簡易檢索 / 詳目顯示

研究生: 陳其蔚
Chen, Chi-Wei
論文名稱: 檸檬籽之抑菌性研究及天然抑菌劑之開發
The study of lemon seeds antimicrobials and development of natural antiseptic substances
指導教授: 謝寶全
Hsieh, Pao-Chuan
學位類別: 碩士
Master
系所名稱: 農學院 - 食品科學系所
Department of Food Science
畢業學年度: 106
語文別: 中文
論文頁數: 135
中文關鍵詞: 洋菜擴散法檸檬檸檬籽抑菌活性
外文關鍵詞: Agar diffusion method, Lemon, Lemon seeds, Antibacterial activity
DOI URL: http://doi.org/10.6346/THE.NPUST.FS.025.2018.E11
相關次數: 點閱:39下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統
  • 本研究以洋菜擴散法分析檸檬籽萃取液對Escherichia coli ATCC 8739、Bacillus subtilis NPUST-UN0N01、Pichia guilliermondii NPUST Y23之抑菌活性及使用肉湯稀釋法分析檸檬籽萃取液對Aspergillus niger NPUST-UN-Asp01之抑菌活性。由研究結果顯示,檸檬籽以 30 ℃ 震盪之95 %乙醇萃取液具有較佳之抑菌性。進一步探討溫度、pH、金屬離子及常用食品化學添加物等對檸檬籽95 %乙醇萃取液抑菌活性之影響,萃取液經121℃ 加熱20分鐘處理後,仍具抑菌活性;檸檬籽萃取液會受pH值改變而影響抑菌活性;檸檬籽95 %乙醇萃取液含有1 % Zn^(2+)離子明顯提高檸檬籽萃取液之抑菌活性;檸檬籽95 %乙醇萃取液含有1 % 幾丁聚醣可顯著增加對B. subtilis、E. coli及P. guilliermondii之抑菌性,其抑菌圈分別從14.46 mm、13.22 mm及9.30 mm增加至57.88 mm、50.39 mm及21.56 mm。檸檬籽95%乙醇萃取液對試驗菌株最小抑菌濃度為0.5~8 %。在儲藏性試驗中,不同儲存溫度下(4 ℃、37 ℃ 及 60 ℃),檸檬籽95%乙醇萃取液仍保有其抑菌活性。不同濃度自製檸檬籽95%乙醇萃取抑菌劑及市售抑菌劑(NK-1),對試驗菌株之抑菌效果,當自製檸檬籽95%乙醇萃取抑菌劑濃度為1 % 時,其對B. subtilis及E. coli之抑菌率與1 %市售抑菌劑(NK-1)相同,達100 % 抑菌率,對P. guilliermondii之抑菌率為89.62 %;當自製檸檬籽95 %乙醇萃取抑菌劑濃度為0.2 %時,對E. coli及P. guilliermondii之抑菌率可達100 %,與0.2 %市售抑菌劑(NK-1)相同,而對B. subtilis之抑菌率為83.71 %,大於0.2 %市售抑菌劑(NK-1)之抑菌率64.02 %。檸檬籽95 %乙醇萃取液對試驗菌株之抑菌模式皆為靜菌作用,無法殺滅細菌。將檸檬籽95 % 乙醇萃取液經膠體過濾層析分離純化後具抑菌活性之區分LSE-F2分析鑑定其成分,結果發現其主要為橙皮苷與柚皮苷。小鼠正常肝細胞FL83B及人類肝癌細胞Hep G2經不同濃度之檸檬籽95 % 乙醇萃取液(2-8 mg/mL)處理24小時後,檸檬籽95 % 乙醇萃取液對小鼠正常肝細胞FL83B細胞均不被檸檬籽95 % 乙醇萃取液影響其生長;而Hep G2細胞隨檸檬籽95 % 乙醇萃取液濃度增加呈現不同程度之皺縮、飄起,其存活率隨檸檬籽萃取液濃度增加而降低,於檸檬籽萃取液濃度為7 mg/mL時,Hep G2之存活率皆低於50 %。顯示出檸檬籽95 % 乙醇萃取液具有保護正常肝細胞,抑制人類肝癌細胞Hep G2生長存活之效果。

    In this study, the antibacterial activity of lemon seed extracts against Escherichia coli ATCC 8739, Bacillus subtilis NPUST-UN0N01 and Pichia guilliermondii NPUST Y23 was analyzed by the method of agar diffusion, and the antibacterial activity of lemon seed extracts against Aspergillus niger NPUST-UN-Asp01 was analyzed by broth dilution method. According to the results of the study, the lemon seed extracts has the best antibacterial properties at 30 °C with 95 % ethanol using the shaking extraction method. The study investigated the effects of temperature, pH value, metal ions, and common food chemical additives on the antibacterial activity of lemon seed 95 % ethanol extract. The extract was treated up to 121 °C for 20 minutes and still maintained antibacterial activity, and was affected by the pH value. The lemon seed 95 % ethanol extract contains 1 % Zn^(2+) ions has the most significant effect of antibacterial activity. The lemon seed 95 % ethanol extract contains 1% chitosan has the most significant effect of antibacterial activity on B. subtilis, E. coli and P. guilliermondii. The diameters of growth inhibition increase from 14.46 mm, 13.22 mm and 9.30 mm to 57.88 mm, 50.39 mm and 21.56 mm, respectively. The minimum inhibitory concentration of lemon seed 95 % ethanol extract against the test strain was 0.5-8 %. In storage tests, lemon seed 95 % ethanol extract still retained its antibacterial activity at different storage temperatures (4 °C, 37 °C, and 60 °C). When the concentration of lemon seed 95% ethanol extract preservative is 1 %, the inhibition ratio was up to 100% on B. subtilis and E. coli. The inhibition ratio was 89.62 % on P. guilliermondii; When the concentration of lemon seed 95 % ethanol extract preservative was 0.2 %, the inhibition ratio was 100 % on E. coli and P. guilliermondii. The inhibition ratio was 89.62 % on P. guilliermondii. The antimicrobial was better than commercial preservative. The effect of lemon seed 95 % ethanol extract on test microbial strains was bacteriostatic not germicidal. The lemon seed 95% ethanol extract substance are mainly hesperidin and naringin and it identified by LC-MS/MS. After treatment of FL83B and Hep G2 with different concentrations of lemon seed 95 % ethanol extract (2-8 mg/mL) for 24 hours, lemon seed 95 % ethanol extract didn’t affect the growth of FL83B cells; Hep G2 cells showed different degrees of shrinkage and floating. The cell viability decreased with the increase of the concentration of lemon seeds extracts. When the concentration of lemon seeds extracts was 0.7 %, the cell viability of Hep G2 was less than 50 %. It showed that the lemon seed 95% ethanol extract has the effect of protecting normal liver cells and inhibiting the growth and survival of Hep G2 cells.

    中文摘要 I
    Abstract III
    謝誌 V
    目錄 VI
    圖表目錄 X
    壹、前言 1
    貳、文獻回顧 3
    ㄧ、食品保存 3
    (一)溫度
 3
    (二)降低水活性 3
    (三)控制環境氣體 3
    (四)調整pH值 4
    (五)添加食品添加物 4
    (六)增加環境壓力 4
    (七)柵欄技術 5
    二、食品保存劑 9
    (一)防腐劑 9
    (二)殺菌劑 9
    三、天然抑菌物質 9
    (一)動物性抑菌物質 10
    (二)植物性抑菌物質 14
    四、檸檬加工副產物中之天然活性物質 19
    (一)酚類及其相關化合物 19
    (二)檸檬苦素 19
    (三)橙皮苷(Hesperidin)、橙皮素(Hesperetin) 22
    (四)柚皮苷(Naringin)、柚皮素(Naringenin) 22
    五、常見之食品污染菌 24
    (一)枯草桿菌(Bacillus subtilis) 24
    (二)大腸桿菌(Escherichia coli) 24
    (三)季也蒙畢赤酵母菌(Pichia guilliermondii) 24
    (四)黑黴菌(Aspergillus niger) 24
    六、檸檬 24
    參、材料與方法 29
    ㄧ、實驗架構 29
    二、實驗材料 30
    (一)樣品材料 30
    (二)實驗菌株 30
    (三)實驗細胞 30
    (四)培養基配製 31
    (五)實驗藥品 32
    (六)實驗儀器 33
    三、實驗方法 35
    (一)菌種保存 35
    (二)菌種活化 36
    (三)種菌之製備 36
    (四)最佳萃取溶劑及方法 36
    (五)抑菌活性之測定 37
    (六)抑菌特性之探討 39
    (七)萃取液儲存性之探討 43
    (八)萃取液抑菌模式之探討 44
    (九)萃取液抑菌成分分離純化 45
    (十)萃取液細胞毒性評估 46
    (十一)統計分析 48
    肆、結果與討論 50
    ㄧ、最適萃取條件之探討 50
    (一)不同溶劑萃取液對試驗菌株抑制活性之探討 50
    (二)不同濃度溶劑萃取液對試驗菌株抑制活性之探討 55
    (三)不同萃取方法對試驗菌株抑制活性之探討 58
    (四)不同濃度檸檬籽萃取液對黴菌抑菌作用之影響 60
    二、抑菌特性之探討 62
    (一)不同加熱溫度及時間處理對檸檬籽萃取液之抑菌活性影響 62
    (二)不同酸鹼值(pH值)對檸檬籽萃取液之抑菌活性影響 64
    (三)檸檬籽萃取液之最小抑菌濃度測定 66
    (四)金屬離子對檸檬籽萃取液之抑菌活性影響 66
    (五)不同食品添加劑對檸檬籽萃取液之抑菌活性影響 69
    (六)添加脂肪酸蔗糖酯對萃取液之抑菌活性影響 78
    (七)添加幾丁聚醣對萃取液之抑菌活性影響 81
    (八)添加葡萄糖酸內酯對萃取液之抑菌活性影響 84
    三、不同儲存溫度對萃取液之影響 87
    (一)對抑菌活性影響 87
    (二)總酚、總類黃酮含量與酸鹼值之變化 89
    四、檸檬籽萃取液、自製抑菌劑、市售抑菌劑、己二烯酸鉀及苯甲酸鈉對試驗菌株之抑菌活性 96
    (一)不同濃度之檸檬籽萃取液、己二烯酸鉀及苯甲酸鈉對抑菌活性影響 96
    (二)不同濃度之自製檸檬籽萃取抑菌劑及市售抑菌劑對抑菌活性影響 97
    五、檸檬籽萃取液抑菌模式之探討 100
    (一)靜菌或殺菌作用之測定 100
    (二)掃描式電子顯微鏡進行抑菌模式觀察 100
    六、檸檬籽萃取液抑菌成分分離純化與鑑定 104
    (一)利用膠體過濾層析法進行檸檬籽萃取液之初步分離純化 104
    (二)成分鑑定 107
    七、檸檬籽萃取液細胞毒性試驗 109
    (一)檸檬籽萃取液對小鼠正常肝細胞FL83B生長之影響 109
    (二)檸檬籽萃取液對人類肝癌細胞Hep G2生長之影響 110
    伍、結論 116
    陸、參考文獻 118

    中華民國國家標準。2012。食品微生物之檢驗法-生菌數之檢驗。行政院衛生署食品藥物管理局。
    王宇、孔保華、李明清、夏秀芳、劉騫。2010。葡萄糖酸內酯 對豬肉肌原纖維蛋白功能性的影響。食品科學。31(9):67-70。
    田志仁&汪碧涵。2002。Four species of Pichia yeasts new to Taiwan. 四種台灣新紀錄的畢赤酵母菌. Taiwan, 47(3):186-193.
    阮進惠、林翰良、羅淑珍。1997。幾丁聚醣水解物之連續式生產及其抑菌作用。中國農業化學誌35(6):597-611。
    李振登。2006。基礎食品微生物學。第三版。第79頁。偉銘圖書有限公司。
    李遠豐。1998。蟹殼膠特性應用及其生產技術。1998。生物產業9(1):27-37。
    林尚棟。2014。利用抗氧化活性測試分離純化出台灣佛甲草中的活性化合物. 中興大學化學系所學位論文: 1-155.
    林建廷。2011。Coniothyrium sp. 培養液萃取物抗細胞增生之效力.
    范智義, 李曉琳, & 李巨秀。2016。桑椹提取物中酚類化合物的抗氧化及抗糖基化活性分析. 食品科學. 37: 19-26.
    徐任生、葉陽、趙维民。2006。天然產物化學。北京科學出版社。562-564.
    郜海燕, 李興飛, 陳杭君, & 房祥軍. (2011). 山核桃多酚物質提取及抗氧化研究進展. 食品科學. 32: 336-341.
    康有德。1992。水果與果樹。黎明文化事業股份有限公司。
    陳文賢。2004。水活性控制與食品儲存。科學發展月刊379:18-23。
    陳吉平、戴佛香。1998。最近微生物學辭典。睿煜出版社。
    陳光華、鄧德豐。1997。蔬菜中抑制微生物之物質。食品科學4(2):33-44。
    陳俊男、王雪莉、李柔儀、梁祥發、宋信文。2000。以中藥材萃取物作為滅菌劑可行性之評估,中華醫學工程學刊20(1):31-6。
    陳秋萍。1998。天然抑菌劑之開發與特性探討。國立屏東科技大學食品科學研究所碩士論文。
    陳盈潔。2002。梔子萃取液之抑菌及抗氧化性之探討。國立屏東科技大學食品科學研究所碩士論文。
    陳銘鴻。2013。高壓加工技術在農產食品的應用。102年農政與農情第257期。行政院農業委員會農糧署。
    許芳華。2001。黃岑抑菌性及抑菌成分分離純化之研究。國立中興大學食品科學研究所論文。
    黃登福、陳陸宏、謝喻文、葉彥宏、黃培安、劉建功、林苑暉、林旺熠、康藏文、王惠珠、郭嘉信、李菁菁、游銅錫、陳榮輝、張永鍾、邱文貴、周薰修、曹欽玉。2008。實用食品添加物。初版。華格那企業有限公司。
    黃俊智。1999。洋蔥萃取液之抑菌性探討。國立屏東科技大學食品科學研究所碩士論文。
    黃淑慧。2006。茶樹(Melaleuca alternifolia Cheel)葉抑菌物質之萃取與其化學成份之分析。國立屏東科技大學熱帶農業暨國際合作研究所碩士論文。
    黃榮清、左先正、初建、李雅琳。2017。焙炒處理對胡麻機能性成分之影響。台灣農業研究 66(2):113–125。
    彭麗莎、方俊、孟德連、蔣紅梅、田云。2006。橙皮苷對病原微生物的影響。現代農業科技。18-19。
    張麗杰、趙天濤、全學軍、張云茹。2009。柑橘皮渣抑菌成分提取工藝研究。食品研究與開發,第30卷第2期,68。
    甄玉蓉。2008。珍珠芭樂、蔓越莓及檸檬抑菌性之探討。國立屏東科技大學食品科學研究所碩士論文。
    葉全益。1996。食品衛生與安全。華香園出版社。31-35, 66-69。
    廖芳陞。2007。黴菌與健康。科學發展。415, 17-21。
    賴滋漢。1991。食品加工學。富林出版社。
    賴滋漢、賴業超。1994。食品科技辭典。富林出版社。
    潘書毓。2002。台灣產山藥之酚類含量及抗氧化特性與加工的影響。私立中國文化大學生活應用科學研究所碩士論文。
    蔡淑雯。2002。不同品種竹筍萃取液抗菌性之探討。國立屏東科技大學食品科學研究所碩士論文。
    鄭大青。1992。脂肪酸蔗糖酯的抑菌效果及其功能。食品工業。24(10):31-40。
    Ahmad, I., Z. Mehmood, & F. Mohammad. (1998). Screening of some Indian medicinal plants for their antimicrobial properties. Journal of ethnopharmacology. 62: 183-193.
    Ahmad, S., & A. Branen. (1981). Inhibition of mold growth by butylated hydroxyanisole. Journal of food science. 46: 1059-1063.
    Ahvenainen, R. (2003). Novel food packaging techniques. Elsevier.
    Akgül, A., & M. Kivanç. (1989). Sensitivity of four foodborne moulds to essential oils from Turkish spices, herbs and citrus peel. Journal of the Science of Food and Agriculture. 47: 129-132.
    Alam, M. A., N. Subhan, M. M. Rahman, S. J. Uddin, H. M. Reza, & S. D. Sarker. (2014). Effect of Citrus Flavonoids, Naringin and Naringenin, on Metabolic Syndrome and Their Mechanisms of Action. Advances in Nutrition. 5: 404-417.
    Alberto, M. R., M. E. Farias, & M. C. Manca de Nadra. (2001). Effect of gallic acid and catechin on Lactobacillus hilgardii 5w growth and metabolism of organic compounds. Journal of Agricultural and Food Chemistry. 49: 4359-4363.
    Alberto, M. R., M. E. Farias, & M. C. Manca de Nadra. (2002). Effect of wine phenolic compounds on Lactobacillus hilgardii 5w viability. Journal of Food Protection. 65: 211-213.
    Atrooz, O. M. (2009). The antioxidant activity and polyphenolic contents of different plant seeds extracts. Pakistan Journal of Biological Sciences. 12: 1063.
    Ayala-Zavala, J., V. Vega-Vega, C. Rosas-Domínguez, H. Palafox-Carlos, J. Villa-Rodriguez, M. W. Siddiqui, G. González-Aguilar. (2011). Agro-industrial potential of exotic fruit byproducts as a source of food additives. Food Research International. 44: 1866-1874.
    Ayaz, M., L. Luedecke, & A. Branen. (1980). Antimicrobial effect of butylated hydroxyanisole and butylated hydroxytoluene on Staphylococcus aureus. Journal of Food Protection. 43: 4-6.
    Azzouz, M. A., & L. B. Bullerman. (1982). Comparative antimycotic effects of selected herbs, spices, plant components and commercial antifungal agents. Journal of Food Protection. 45: 1298-1301.
    Babich, H., & G. Stotzky. (1978). Toxicity of zinc to fungi, bacteria, and coliphages: influence of chloride ions. Applied and environmental microbiology. 36: 906-914.
    Balasundram, N., K. Sundram, & S. Samman. (2006). Phenolic compounds in plants and agri-industrial by-products: Antioxidant activity, occurrence, and potential uses. Food chemistry. 99: 191-203.
    Berry, S. K. (2001). Role of acidulants in food industry. Journal of Food Science and Technology. 38: 93-104.
    Bocco, A., M. E. Cuvelier, H. Richard, & C. Berset. (1998). Antioxidant activity and phenolic composition of citrus peel and seed extracts. Journal of Agricultural and Food Chemistry. 46: 2123-2129.
    Booth, I. R., & R. G. Kroll. (1989). The preservation of foods by low pH. Mechanisms of action of food preservation procedures. 1: 119À160.
    Braddock, R. J. (1999). Handbook of citrus by-products and processing technology.).
    Branen, A., & T. Keenan. (1970). Growth stimulation of Lactobacillus casei by sodium citrate1. Journal of dairy science. 53: 593-597.
    Castro-López, C., J. M. Ventura-Sobrevilla, M. D. González-Hernández, R. Rojas, J. A. Ascacio-Valdés, C. N. Aguilar, & G. C. Martínez-Ávila. (2017). Impact of extraction techniques on antioxidant capacities and phytochemical composition of polyphenol-rich extracts. Food chemistry. 237: 1139-1148.
    Cegielska-Radziejewska, R., G. Lesnierowski, & J. Kijowski. (2009). Antibacterial activity of hen egg white lysozyme modified by thermochemical technique. European Food Research and Technology. 228: 841-845.
    Chanda, S., Y. Barvaliya, M. Kaneria, & K. Rakholiya. (2010). Fruit and vegetable peels - strong natural source of antimicrobics.).
    Chang, H. C., & A. L. Branen. (1975). Antimicrobial effect of butylated hydroxyanisole(BHA). Journal of food science. 40: 349-351.
    Chou, S. T., C. Y. Hsiang, H. Y. Lo, H. F. Huang, M. T. Lai, C. L. Hsieh, T. Y. Ho. (2017). Exploration of anti-cancer effects and mechanisms of Zuo-Jin-Wan and its alkaloid components in vitro and in orthotopic HepG2 xenograft immunocompetent mice. BMC Complementary and Alternative Medicine. 17: 121.
    Ciocan, I., & I. Bara. (2007). Plant products as antimicrobial agents. analele stiintifice ale Universitatii ‘Alexandru Loan Cuza’, Sectiunea Genetica si Biologie Moleculara. TOM VIII: 151-155.
    Clarke, T. B., K. M. Davis, E. S. Lysenko, A. Y. Zhou, Y. Yu, & J. N. Weiser. (2010). Recognition of peptidoglycan from the microbiota by Nod1 enhances systemic innate immunity. Nature medicine. 16: 228.
    Corlett Jr, D., & M. Brown. (1980). pH and acidity. Microbial ecology of foods. 1: 92-111.
    Cueva, C., M. V. Moreno-Arribas, P. J. Martín-Álvarez, G. Bills, M. F. Vicente, A. Basilio, B. Bartolomé. (2010). Antimicrobial activity of phenolic acids against commensal, probiotic and pathogenic bacteria. Research in microbiology. 161: 372-382.
    Cushnie, T. P. T., & A. J. Lamb. (2005). Antimicrobial activity of flavonoids. International journal of antimicrobial agents. 26: 343-356.
    Dalgaard, P., L. Gram, & H. H. Huss. (1993). Spoilage and shelf-life of cod fillets packed in vacuum or modified atmospheres. International Journal of Food Microbiology. 19: 283-294.
    Davidson, P., & M. Parish. (1989). Methods for testing the efficacy of food antimicrobials. Food technology (USA).
    Davidson, P. M., J. N. Sofos, & A. L. Branen. (2005). Antimicrobials in food.), CRC press.
    Elgadir, M. A., M. S. Uddin, S. Ferdosh, A. Adam, A. J. K. Chowdhury, & M. Z. I. Sarker. (2015). Impact of chitosan composites and chitosan nanoparticle composites on various drug delivery systems: A review. journal of food and drug analysis. 23: 619-629.
    Ellison, R., & T. J. Giehl. (1991). Killing of gram-negative bacteria by lactoferrin and lysozyme. The Journal of clinical investigation. 88: 1080-1091.
    Engels, C., M. KNOdler, Y.-Y. Zhao, R. Carle, M. G. Gänzle, & A. Schieber. (2009). Antimicrobial activity of gallotannins isolated from mango (Mangifera indica L.) kernels. Journal of Agricultural and Food Chemistry. 57: 7712-7718.
    Erlund, I. (2004). Review of the flavonoids quercetin, hesperetin, and naringenin. Dietary sources, bioactivities, bioavailability, and epidemiology. Nutrition Research. 24: 851-874.
    Fleming, A. (1922). On a remarkable bacteriolytic element found in tissues and secretions. Proc. R. Soc. Lond. B. 93: 306-317.
    Fung, D. Y., S. Taylor, & J. Kahan. (1977). Effects of butylated hydroxyanisole (BHA) and butylated hydroxytoluene (BHT) on growth and aflatoxin production of Aspergillus flavus. Journal of Food Safety. 1: 39-51.
    Gorinstein, S., O. Martın-Belloso, Y.-S. Park, R. Haruenkit, A. Lojek, M. Ĉı́ž, . . . S. Trakhtenberg. (2001). Comparison of some biochemical characteristics of different citrus fruits. Food chemistry. 74: 309-315.
    Gould, G. W. (2012). New methods of food preservation. p.58-89. Springer Science & Business Media.
    Govindachari, T., G. Suresh, G. Gopalakrishnan, S. Masilamani, & B. Banumathi. (2000). Antifungal activity of some tetranortriterpenoids. Fitoterapia. 71: 317-320.
    Griffin, S. G., J. L. Markham, & D. N. Leach. (2000). An agar dilution method for the determination of the minimum inhibitory concentration of essential oils. Journal of Essential Oil Research. 12: 249-255.
    Gulsen, O., & M. Roose. (2001). Lemons: diversity and relationships with selected Citrus genotypes as measured with nuclear genome markers. Journal of the American Society for Horticultural Science. 126: 309-317.
    Gyawali, R., & S. A. Ibrahim. (2014). Natural products as antimicrobial agents. Food control. 46: 412-429.
    Hayek, S., R. Gyawali, & S. Ibrahim. (2013). Antimicrobial Natural Products. p.910-921.(Méndez-Vilas, A. Ed. Vol. 2) Microbial pathogens and strategies for combating them: Science, technology and education, Formatex Research Center.
    Ho, C. T. (1992). Phenolic Compounds in Food Phenolic Compounds in Food and Their Effects on Health I (Vol. 506, pp. 2-7): American Chemical Society.
    Jeon, Y. J., P. J. Park, & S. K. Kim. (2001). Antimicrobial effect of chitooligosaccharides produced by bioreactor. Carbohydrate Polymers. 44: 71-76.
    Jia, Z., M. Tang, & J. Wu. (1999). The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food chemistry. 64: 555-559.
    Johnston, K., D. Stern, & A. Waiss Jr. (1968). Separation of flavonoid compounds on Sephadex LH-20. Journal of Chromatography A. 33: 539-541.
    Juneja, V. K., H. P. Dwivedi, & X. Yan. (2012). Novel natural food antimicrobials. Annual review of food science and technology. 3: 381-403.
    Kantz, K., & V. Singleton. (1991). Isolation and determination of polymeric polyphenols in wines using Sephadex LH-20. American Journal of Enology and Viticulture. 42: 309-316.
    Kawano, M., Y. Namba, & M. Hanaoka. (1981). Regulatory Factors of Lymphocyte‐Lymphocyte Interaction: I. Con A‐Induced Mitogenic Factor Acts on the Late G1 Stage of T‐Cell Proliferation. Microbiology and immunology. 25: 505-515.
    Kim, S. Y. (2015). Fluctuations in phenolic content and antioxidant capacity of green vegetable juices during refrigerated storage. Preventive Nutrition and Food Science. 20: 169-175.
    Kim, S. Y., J. J. Gao, W. C. Lee, K. S. Ryu, K. R. Lee, & Y. C. Kim. (1999). Antioxidative flavonoids from the leaves of Morus alba. Archives of Pharmacal Research. 22: 81.
    Labuza, T., L. McNally, D. Gallagher, J. Hawkes, & F. Hurtado. (1972). Stability of intermediate moisture foods. 1. Lipid oxidation. Journal of food science. 37: 154-159.
    Lachman, J., D. PronĚK, A. Hejtmánková, J. Dudjak, V. Pivec, & K. FaitovÁ. (2002). Total polyphenol and main flavonoid antioxidants in different onion (Allium cepa L.) varieties. Vol. 30).
    Lai, P., & J. Roy. (2004). Antimicrobial and chemopreventive properties of herbs and spices. Current medicinal chemistry. 11: 1451-1460.
    Leistner, L., & L. G. Gorris. (1995). Food preservation by hurdle technology. Trends in Food Science & Technology. 6: 41-46.
    Mau, J.-L., C.-P. Chen, & P.-C. Hsieh. (2001). Antimicrobial effect of extracts from Chinese chive, cinnamon, and corni fructus. Journal of Agricultural and Food Chemistry. 49: 183-188.
    May, K. D., J. E. Wells, C. V. Maxwell, & W. T. Oliver. (2012). Granulated lysozyme as an alternative to antibiotics improves growth performance and small intestinal morphology of 10-day-old pigs1. Journal of Animal Science. 90: 1118-1125.
    Mosmann, T. (1983). Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. Journal of immunological methods. 65: 55-63.
    Muzzarelli, R., R. Tarsi, O. Filippini, E. Giovanetti, G. Biagini, & P. Varaldo. (1990). Antimicrobial properties of N-carboxybutyl chitosan. Antimicrobial agents and chemotherapy. 34: 2019-2023.
    Ng, T. B., J. M. L. Ling, Z. T. Wang, J. N. Cai, & G. J. Xu. (1996). Examination of coumarins, flavonoids and polysaccharopeptide for antibacterial activity. General Pharmacology: The Vascular System. 27: 1237-1240.
    No, H. K., N. Young Park, S. Ho Lee, & S. P. Meyers. (2002). Antibacterial activity of chitosans and chitosan oligomers with different molecular weights. International Journal of Food Microbiology. 74: 65-72.
    Oreopoulou, V., & C. Tzia. (2007). Utilization of plant by-products for the recovery of proteins, dietary fibers, antioxidants, and colorants Utilization of by-products and treatment of waste in the food industry (pp. 209-232): Springer.
    Ortuño, A., A. Báidez, P. Gómez, M. C. Arcas, I. Porras, A. García-Lidón, & J. A. D. Río. (2006). Citrus paradisi and Citrus sinensis flavonoids: Their influence in the defence mechanism against Penicillium digitatum. Food chemistry. 98: 351-358.
    Pangsomboon, K., S. Kaewnopparat, T. Pitakpornpreecha, & T. Srichana. (2006). Antibacterial activity of a bacteriocin from Lactobacillus paracasei HL32 against Porphyromonas gingivalis. Archives of oral biology. 51: 784-793.
    Park, E. J., & D. Y. Jhon. (2010). The antioxidant, angiotensin converting enzyme inhibition activity, and phenolic compounds of bamboo shoot extracts. LWT-Food Science and Technology. 43: 655-659.
    Paster, N., B. Juven, E. Shaaya, M. Menasherov, R. Nitzan, H. Weisslowicz, & U. Ravid. (1990). Inhibitory effect of oregano and thyme essential oils on moulds and foodborne bacteria. Letters in Applied Microbiology. 11: 33-37.
    Perez, C., M. Pauli, & P. Bazerque. (1990). An antibiotic assay by the agar well diffusion method. Acta Biol Med Exp. 15: 113-115.
    Petty, R. D., L. A. Sutherland, E. M. Hunter, & I. A. Cree. (1995). Comparison of MTT and ATP‐based assays for the measurement of viable cell number. Luminescence. 10: 29-34.
    Quettier-Deleu, C., B. Gressier, J. Vasseur, T. Dine, C. Brunet, M. Luyckx, F. Trotin. (2000). Phenolic compounds and antioxidant activities of buckwheat (Fagopyrum esculentum Moench) hulls and flour. Journal of ethnopharmacology. 72: 35-42.
    Raafat, D., & H. G. Sahl. (2009). Chitosan and its antimicrobial potential–a critical literature survey. Microbial biotechnology. 2: 186-201.
    Rabea, E. I., M. E. T. Badawy, C. V. Stevens, G. Smagghe, & W. Steurbaut. (2003). Chitosan as antimicrobial agent: applications and mode of action. Biomacromolecules. 4: 1457-1465.
    Rahman, M. S. (2007). Handbook of food preservation.), CRC press.
    Rakić, S., S. Petrović, J. Kukić, M. Jadranin, V. Tešević, D. Povrenović, & S. Šiler-Marinković. (2007). Influence of thermal treatment on phenolic compounds and antioxidant properties of oak acorns from Serbia. Food chemistry. 104: 830-834.
    Rauha, J.-P., S. Remes, M. Heinonen, A. Hopia, M. Kähkönen, T. Kujala, P. Vuorela. (2000). Antimicrobial effects of Finnish plant extracts containing flavonoids and other phenolic compounds. International Journal of Food Microbiology. 56: 3-12.
    Reguant, C., A. Bordons, L. Arola, & N. Rozes. (2000). Influence of phenolic compounds on the physiology of Oenococcus oeni from wine. Journal of Applied Microbiology. 88: 1065-1071.
    Rhoades, J., & S. Roller. (2000). Antimicrobial actions of degraded and native chitosan against spoilage organisms in laboratory media and foods. Applied and environmental microbiology. 66: 80-86.
    Ribeiro, D. L., H. L. Cilião, A. F. L. Specian, J. M. Serpeloni, M. T. De Oliveira, E. A. Varanda, I. M. S. Cólus. (2018). Phytochemical study and evaluation of cytotoxicity, mutagenicity, cell cycle kinetics and gene expression of Bauhinia holophylla (Bong.) Steud. in HepG2 cells in vitro. Cytotechnology. 70: 713-728.
    Roller, S., & N. Covill. (1999). The antifungal properties of chitosan in laboratory media and apple juice. International Journal of Food Microbiology. 47: 67-77.
    Russo, M., I. Bonaccorsi, G. Torre, M. Sarò, P. Dugo, & L. Mondello. (2014). Underestimated sources of flavonoids, limonoids and dietary fibre: Availability in lemon's by-products. Journal of Functional Foods. 9: 18-26.
    Sagoo, S., R. Board, & S. Roller. (2002). Chitosan inhibits growth of spoilage micro-organisms in chilled pork products. Food microbiology. 19: 175-182.
    Savoia, D. (2012). Plant-derived antimicrobial compounds: alternatives to antibiotics. Future microbiology. 7: 979-990.
    Scortichini, M., & M. P. Rossi. (1991). Preliminary in vitro evaluation of the antimicrobial activity of terpenes and terpenoids towards Erwinia amylovora (Burrill) Winslow et al. Journal of Applied Microbiology. 71: 109-112.
    Senthilraja, P., & K. Kathiresan. (2015). In vitro cytotoxicity MTT assay in Vero, HepG2 and MCF-7 cell lines study of Marine Yeast.
    Shahidi, F., J. K. V. Arachchi, & Y. J. Jeon. (1999). Food applications of chitin and chitosans. Trends in Food Science & Technology. 10: 37-51.
    Shearer, A. E. H., C. P. Dunne, A. Sikes, & D. G. Hoover. (2000). Bacterial spore inhibition and inactivation in foods by pressure, chemical preservatives, and mild heat. Journal of Food Protection. 63: 1503-1510.
    Shin, Y., D. I. Yoo, & K. Min. (1999). Antimicrobial finishing of polypropylene nonwoven fabric by treatment with chitosan oligomer. Journal of Applied Polymer Science. 74: 2911-2916.
    Suppakul, P., J. Miltz, K. Sonneveld, & S. W. Bigger. (2003). Active packaging technologies with an emphasis on antimicrobial packaging and its applications. Journal of food science. 68: 408-420.
    Taga, M. S., E. Miller, & D. Pratt. (1984). Chia seeds as a source of natural lipid antioxidants. Journal of the American Oil Chemists’ Society. 61: 928-931.
    Tan, S. C., T. K. Tan, S. M. Wong, & E. Khor. (1996). The chitosan yield of Zygomycetes at their optimum harvesting time. Carbohydrate Polymers. 30: 239-242.
    Tan, X. W., H. Xia, J. H. Xu, & J. G. Cao. (2009). Induction of apoptosis in human liver carcinoma HepG2 cell line by 5-allyl-7-gen-difluoromethylenechrysin. World Journal of Gastroenterology: WJG. 15: 2234.
    Tiwari, V., J. Wahr, & S. Swenson. (2009). Dwindling groundwater resources in northern India, from satellite gravity observations. Geophysical Research Letters. 36.
    Tokutake, N., H. Miyoshi, & H. Iwamura. (1992). Effects of phenolic respiration inhibitors on cytochrome bc1 complex of rat-liver mitochondria. Bioscience, biotechnology, and biochemistry. 56: 919-923.
    Tripoli, E., M. La Guardia, S. Giammanco, D. Di Majo, & M. Giammanco. (2007). Citrus flavonoids: Molecular structure, biological activity and nutritional properties: A review. Food chemistry. 104: 466-479.
    Tsai, G. J., & W. H. Su. (1999). Antibacterial Activity of Shrimp Chitosan against Escherichia coli. Journal of Food Protection. 62: 239-243.
    Tsuchiya, H., M. Sato, T. Miyazaki, S. Fujiwara, S. Tanigaki, M. Ohyama, M. Iinuma. (1996). Comparative study on the antibacterial activity of phytochemical flavanones against methicillin-resistant Staphylococcus aureus. Journal of ethnopharmacology. 50: 27-34.
    Ueno, H., T. Mori, & T. Fujinaga. (2001). Topical formulations and wound healing applications of chitosan. Advanced Drug Delivery Reviews. 52: 105-115.
    Vistica, D. T., P. Skehan, D. Scudiero, A. Monks, A. Pittman, & M. R. Boyd. (1991). Tetrazolium-based assays for cellular viability: a critical examination of selected parameters affecting formazan production. Cancer research. 51: 2515-2520.
    Wang, H. C., Y. L. Chu, S. C. Hsieh, & L. Y. Sheen. (2017). Diallyl trisulfide inhibits cell migration and invasion of human melanoma a375 cells via inhibiting integrin/facal adhesion kinase pathway. Environmental toxicology. 32: 2352-2359.
    Wells, J. E., E. D. Berry, N. Kalchayanand, L. A. Rempel, M. Kim, & W. T. Oliver. (2015). Effect of lysozyme or antibiotics on faecal zoonotic pathogens in nursery pigs. Journal of Applied Microbiology. 118: 1489-1497.
    Woisky, R. G., & A. Salatino. (1998). Analysis of propolis: some parameters and procedures for chemical quality control. Journal of apicultural research. 37: 99-105.
    Yang, X., S. M. Kang, B. T. Jeon, Y. D. Kim, J. H. Ha, Y. T. Kim, & Y. J. Jeon. (2011). Isolation and identification of an antioxidant flavonoid compound from citrus‐processing by‐product. Journal of the Science of Food and Agriculture. 91: 1925-1927.
    Yim, D. G., K. H. Jang, & K. Y. Chung. (2015). Effect of GDL addition on physico-chemical properties of fermented sausages during ripening. Korean Journal for Food Science of Animal Resources. 35: 322-329.
    Young, J. E., J. J. Pesek, & M. T. Matyska. (2015). LC-MS-compatible approaches for the quantitation of limonin in citrus juice. LC GC NORTH AMERICA. 33: 192-199.

    下載圖示
    QR CODE