by NMR spectroscopy. LWT-Food Science and Technology, 96: 147-151.
    D'Andrea, G. (2015). Quercetin: a flavonol with multifaceted therapeutic applications?. Fitoterapia, 106: 256-271.
    de Melo, E. B., da Silveira Gomes, A., & Carvalho, I. (2006). α-and β- Glucosidase inhibitors: chemical structure and biological activity. Tetrahedron, 62(44): 10277-10302.
    Dey, T. B., Kumar, A., Banerjee, R., Chandna, P., & Kuhad, R. C. (2016). Improvement of microbial α-amylase stability: strategic approaches. Process Biochemistry, 51(10): 1380-1390.
    de Sales, P. M., de Souza, P. M., Dartora, M., Resck, I. S., Simeoni, L. A., Fonseca-Bazzo, Y. M., Magalhaes, P. de-O., & Silveira, D. (2017). Pouteria torta epicarp as a useful source of α-amylase inhibitor in the control of type 2 diabetes. Food and Chemical Toxicology, 109: 962-969.
    De Nisco, M., Manfra, M., Bolognese, A., Sofo, A., Scopa, A., Tenore, G. C., Pagano, F., Milite, C., & Russo, M. T. (2013). Nutraceutical properties and polyphenolic profile of berry skin and wine of Vitis vinifera L.(cv. Aglianico). Food Chemistry, 140(4): 623-629.
    Di Stefano, E., Oliviero, T., & Udenigwe, C. C. (2018) Functional significance and structure–activity relationship of food-derived α-glucosidase inhibitors. Current Opinion in Food Science, 20: 7-12.
    Donno, D., Beccaro, G. L., Mellano, M. G., Cerutti, A. K., & Bounous, G. (2015). Goji berry fruit (Lycium spp.): antioxidant compound fingerprint and bioactivity evaluation. Journal of Functional Foods, 18: 1070-1085.
    Domínguez-Rodríguez, G., Marina, M. L., & Plaza, M. (2017). Strategies for the extraction and analysis of non-extractable polyphenols from plants. Journal of Chromatography A, 1514: 1-15.
    Dyrby, M., Westergaard, N., & Stapelfeldt, H. (2001). Light and heat sensitivity of red cabbage extract in soft drink model systems. Food Chemistry, 72(4): 431-437.
    Espada-Bellido, E., Ferreiro-González, M., Carrera, C., Palma, M., Barroso, C. G., & Barbero, G. F. (2017). Optimization of the ultrasound-assisted extraction of anthocyanins and total phenolic compounds in mulberry (Morus nigra) pulp. Food Chemistry, 219: 23-32.
    Espirito-Santo, A. P., Carlin, F., & Renard, C. M. (2015). Apple, grape or orange juice: Which one offers the best substrate for lactobacilli growth? - A screening study on bacteria viability, superoxide dismutase activity, folates production and hedonic characteristics. Food Research International, 78: 352-360.
    El Shafey, H. M., Bahashwan, S. A., Alghaithy, A. A., & Ghanem, S. 2010. Microbial superoxide dismutase enzyme as therapeutic agent and future gene therapy. Current Research, Technology and Education Topics in Applied Microbiology and Microbial Biotechnology, 1: 435-443.
    Ferarsa, S., Zhang, W., Moulai-Mostefa, N., Ding, L., Jaffrin, M. Y., & Grimi, N. 2018. Recovery of anthocyanins and other phenolic compounds from purple eggplant peels and pulps using ultrasonic-assisted extraction. Food and Bioproducts Processing, 109: 19-28.
    Fujita, A., Sarkar, D., Genovese, M. I., & Shetty, K. 2017. Improving anti-hyperglycemic and anti-hypertensive properties of camu-camu (Myriciaria dubia Mc. Vaugh) using lactic acid bacterial fermentation. Process Biochemistry, 59: 133-140.
    Filipović, M., Marković, Z., Đorović, J., Marković, J. D., Lučić, B., & Amić, D. 2015. QSAR of the free radical scavenging potency of selected hydroxybenzoic acids and simple phenolics. Comptes Rendus Chimie, 18(5): 492-498.
    Fuentes, E., & Palomo, I. 2014. Mechanisms of endothelial cell protection by hydroxycinnamic acids. Vascular Pharmacology, 63(3): 155-161.
    Fernandes, I., Nave, F., Gonçalves, R., de Freitas, V., & Mateus, N. 2012. On the bioavailability of flavanols and anthocyanins: Flavanol–anthocyanin dimers. Food Chemistry, 135(2): 812-818.
    Giusti, M. M., & Wrolstad, R. E. 2003. Acylated anthocyanins from edible sources and their applications in food systems. Biochemical Engineering Journal, 14(3): 217-225.
    Granata, G., Consoli, G. M., Nigro, R. L., & Geraci, C. (2018). Hydroxycinnamic acids loaded in lipid-core nanocapsules. Food chemistry, 245: 551-556.
    Garrido, J., & Borges, F. 2013. Wine and grape polyphenols—A chemical perspective. Food Research International, 54(2): 1844-1858.
    Gültekin-Özgüven, M., Berktaş, I., & Özçelik, B. 2016. Change in stability of procyanidins, antioxidant capacity and in-vitro bioaccessibility during processing of cocoa powder from cocoa beans. LWT-Food Science and Technology, 72: 559-565.
    Herrmann, K. 1976. Flavonols and flavones in food plants: a review. International Journal of Food Science & Technology, 11(5): 433-448.
    Herbach, K. M., Rohe, M., Stintzing, F. C., & Carle, R. 2006. Structural and chromatic stability of purple pitaya (Hylocereus polyrhizus [Weber] Britton & Rose) betacyanins as affected by the juice matrix and selected additives. Food Research International, 39(6): 667-677.
    Hiran, P., Kerdchoechuen, O., & Laohakunjit, N. 2016. Combined effects of fermentation and germination on nutritional compositions, functional properties and volatiles of maize seeds. Journal of Cereal Science, 71: 207-216.
    Hamidabadi Sharahi, M., Shahidi, F., Tabatabaei Yazdi, F., & Hashemi, S. M. B. 2017. Effect of Lactobacillus plantarum on olive and olive oil quality during fermentation process. LWT-Food Science and Technology, 89: 572-580.
    Hassan, N. A., El-Bassossy, H. M., Mahmoud, M. F., & Fahmy, A. 2014. Caffeic acid phenethyl ester, a 5-lipoxygenase enzyme inhibitor, alleviates diabetic atherosclerotic manifestations: effect on vascular reactivity and stiffness. Chemico-Biological Interactions, 213: 28-36.
    Hussain, A., Bose, S., Wang, J. H., Yadav, M. K., Mahajan, G. B., & Kim, H. 2016. Fermentation, a feasible strategy for enhancing bioactivity of herbal medicines. Food Research International, 81: 1-16.
    Hemalatha, P., Bomzan, D. P., Rao, B. S., & Sreerama, Y. N. 2016. Distribution of phenolic antioxidants in whole and milled fractions of quinoa and their inhibitory effects on α-amylase and α-glucosidase activities. Food chemistry, 199: 330-338.
    Hossen, M. S., Ali, M. Y., Jahurul, M. H. A., Abdel-Daim, M. M., Gan, S. H., & Khalil, M. I. 2017. Beneficial roles of honey polyphenols against some human degenerative diseases: a review. Pharmacological Reports.
    Hur, S. J., Lee, S. Y., Kim, Y. C., Choi, I., & Kim, G. B. 2014. Effect of fermentation on the antioxidant activity in plant-based foods. Food Chemistry, 160: 346-356.
    Igwe, E., Neale, E., Charlton, K. E., Morton, K., & Probst, Y. C. 2017. First stage development of an Australian anthocyanin food composition database for dietary studies–A systematic process and its challenges. Journal of Food Composition and Analysis, 64: 33-38.
    Ibrahim, R. M., El-Halawany, A. M., Saleh, D. O., El Naggar, E. M. B., El-Shabrawy, A. E. R. O., & El-Hawary, S. S. 2015. HPLC-DAD-MS/ MS profiling of phenolics from Securigera securidaca flowers and its anti-hyperglycemic and anti-hyperlipidemic activities. Revista Brasileira de Farmacognosia, 25(2): 134-141.
    Inami, O., Tamura, I., Kikuzaki, H., & Nakatani, N. 1996. Stability of anthocyanins of Sambucus canadensis and Sambucus nigra. Journal of Agricultural and Food Chemistry, 44(10): 3090-3096.
    Jain, N. N., Ohal, C. C., Shroff, S. K., Bhutada, R. H., Somani, R. S., Kasture, V. S., & Kasture, S. B. 2003. Clitoria ternatea and the CNS. Pharmacology Biochemistry and Behavior, 75(3): 529-536.
    Juan, M. Y., & Chou, C. C. 2010. Enhancement of antioxidant activity, total phenolic and flavonoid content of black soybeans by solid state fermentation with Bacillus subtilis BCRC 14715. Food Microbiology, 27(5): 586-591.
    Joaquín-Cruz, E., Dueñas, M., García-Cruz, L., Salinas-Moreno, Y., Santos-Buelga, C., & García-Salinas, C. 2015. Anthocyanin and phenolic characterization, chemical composition and antioxidant activity of chagalapoli (Ardisia compressa K.) fruit: a tropical source of natural pigments. Food Research International, 70: 151-157.
    Katina, K., Laitila, A., Juvonen, R., Liukkonen, K. H., Kariluoto, S., Piironen, V., Landberg R., Aman P., & Poutanen, K. 2007. Bran fermentation as a means to enhance technological properties and bioactivity of rye. Food Microbiology, 24(2): 175-186.
    Khan, M. K., & Dangles, O. 2014. A comprehensive review on flavanones, the major citrus polyphenols. Journal of Food Composition and Analysis, 33(1): 85-104.
    Kumar, B. R. 2017. Application of HPLC and ESI-MS techniques in the analysis of phenolic acids and flavonoids from green leafy vegetables (GLVs). Journal of Pharmaceutical Analysis. 7(6): 349-364.
    Khanizadeh, S., Tsao, R., Rekika, D., Yang, R., Charles, M. T., & Rupasinghe, H. V. 2008. Polyphenol composition and total antioxidant capacity of selected apple genotypes for processing. Journal of Food Composition and Analysis, 21(5): 396-401.
    Kong, J. M., Chia, L. S., Goh, N. K., Chia, T. F., & Brouillard, R. 2003. Analysis and biological activities of anthocyanins. Phytochemistry, 64(5): 923-933.
    Kähkönen, M. P., & Heinonen, M. 2003. Antioxidant activity of anthocyanins and their aglycons. Journal of Agricultural and Food Chemistry, 51(3): 628-633.
    Kähkönen, M. P., Heinämäki, J., Ollilainen, V., & Heinonen, M. 2003. Berry anthocyanins: isolation, identification and antioxidant activities. Journal of the Science of Food and Agriculture, 83(14): 1403-1411.
    Kazuma, K., Noda, N., & Suzuki, M. 2003. Flavonoid composition related to petal color in different lines of Clitoria ternatea. Phytochemistry, 64(6) 1133-1139.
    Lodovici, M., Guglielmi, F., Meoni, M., & Dolara, P. 2001. Effect of natural phenolic acids on DNA oxidation in vitro. Food and Chemical Toxicology, 39(12): 1205-1210.
    Lushchak, V., Semchyshyn, H., Mandryk, S., & Lushchak, O. 2005. Possible role of superoxide dismutases in the yeast Saccharomyces cerevisiae under respiratory conditions. Archives of Biochemistry and Biophysics, 441(1): 35-40.
    Liau, B. C., Ponnusamy, V. K., Lee, M. R., Jong, T. T., & Chen, J. H. 2017. Development of pressurized hot water extraction for five flavonoid glycosides from defatted Camellia oleifera seeds (byproducts). Industrial Crops and Products, 95: 296-304.
    Liu, F., Wang, M., & Wang, M. 2018. Phenolic compounds and antioxidant activities of flowers, leaves and fruits of five crabapple cultivars (Malus Mill. species). Scientia Horticulturae, 235: 460-467.
    Luna-Vital, D., Li, Q., West, L., West, M., & de Mejia, E. G. 2017. Anthocyanin condensed forms do not affect color or chemical stability of purple corn pericarp extracts stored under different pHs. Food Chemistry, 232: 639-647.
    Lordan, S., Smyth, T. J., Soler-Vila, A., Stanton, C., & Ross, R. P. 2013. The α-amylase and α-glucosidase inhibitory effects of Irish seaweed extracts. Food Chemistry, 141(3): 2170-2176.
    Lin, J. Y., & Tang, C. Y. 2007. Determination of total phenolic and flavonoid contents in selected fruits and vegetables, as well as their stimulatory effects on mouse splenocyte proliferation. Food Chemistry, 101(1): 140-147.
    Meda, A., Lamien, C. E., Romito, M., Millogo, J., & Nacoulma, O. G. 2005. Determination of the total phenolic, flavonoid and proline contents in Burkina Fasan honey, as well as their radical scavenging activity. Food Chemistry, 91(3): 571-577.
    Martins, S., Mussatto, S. I., Martínez-Avila, G., Montañez-Saenz, J., Aguilar, C. N., & Teixeira, J. A. 2011. Bioactive phenolic compounds: production and extraction by solid-state fermentation. A review. Biotechnology Advances, 29(3): 365-373.
    Monteiro, N. E., Queirós, L. D., Lopes, D. B., Pedro, A. O., & Macedo, G. A. 2018. Impact of microbiota on the use and effects of isoflavones in the relief of climacteric symptoms in menopausal women–A review. Journal of Functional Foods, 41: 100-111.
    Mojica, L., Berhow, M., & de Mejia, E. G. 2017. Black bean anthocyanin-rich extracts as food colorants: Physicochemical stability and antidiabetes potential. Food Chemistry, 229: 628-639.
    Matsui, T., Ueda, T., Oki, T., Sugita, K., Terahara, N., & Matsumoto, K. 2001. α-Glucosidase inhibitory action of natural acylated anthocyanins. 2. α-Glucosidase inhibition by isolated acylated anthocyanins. Journal of Agricultural and Food Chemistry, 49(4): 1952-1956.
    Mukherjee, P. K., Kumar, V., Kumar, N. S., & Heinrich, M. 2008. The Ayurvedic medicine Clitoria ternatea—from traditional use to scientific assessment. Journal of Ethnopharmacology, 120(3): 291-301.
    Monroy, Y. M., Rodrigues, R. A., Sartoratto, A., & Cabral, F. A. 2016. Influence of ethanol, water, and their mixtures as co-solvents of the supercritical carbon dioxide in the extraction of phenolics from purple corn cob (Zea mays L.). The Journal of Supercritical Fluids, 118: 11-18.
    Nithianantham, K., Ping, K. Y., Latha, L. Y., Jothy, S. L., Darah, I., Chen, Y., Chew, A. L., & Sasidharan, S. 2013. Evaluation of hepatoprotective effect of methanolic extract of Clitoria ternatea (Linn.) flower against acetaminophen-induced liver damage. Asian Pacific Journal of Tropical Disease, 3(4): 314-319.
    Nielsen J. E., & Borchert T. V. 2000. Protein engineering of bacterial α-amylases. Biochimica et Biophysica Acta (BBA)-Protein Structure and Molecular Enzymology, 1543(2): 253-274.
    Nayak, A., Bhushan, B., Rosales, A., Turienzo, L. R., & Cortina, J. L. 2018. Valorisation potential of Cabernet grape pomace for the recovery of polyphenols: Process intensification, optimisation and study of kinetics. Food and Bioproducts Processing, 109: 74-85.
    Nakamura, K., Ogasawara, Y., Endou, K., Fujimori, S., Koyama, M., & Akano, H. 2010. Phenolic compounds responsible for the superoxide dismutase-like activity in high-Brix apple vinegar. Journal of Agricultural and Food Chemistry, 58(18): 10124-10132.
    Nićiforović, N., & Abramovič, H. 2014. Sinapic acid and its derivatives: natural sources and bioactivity. Comprehensive Reviews in Food Science and Food Safety, 13(1): 34-51.
    Palani, K., Harbaum-Piayda, B., Meske, D., Keppler, J. K., Bockelmann, W., Heller, K. J., & Schwarz, K. 2016. Influence of fermentation on glucosinolates and glucobrassicin degradation products in sauerkraut. Food Chemistry, 190, 755-762.
    Pourcel, L., Routaboul, J. M., Cheynier, V., Lepiniec, L., & Debeaujon, I. 2007. Flavonoid oxidation in plants: from biochemical properties to physiological functions. Trends in Plant Science, 12(1): 29-36.
    Pires, T. C., Dias, M. I., Barros, L., Calhelha, R. C., Alves, M. J., Oliveira, M. B. P., Santos-Buelga, C. & Ferreira, I. C. 2018. Edible flowers as sources of phenolic compounds with bioactive potential. Food Research International, 105: 580-588.
    Parvez, S., Malik, K. A., Ah Kang, S., & Kim, H. Y. 2006. Probiotics and their fermented food products are beneficial for health. Journal of Applied Microbiology, 100(6): 1171-1185.

    Pavlović, M. D., Buntić, A. V., Šiler-Marinković, S. S., & Dimitrijević- Branković, S. I. 2013. Ethanol influenced fast microwave-assisted extraction for natural antioxidants obtaining from spent filter coffee. Separation and Purification Technology, 118: 503-510.
    Paiva, L. B. D., Goldbeck, R., Santos, W. D. D., & Squina, F. M. 2013. Ferulic acid and derivatives: molecules with potential application in the pharmaceutical field. Brazilian Journal of Pharmaceutical Sciences, 49(3): 395-411.
    Pragasam, S. J., Venkatesan, V., & Rasool, M. 2013. Immunomodulatory and anti-inflammatory effect of p-coumaric acid, a common dietary polyphenol on experimental inflammation in rats. Inflammation, 36(1): 169-176.
    Perez-Vizcaino, F., & Duarte, J. 2010. Flavonols and cardiovascular disease. Molecular Aspects of Medicine, 31(6): 478-494.
    Ruiz, A., Bustamante, L., Vergara, C., von Baer, D., Hermosín-Gutiérrez, I., Obando, L., & Mardones, C. 2015. Hydroxycinnamic acids and flavonols in native edible berries of South Patagonia. Food Chemistry, 167: 84-90.
    Rivero, F. J., Gordillo, B., Jara-Palacios, M. J., González-Miret, M. L., & Heredia, F. J. 2017. Effect of addition of overripe seeds from white grape by-products during red wine fermentation on wine colour and phenolic composition. LWT-Food Science and Technology, 84: 544-550.
    Rubinskiene, M., Viskelis, P., Jasutiene, I., Viskeliene, R., & Bobinas, C. 2005. Impact of various factors on the composition and stability of black currant anthocyanins. Food Research International, 38(8-9): 867-871.

    Romero-Díez, R., Rodríguez-Rojo, S., Cocero, M. J., Duarte, C. M. M., Matias, A. A., & Bronze, M. R. 2018. Phenolic characterization of aging wine lees: Correlation with antioxidant activities. Food Chemistry, 259: 188-195.
    Rostagno, M. A., Villares, A., Guillamón, E., García-Lafuente, A., & Martínez, J. A. 2009. Sample preparation for the analysis of isoflavones from soybeans and soy foods. Journal of Chromatography A, 1216(1): 2-29.
    Raffa, D., Maggio, B., Raimondi, M. V., Plescia, F., & Daidone, G. 2017. Recent discoveries of anticancer flavonoids. European Journal of Medicinal Chemistry, 142: 213-228
    Robbins, R. J. 2003. Phenolic acids in foods: an overview of analytical methodology. Journal of Agricultural and Food Chemistry,51(10): 2866-2887.
    Sabu, M. C., & Kuttan, R. 2002. Anti-diabetic activity of medicinal plants and its relationship with their antioxidant property. Journal of Ethnopharmacology, 81(2): 155-160.
    Sadh, P. K., Chawla, P., & Duhan, J. S. 2018. Fermentation approach on phenolic, antioxidants and functional properties of peanut press cake. Food Bioscience, 22: 113-120.
    Sandhu, K. S., Punia, S., & Kaur, M. 2016. Effect of duration of solid state fermentation by Aspergillus awamorinakazawa on antioxidant properties of wheat cultivars. LWT-Food Science and Technology, 71: 323-328.
    Singh, M., Kaur, M., & Silakari, O. 2014. Flavones: An important scaffold for medicinal chemistry. European Journal of Medicinal Chemistry, 84: 206-239.
    Sui, X., Zhang, Y., & Zhou, W. 2016. In vitro and in silico studies of the inhibition activity of anthocyanins against porcine pancreatic α-amylase. Journal of Functional Foods, 21: 50-57.
    Shukla, S., Mehta, A., John, J., Singh, S., Mehta, P., & Vyas, S. P. 2009. Antioxidant activity and total phenolic content of ethanolic extract of Caesalpinia bonducella seeds. Food and Chemical Toxicology, 47(8): 1848-1851.
    Swer, T. L., Mukhim, C., Bashir, K., & Chauhan, K. 2018. Optimization of enzyme aided extraction of anthocyanins from Prunus nepalensis L. LWT-Food Science and Technology, 91: 382-390.
    Spatafora, C., Barbagallo, E., Amico, V., & Tringali, C. 2013. Grape stems from Sicilian Vitis vinifera cultivars as a source of polyphenol-enriched fractions with enhanced antioxidant activity. LWT-Food Science and Technology, 54(2): 542-548.
    Sales, P. M., Souza, P. M., Simeoni, L. A., Magalhães, P. O., & Silveira, D. 2012. α-Amylase inhibitors: a review of raw material and isolated compounds from plant source. Journal of Pharmacy & Pharmaceutical Sciences, 15(1): 141-183.
    Saffarzadeh-Matin, S., & Khosrowshahi, F. M. 2017. Phenolic compounds extraction from Iranian pomegranate (Punica granatum) industrial waste applicable to pilot plant scale. Industrial Crops and Products, 108: 583-597.
    Sindhu, R., Binod, P., Madhavan, A., Beevi, U. S., Mathew, A. K., Abraham, A., Pandey, A., & Kumar, V. 2017. Molecular improvements in microbial α-amylases for enhanced stability and catalytic efficiency. Bioresource Technology, 245: 1740-1748.
    Socaci, S. A., Fărcaş, A. C., Diaconeasa, Z. M., Vodnar, D. C., Rusu, B., & Tofană, M. 2018. Influence of the extraction solvent on phenolic content, antioxidant, antimicrobial and antimutagenic activities of brewers’ spent grain. Journal of Cereal Science, 80: 180-187.
    Strat, K. M., Rowley IV, T. J., Smithson, A. T., Tessem, J. S., Hulver, M. W., Liu, D., Davy, B. M., Davy, K. P., Neilson, A. P. & Neilson, A. P. 2016. Mechanisms by which cocoa flavanols improve metabolic syndrome and related disorders. The Journal of Nutritional Biochemistry, 35: 1-21.
    Shrestha, A., Said, I. H., Grimbs, A., Thielen, N., Lansing, L., Schepker, H., & Kuhnert, N. 2017. Determination of hydroxycinnamic acids present in Rhododendron species. Phytochemistry, 144: 216-225.
    Tsaniklidis, G., Kafkaletou, M., Delis, C., & Tsantili, E. 2017. The effect of postharvest storage temperature on sweet cherry (Prunus avium L.) phenolic metabolism and colour development. Scientia Horticulturae, 225: 751-756.
    Taur, D. J., & Patil, R. Y. 2011. Evaluation of antiasthmatic activity of Clitoria ternatea L. roots. Journal of Ethnopharmacology, 136(2): 374-376.
    Vinholes, J., Grosso, C., Andrade, P. B., Gil-Izquierdo, A., Valentão, P., de Pinho, P. G., & Ferreres, F. 2011. In vitro studies to assess the antidiabetic, anti-cholinesterase and antioxidant potential of Spergularia rubra. Food Chemistry, 129(2): 454-462.
    Viander, B., Mäki, M., & Palva, A. 2003. Impact of low salt concentration, salt quality on natural large-scale sauerkraut fermentation. Food Microbiology, 20(4): 391-395.
    Velika, B., & Kron, I. 2012. Antioxidant properties of benzoic acid derivatives against superoxide radical. Free Radicals and Antioxidants, 2(4): 62-67.
    Wiczkowski, W., Szawara-Nowak, D., & Topolska, J. 2015. Changes in the content and composition of anthocyanins in red cabbage and its antioxidant capacity during fermentation, storage and stewing. Food Chemistry, 167: 115-123.
    Wang, L., Sun, X., Li, F., Yu, D., Liu, X., Huang, W., & Zhan, J. 2015. Dynamic changes in phenolic compounds, colour and antioxidant activity of mulberry wine during alcoholic fermentation. Journal of Functional Foods, 18: 254-265.
    Wrolstad, R. E., Durst, R. W., & Lee, J. 2005. Tracking color and pigment changes in anthocyanin products. Trends in Food Science & Technology, 16(9): 423-428.
    Wang, Y., Gao, Y., Ding, H., Liu, S., Han, X., Gui, J., & Liu, D. 2017. Subcritical ethanol extraction of flavonoids from Moringa oleifera leaf and evaluation of antioxidant activity. Food Chemistry, 218: 152-158.
    Wang, Y. C., Yu, R. C., & Chou, C. C. 2006. Antioxidative activities of soymilk fermented with lactic acid bacteria and bifidobacteria. Food Microbiology, 23(2): 128-135.
    Wu, J., Shi, S., Wang, H., & Wang, S. 2016. Mechanisms underlying the effect of polysaccharides in the treatment of type 2 diabetes: A review. Carbohydrate Polymers, 144: 474-494.
    Wadood, A., Ghufran, M., Khan, A., Azam, S. S., Jelani, M., & Uddin, R. 2018. Selective glycosidase inhibitors: A patent review (2012–present). International Journal of Biological Macromolecules, 111: 82-91.
    Yang, J., Ji, Y., Park, H., Lee, J., Park, S., Yeo, S., Shin, H., & Holzapfel, W. H. 2014. Selection of functional lactic acid bacteria as starter cultures for the fermentation of Korean leek (Allium tuberosum Rottler ex Sprengel.). International journal of food microbiology, 191: 164-171.
    Yang, N. C., Wu, C. C., Liu, R. H., Chai, Y. C., & Tseng, C. Y. 2016. Comparing the functional components, SOD-like activities, antimutagenicity, and nutrient compositions of Phellinus igniarius and Phellinus linteus mushrooms. Journal of Food and Drug Analysis, 24(2), 343-349.
    Zhang, Y., Chang, S. K., Stringer, S. J., & Zhang, Y. 2017. Characterization of titratable acids, phenolic compounds, and antioxidant activities of wines made from eight mississippi-grown muscadine varieties during fermentation. LWT-Food Science and Technology, 86: 302-311.
    Zhao, Y., Wang, J., Ballevre, O., Luo, H., & Zhang, W.2012. Antihypertensive effects and mechanisms of chlorogenic acids. Hypertension Research, 35(4): 370.
    Zhao, C. L., Yu, Y. Q., Chen, Z. J., Wen, G. S., Wei, F. G., Zheng, Q., Wang C. D. & Xiao, X. L. 2017. Stability-increasing effects of anthocyanin glycosyl acylation. Food Chemistry, 214: 119-128.
    Taha, M., Shah, S. A. A., Afifi, M., Imran, S., Sultan, S., Rahim, F., & Khan, K. M. 2018. Synthesis, α-glucosidase inhibition and molecular docking study of coumarin based derivatives. Bioorganic chemistry, 77: 586-592.
    Baessa, M., Rodrigues, M. J., Pereira, C., Santos, T., da Rosa Neng, N., Nogueira, J. M. F., Barreira, L., Varela, J., Ahmed, H., Asif, S., Boukhari, S. A., Kayani, W. K., Ahmad, K. S., Zengin, G., Mollica, A., & Custódio, L. 2018. A comparative study of the in vitro enzyme inhibitory and antioxidant activities of Butea monosperma (Lam.) Taub. and Sesbania grandiflora (L.) Poiret from Pakistan: New sources of natural products for public health problems. South African Journal of Botany.
    Zengin, G., Mollica, A., Aumeeruddy, M. Z., Rengasamy, K. R., & Mahomoodally, M. F. 2018. Phenolic profile and pharmacological propensities of Gynandriris sisyrinchium through in vitro and in silico perspectives. Industrial Crops and Products, 121: 328-337.
    Zengin, G., Senkardes, I., Mollica, A., Picot-Allain, C. M. N., Bulut, G., Dogan, A., & Mahomoodally, M. F. (2018). New insights into the in vitro biological effects, in silico docking and chemical profile of clary sage–Salvia sclarea L. Computational Biology and Chemistry, 75: 111-119.
    Chen, H., Ouyang, K., Jiang, Y., Yang, Z., Hu, W., Xiong, L., Wang, N., Liu, X., & Wang, W. (2017). Constituent analysis of the ethanol extracts of Chimonanthus nitens Oliv. leaves and their inhibitory effect on α-glucosidase activity. International Journal of Biological Macromolecules, 98: 829-836.
    Trinh, B. T., Staerk, D., & Jäger, A. K. 2016. Screening for potential α-glucosidase and α-amylase inhibitory constituents from selected Vietnamese plants used to treat type 2 diabetes. Journal of Ethnopharmacology, 186: 189-195.
    Bei, Q., Chen, G., Lu, F., Wu, S., & Wu, Z. (2018). Enzymatic action mechanism of phenolic mobilization in oats (Avena sativa L.) during solid-state fermentation with Monascus anka. Food Chemistry, 245: 297-304.
    Bei, Q., Liu, Y., Wang, L., Chen, G., & Wu, Z. (2017). Improving free, conjugated, and bound phenolic fractions in fermented oats (Avena sativa L.) with Monascus anka and their antioxidant activity. Journal of Functional Foods, 32: 185-194.
    Katina, K., Liukkonen, K. H., Kaukovirta-Norja, A., Adlercreutz, H., Heinonen, S. M., Lampi, A. M., Pihlava, J. M., & Poutanen, K. 2007. Fermentation-induced changes in the nutritional value of native or germinated rye. Journal of Cereal Science, 46(3): 348-355.
    Othman, N. B., Roblain, D., Chammen, N., Thonart, P., & Hamdi, M. (2009). Antioxidant phenolic compounds loss during the fermentation of Chétoui olives. Food Chemistry, 116(3): 662-669.

    下載圖示
    QR CODE