簡易檢索 / 詳目顯示

研究生: 李發成
Lee, Huat Seng
論文名稱: 利用植物生長調節劑誘導番木瓜體內、體外腋芽與組織培養幼苗生長及發育
Induction of Lateral Bud Formation and Seedling Development of Papaya both in Vivo and in Vitro by Treatments of Plant Growth Regulators
指導教授: 謝清祥
Hsieh, Ching-Hsiang
李文立
Lee, Wen-Li
學位類別: 碩士
Master
系所名稱: 農學院 - 農園生產系所
Department of Plant Industry
畢業學年度: 107
語文別: 中文
論文頁數: 129
中文關鍵詞: 體內腋芽誘導瓶內增殖發根發根介質活性炭植物生長調節劑
外文關鍵詞: in vivo lateral bud induction, in vitro multiplication, rhizogenesis, rooting medium, activated charcoal, plant growth regulator
DOI URL: http://doi.org/10.6346/THE.NPUST.PI.003.2019.D04
相關次數: 點閱:44下載:15
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統
  • 番木瓜 (Carica papaya L.) 為世界主要熱帶水果之一,擁有高產、營養豐富及週年結果的特性,目前多以實生苗行栽培(一穴三株),再篩選兩性株。此模式造成人力成本增加、肥料的浪費及生長空間的競爭。組織培養可以大量繁殖優良基因遺傳性狀且全兩性株的番木瓜種苗,顯著提高栽培效率。本試驗以番木瓜‘台農2號’苗齡4個月之實生苗作為體內腋芽誘導材料,結果顯示不同濃度組合的BA及GA3在處理植株兩週後,對短腋芽 (< 40.0 mm) 及長腋芽 (≥ 40.0 mm) 有交感效應,其中 (2,220 µM BA + 289 µM GA3) 處理2週後,可產生最多短腋芽(9.1 ± 0.4), (444 µM BA + 866 µM GA3) 可產生最多長腋芽(8.4 ± 0.9)。此兩處理可用作番木瓜體內誘導腋芽配方,以採取最多的組織培養材料。體外腋芽以 (1 µM BA + 3 µM GA3) 處理後3個月,可得總腋芽數18.0 ± 0.5,與各處理達顯著性差異,此處理腋芽的葉片沒發生玻璃質化。以 (1 µM BA + 3 µM GA3) 處理培植體一個月,再繼代培養於不含植物生長調節劑的培養基中,可有效降低培植體的癒傷組織發生率,另添加1 g L-1活性炭培養四個月後,則可提高培植體生長抽長且具頂芽優勢的腋芽數(1.9 ± 0.2),同時使培植體保持更高的顏色指數及更高的生物量合成效率,乾鮮重比顯著最大 (10.50 ± 0.31%) 。將誘導形成之腋芽培植體以不同濃度IBA進行發根處理, 15 µM IBA處理組在處理後第6週達100%發根率,根數達9.7 ± 2.1,平均根長為23.93 ± 8.84 mm,然而各處理組均有80%左右的癒傷組織發生率。處理後第11週,10 µM IBA處理組植株高度達26.66 ± 16.45 mm與各處理達顯著性差異,同時也有平均最多葉片數(3.87 ± 1.32)及平均最低癒傷組織大小 (16.68 ± 1.09 mm)。以15 µM IBA處理一週後,將培植體定植在不同發根介質的培養基內,3週後結果顯示水耕海綿介質處理組平均植株高度達24.74 ± 3.48 mm及葉片數為6.7 ± 0.8,0.7%洋菜介質則培植體高度僅17.46 ± 3.72 mm及葉片數4.3 ± 1.4。處理後4週,水耕海綿及洋菜介質中發根的培植體,在根數、地上部乾鮮重及地下部乾鮮重都沒有顯著差異,但在地下部乾鮮重比方面,則以水耕海綿的9.01 ± 0.32%顯著較高。本試驗對番木瓜組織培養進行腋芽增殖系統的建立,結果顯示以 (444 µM BA + 866 µM GA3) 對番木瓜體內及 (1 µM BA + 3 µM GA3) 對體外有最佳腋芽誘導效率,而在瓶內則需以不含生長調節劑且添加活性炭的培養基進行交替培養,以降低癒傷組織的發生率及提高腋芽生長並恢復頂芽優勢。在發根處理方面,以15 µM IBA處理1週後,繼代培養到以水耕海綿作為固定介質的培養基內,擁有最好的培植體生長狀況,在繼代3週後,便可對培植體進行馴化及出瓶。

    Papaya (Carica papaya L.) is currently one of the major tropical fruit in the world. It is often characterized by high yields, enrich with vitamins and year-round production. Seed propagation in cultivation required 3 seeds per unit and culled to one hermaphrodite plant when they reached reproductive growth period. This method will increase labor cost, waste of fertilizer and competition of growing space. Tissue culture can mass propagate elite genotype from known sex of papaya seedling, thus increase cultivation efficiency.
    This experiment used 4 months old ‘Tainung 2’ papaya seedlings to induce axillary bud with different plant growth regulator treatment (PGR). Result showed two weeks after combination of different concentration of 6-benzylaminopurine (BA) and gibberellic acid (GA3) treatment showed significant interaction between this two PGR for inducing short axillary bud (< 40 mm) and long axillary bud (≥ 40 mm), where as treatment with (2,220 µM BA + 289 µM GA3) induced most short axillary bud (9.1 ± 0.4) and (444 µM BA + 866 µM GA3) induced most long axillary bud (8.4 ± 0.9). This combination could be use for in vivo axillary bud induction for material of in vivo experiment, as well as the ratio combination will be used in papaya in vitro axillary bud induction.
    In vitro multiplication using (1 µM BA + 3 µM GA3) and (5 µM BA + 1 µM GA3) induced significantly higher average long shoot (> 10 mm) than control, which is 3.3 ± 0.2 and 3.2 ± 0.7 shoots after 3 months of treatment. (1 µM BA + 3 µM GA3) induced significantly highest total shoot number (18.0 ± 0.5) without vitrification on leaf. Treatment with (1 µM BA + 3 µM GA3) for 1 month and subculture to medium with PGR could effectively reduce callus production rate, while addition of 1 g L-1 activated charcoal and cultured for 4 months could increase number of elongated axillary shoot per plantlet (1.9 ± 0.2), at the same time maintained higher green color index and had better biomass production rate, with significant highest dry weight (DW) to fresh weight (FW) ratio of 10.50 ± 0.31%.
    Rooting induction using indole-3-butyric acid (IBA) on shoot with shoot length above 5 mm successfully produced rooting after 3 weeks. Treatment with 15 µM IBA achieved rooting rate of 100% after 6 weeks of treatment with average 9.7 ± 2.1 roots per shoot and average root length 23.93 ± 8.84 mm. Treatments showed averagely 80% induction of callus. Eleven weeks after IBA treatment, 10 µM treatment produced significantly highest plantlet with average height 26.66 ± 16.45 mm, highest number of leaf number (3.9 ± 1.3) and smallest callus width (16.68 ± 1.09 mm). Shoots treated with 15 µM of IBA then subculture to different rooting media showed highest plantlet height (24.74 ± 3.48 mm) and leaf number (6.7 ± 0.8) for hydroponic sponge as rooting media after 3 weeks, while 0.7% agar as rooting media produced plantlet height of 17.46 ± 3.72 mm with 4.3 ± 1.4 leaf numbers. After 4 weeks of treatment, plantlet growth in hydroponic sponge and agar were indifferent in root number, shoot FW and DW, root FW and DW, but hydroponic sponge treatment showed significant higher in root DW to FW ratio (9.01 ± 0.32%).
    This experiment goal was to establish papaya in vitro axillary shoot multiplication system, result of this study showed (444 µM BA + 866 µM GA3) treatment for in vivo and (1 µM BA + 3 µM GA3) treatment for in vitro could achieved highest axillary bud induction rate. In conclusion, the in vitro cultivation system on culture medium with PGR and with alternate cultivation on medium without PGR while supplement of activated charcoal, could reduce callus production rate and increase axillary bud growth to restore apical dominance, then prepare the axillary shoot for rooting treatment of 15 µM IBA for 1 weeks and subculture to medium without PGR and plus use of the hydroponic sponge as supporting media. After 3 weeks of subculture, plantlets are ready for acclimatization and reestablishment in soil.

    摘要 I
    Abstract III
    謝誌 VI
    目錄 IX
    圖表目錄 XI
    壹、 前言 1
    貳、 前人研究 9
    一、 番木瓜介紹 9
    (一) 分類及分佈 9
    (二) 植物形態及生態 9
    (三) 繁殖與栽培 10
    (四) 台灣、馬來西亞及世界主要木瓜栽培品種 13
    二、 番木瓜無性繁殖 15
    (一) 營養繁殖 15
    (二) 組織培養 17
    1. 無菌初代建立 18
    2. 增殖及抽長 19
    3. 發根處理 20
    4. 馴化及田間表現 23
    參、 材料與方法 25
    一、 試驗一:不同植物生長調節劑組合對番木瓜體內腋芽誘導之影響 25
    (一) 植物材料 25
    (二) 植物材料栽培環境條件 25
    (三) 試驗處理 25
    二、 試驗二:不同植物生長調節劑組合對番木瓜腋芽增殖之影響 26
    (一) 植物材料 26
    (二) 培養基與組培室環境條件 26
    (三) 試驗處理 27

    三、 試驗三:植物生長調節劑間歇處理對番木瓜增殖之影響 28
    (一) 植物材料 28
    (二) 培養基與組培室環境條件 28
    (三) 試驗處理 28
    四、 試驗四:不同濃度IBA處理對番木瓜離體腋芽發根之影響 31
    (一) 植物材料 31
    (二) 培養基與組培室環境條件 31
    (三) 試驗處理 31
    五、 試驗五:不同固定介質對番木瓜離體腋芽發根之影響 32
    (一) 植物材料 32
    (二) 培養基與組培室環境條件 32
    (三) 試驗處理 32
    六、 統計分析 33
    肆、 結果 34
    一、 試驗一:不同植物生長調節劑組合對番木瓜體內腋芽誘導之影響 34
    二、 試驗二:不同植物生長調節劑組合對番木瓜腋芽增殖之影響 44
    三、 試驗三:植物生長調節劑間歇處理對番木瓜增殖之影響 59
    四、 試驗四:不同濃度IBA處理對番木瓜離體腋芽發根之影響 72
    五、 試驗五:不同固定介質對番木瓜離體腋芽發根之影響 95
    伍、 討論 106
    一、 試驗一:不同植物生長調節劑組合對番木瓜體內腋芽誘導之影響 106
    二、 試驗二:不同植物生長調節劑組合對番木瓜腋芽增殖之影響 107
    三、 試驗三:植物生長調節劑間歇處理對番木瓜增殖之影響 109
    四、 試驗四:不同濃度IBA處理對番木瓜離體腋芽發根之影響 110
    五、 試驗五:不同固定介質對番木瓜瓶內發根處理的影響 112
    陸、 總結 115
    柒、 參考文獻 117
    附錄 128
    作者簡介 129

    王仁晃、張耀聰、黃德昌、陳昱初、曾敏南、莊益源(2011)木瓜健康管理技術專刊。行政院農業委員會高雄區農業改良場,第3頁。
    王德男(1990)本省木瓜優良品種簡介。熱帶果樹系期刊論文,技術服務 1:17-21。
    王德男、劉碧鵑、李文立(2006)台灣木瓜產業之變遷。台灣木瓜產業發展研討會專刊-行政院農業委員會農業試驗所特刊125號。行政院農業委員會農業試驗所編印。第1~20頁。
    行政院農業委員會農糧署(2018)。農業統計年報(106年)。台北:行政院農業委員會。第96~97頁。
    李文立(2014)木瓜。臺灣熱帶果樹栽培品種專輯。行政院農業委員會農業試驗所鳳山熱帶園藝試驗分所。第87~98頁。
    邱禮弘、陳京城、楊耀祥(2011)臺農2號番木瓜接穗用側梢生產之研究。台中區農業改良場研究彙報111:63-74。
    張明聰、廖松淵(1994)番木瓜扦插繁殖及生長結實特性之研究。中國園藝 40:11-28。
    張明聰、呂俊堅(2000)番木瓜組織培養兩性株嫁接苗繁殖、生長特性及效益評估。台南區農業改良場研究彙報37:40-55。
    黃士晃(2017)木瓜品種及種苗產業現況介紹。臺南區農業專訊100期。行政院農業委員會台南區農業改良場。第7~12頁。
    Agnew, G. W. J. (1968) Growing quality pawpaws in Queensland. Qld. agric. J. 94: 24-36.
    Akbar, M. A., and S. K. Roy (2006) Effects of liquid medium on rooting and acclimation of regenerated microshoots of banana (Musa sapientum L.) cv. Sagar. Plant Tissue Cult. & Biotech. 16: 11-18.
    Allan, P. (1995) Propagation of ‘Honey Gold’ papaya by cuttings. Acta Hortic. 370: 99-102.
    Allan, P., and C. Carlson (2007) Progress and problems in rooting clonal Carica papaya cuttings. S. Afr. Tydskr. Plant Grond. 24: 22-25.

    Allan, P., and C. N. MacMillan (1991) Advances in propagation of Carica papaya L. cv. Honey Gold cuttings. J. S. Afr. Soc. Hort. Sci. 1: 69-72.
    Allan, P., C. Clark, and M. Laing (2010) Grafting papayas (Carica papaya L.). Acta Hortic. 851: 253-258.
    Allan, P., S. Tayler, and M. Allwood (1993) Lateral bud induction and effects of fungicides on leaf retention and rooting of ‘Honey Gold’ papaws. J. S. Afr. Soc. Hort. Sci. 3: 5-8.
    Ananda, R., S. Thirugnanakumar, D. Sudhakar, and P. Balasubramaniam (2011) In vitro organogenesis and plantlet regeneration of (Carica papaya L.). J. Agric. Technol. 7: 1339-1348.
    Carvalho, F. A., and S. S. Renner (2013) The phylogeny of Caricaceae. p.81-94. In: Ming R., and P. H. Moore (eds.) Genetics and Genomics of Papaya. Springer, New York.
    Chalak, S. U., S. N. Hasbnis, and V. S. Supe (2017) Papaya ring spot disease management: A review. J. Pharmacogn. Phytochem. 6: 1911-1914.
    Chan, L. K., and C. K. H. Teo (1993) In vitro production of multiple shoots in papaya as affected by plant tissue maturity and genotype. MARDI Res. J. 21: 105-111.
    Chan, L. K., and C. K. H. Teo (1997) An evaluation of the exotica papaya grown from seeds. Planter 68(: 235-242.
    Chan, L. K., and C. K. H. Teo (2002) Micropropagation of Eksotika, a Malaysian papaya cultivar, and the field performance of the tissue culture derived clones. Acta Hortic. 575: 99-105.
    Chan, Y. K. (1987) Backcross method in improvement of papaya. Malays. App. Biol. 16: 95-100.
    Chan, Y. K. (1993) Memperkenalkan 'Eksotika II': variety betik hibrid yang lebih baik. (Introducing the 'Eksotika II': an improved hybrid papaya). Teknol. Buah-buahan Mardi 9: 25-28.
    Chan, Y. K. (2001) Heterosis in Eksotika × Sekaki papaya hybrids. J. Trop. Agric. and Fd. Sci. 29: 139-144.
    Chan, Y. K. (2009) Breeding Papaya (Carica papaya L.). p.121-159. In Jain S. M., and P. M. Priyadarshan (eds.) Breeding Plantation Tree Crops: Tropical Species. Springer, New York.
    Chiu, C. T., C. R. Yen, L. S. Chang, C. H. Hsiao, and T. S. Ko (2003) All hermaphrodite progeny are derived by self‐pollinating the sunrise papaya mutant. Plant Breed. 122: 431-434.
    Conner, A. J., and M. B. Thomas (1981) Re-establishing plantlets from tissue culture: A review. Proc. Intl. Plant Crop Sci. 31: 342-357.
    da Silva, T. J. A., Z. Rashid, T. N. Duong, D. Sivakumar, A. Gera, M. T. Souza Jr., and P. F. Tennant (2007) Papaya (Carica papaya L.) biology and biotechnology. Tree For. Sci. Biotech. 1: 47-73.
    de Klerk, G. J. (2002) Rooting of microcuttings: Theory and practice. In vitro Cell. Dev. Biol.-Plant 38: 415-422.
    de Klerk, G., J. Brugge, R. Smulders, and M. Benschop (1990) Basic Peroxidases and rooting in microcuttings of Malus. Acta Hortic. 280: 29-36.
    de Lima, L. A., R. V. Naves, O. K. Yamanishi, and H. L. Pancoti (2010) Behavior of three papaya genotypes propagated by grafting in Brazil. Acta Hortic. 851: 343-348.
    de Winnaar, W. (1988) Clonal propagation of papaya in vitro. Plant Cell Tiss. Org. Cult. 12: 305-310.
    Drew, R. A. (1987) The effects of medium composition and cultural conditions on in vitro root initiation and growth of papaya. J. Hortic. Sci. 62: 551-556.
    Drew, R. A. (1988) Rapid clonal propagation of papaya in vitro from mature field-grown trees. Hort. Sci. 23: 609-611.
    Drew, R. A. (2003) Micropropagation of Carica papaya and related species. p.543-564. In: Jain S. M., and K. Ishii (eds.) Micropropagation of Woody Trees and Fruits. Kluwer Academic, Dordrecht.
    Drew, R. A., and N. G. Smith (1986) Growth of apical and lateral buds of papaw (Carica papaya L.) as affected by nutritional and hormonal factors. J. Hortic. Sci. 61: 535-543.
    Drew, R. A., B. W. Simpson, and W. J. Osborne (1991) Degradation of exogenous indole-3-butyric acid and riboflavin and their influence on rooting response of papaya in vitro. Plant Cell Tiss. Org. Cult. 26: 29-34.
    Drew, R. A., J. A. McComb, and J. A. Considine (1993) Rhizogenesis and root growth of Carica papaya L. in vitro in relation to auxin sensitive phases and use of riboflavin. Plant Cell Tiss. Org. Cult. 33: 1-7.
    Ebert, A., F. Taylor, and J. Blake (1993) Changes of 6-benzylaminopurine and 2,4-dichiorophenoxyacetic acid concentrations in plant tissue culture media in the presence of activated charcoal. Plant Cell Tiss. Org. Cult. 33: 157-162.
    Fernández-Lizarazo, J. C., and T. Mosquera-Vásquez (2012) Efficient micropropagation of french tarragon (Artemisia dracunculus L.). Agronomía Colombiana 30: 335-343.
    Fitch, M. M. M., P. H. Moore, T. C. W. Leong, L. A. Y. Akashi, A. K. F. Yeh, S. A. White, A. S. D. Cruz, L. T. Santo, S. A. Ferreira, and L. J. Poland (2005) Clonally propagated and seed-derived papaya orchards: I. Plant production and field growth. Hort. Sci. 40: 1283-1290.
    Fitch, M. M. M., R. M. Manshardt, D. Gonsalves, and J. L. Slightom (1993) Transgenic papaya plants from agrobacterium-mediated transformation of somatic embryos. Plant Cell Rep. 12: 245-249.
    Food and Agriculture Organization of the United Nations (2018) FAOSTAT Database. Rome, Italy: FAO. Retrieved November 2, 2018, from World Wide Web: http://www.fao.org/faostat/en/#data/QC
    Gangopadhyay, G., S. Das, S. K. Mitra, R. Poddar, B. K. Modak, and K. K. Mukherjee (2002) Enhanced rate of multiplication and rooting through the use of coir in aseptic liquid culture media. Plant Cell Tiss. Org. Cult. 68: 301-310.
    Gaspar, T., C. Kevers, C. Penel, H. Greppin, D. M. Reid, and T. A. Thorpe (1996) Plant hormones and plant growth regulators in plant tissue culture. In vitro cell. dev. Biol.-Plant 32: 272-289.
    Ghali, I. E., G. L. Miller, G. L. Grabow, and R. L. Huffman (2012) Using variability within digital images to improve tall fescue color characterization. Crop Sci. 52: 2365-2374.
    Gonsalves, C., W. Cai, P. Tennant, and D. Gonsalves (1998) Effective development of papaya ringspot virus resistant papaya with untranslatable coat protein gene using a modified microprojective transformation method. Acta Hortic. 461: 311-314.
    Grost, J. R., M. Slaytor, and R. A. de Fossard (1983) The effect of Indole-3-Butyric acid and riboflavin on the morphogenesis of adventitious roots of eucalyptus. J. Exp. Bot. 34(148): 1503-1515.
    Guo, J. C., L. T. Yang, X. Liu, H. B. Zhang, B. J. Qian, and D. B. Zhang (2009) Applicability of the chymopapain gene used as endogenous reference gene for transgenic Huanong No. 1 papaya detection. J. Agric. Food Chem. 57: 6502-6509.
    Hamilton, R. A. (1954) A quantitative study of growth and fruiting in inbred and crossbred progenies from two Solo papaya strains. Hawaii Agr. Exp. Sta. Tech. Bull. 20.
    Higgins, J. E. (1916) Growing melons on trees. J. Hered. 7: 208-220.
    Hofmyer, J. D. J. (1938) Genetical studies of Carica papaya L. So. Africa Dept. Agr. For. Sci. Bull. 35: 300-304.
    Horovitz, S., and H. Jiménez (1967) Cruzamientos interspecificos y intergenericos in Carica ceas y sus implicaciones fitotecnicas. Agron. Trop. (Maracay) 17: 323-343.
    Hossain, M., S. M. Rahman, R. Islam, and O. I. Joarder (1993) High efficiency plant regeneration from petiole explants of Carica papaya L. through organogenesis. Plant Cell Rep. 13: 99-102.
    Jiménez, V. M., E. Mora-Newcomer, and M. V. Gutiérrez-Soto (2014) Biology of the papaya plant. p.17-33. In: Ming R., P. H. Moore (eds.) Genetics and Genomics of Papaya. Springer, New York.
    Karcher, D. E., and M. D. Richardson (2003) Quantifying turfgrass color using digital image analysis. Crop Sci. 43: 943-951.
    Kataoka, I. and H. Inoue (1991) Rooting of tissue cultured papaya shoots under ex vitro conditions. Japan. J. Trop. Agr. 35: 127-129.
    Kataoka, I., and H. Inoue (1992) Factors influencing ex vitro rooting of tissue cultured papaya shoots. Acta Hortic. 321: 589-597.
    Kohlenbach, H. W., and W. Wernicke (1978) Investigations on the inhibitory effect of agar and the function of active carbon in anther culture. Zeitschrift für Pflanzenphysiologie 86: 463-472.
    Lai, C. C., S. D. Yeh, and J. S. Yang (2000) Enhancement of papaya axillary shoot proliferation in vitro by controlling the available ethylene. Bot. Bull. Acad. Sin. 41: 203-212.
    Lin, C. M., and J. S. Yang (2001) Papaya somatic embryo induction from fruit-bearing field plants: Effects of root-supporting material and position of the rooting explants. Acta Hortic. 560: 489-492.
    Litz, R. E., and R. A. Conover (1977) Tissue culture propagation of papaya. Proc. Fla. State Hort. Soc. 90: 245-246.
    Litz, R. E., and R. A. Conover (1978) In vitro propagation of papaya. HortScience 13: 241-242.
    Litz, R. E., and R. A. Conover (1982) In vitro somatic embryogenesis and plant regeneration from Carica papaya L. ovular callus. Plant Sci. Lett. 26: 153-158.
    Litz, R. E., S. K. O’Hair, and R. A. Conover (1983) In vitro growth of Carica papaya L. cotyledons. Sci. Hortic. 19: 287-293.
    Machakova, I., E. Zazimalova, and E. F. George (2008) Plant growth regulators I: Introduction; Auxins, their analogues and inhibitors. p.175-204. In: George, E. F., M. A. Hall and G. J. De Klerk (eds.) Plant Propagation by Tissue Culture. Springer, The Netherlands.
    Madrigal L. S., A. N. Ortiz, R. D. Cooke, and R. H. Fernendez (1980) The dependence of crude papain yields on different collection (‘tipping’) procedures for papaya latex. J. Sci. Food Agr. 31: 279-285.
    Magdalita, P. M., I. D. Godwin, R. A. Drew, and S. W. Adkins (1997) Effect of ethylene and culture environment on development of papaya nodal cultures. Plant Cell Tiss. Org. Cult. 49: 93-100.
    Manshardt, R.M. (1998) ‘UH Rainbow’ papaya. Univ. Hawaii Coll. Trop. Agric. Hum. Resour. Germplasm G-1: 1-2.
    Marin, S. L. D., M. G. Pereira, A. T. do Amaral Júnior, L. A. P. Martelleto, and C. D. Ide (2006) Heterosis in papaya hybrids from partial diallel of ‘Solo’ and ‘Formosa’ parents. Crop Breed. Appl. Biot. 6: 24-29.
    Mehdi, A. A., and L. Hogan (1976) Tissue culture of Carica papaya. HortScience 11: 311.
    Miller, R. M., and R. A. Drew (1990) Effect of explants type of proliferation of Carica papaya L. in vitro. Plant Cell Tiss. Org. Cult. 21: 39-44.
    Ming, R., Q. Y. Yu, and P. H. Moore (2007) Sex determination in papaya. Semin. Cell Dev. Biol. 18: 401-408.
    Mondal, M., S. Gupta, and B. B. Mukherjee (1990) In vitro propagation of shoot bud of Carica papaya L. (Caricaceae) var. Honey Dew. Plant Cell Rep. 8: 609-612.
    Morton, J. 1987. Papaya. In: Fruit of warm climates. Julia F. Morton, Miami: 336-346.
    Moshkov, I. E., G. V. Novikova, M. A. Hall, and E. F. George (2008) Plant growth regulators III: Gibberellins, ethylene, abscisic acid, their analogues and inhibitors; miscellaneous compounds. p.227-282. In: George, E. F., M. A. Hall and G. J. De Klerk (eds.) Plant Propagation by Tissue Culture. Springer, The Netherlands.
    Moubayidin, L., R. D. Mambro, and S. Sabatini (2009) Cytokinin-auxin crosstalk. Trends in plant science 14: 557-562.
    Murashige, T. (1974) Plant propagation through tissue cultures. Ann. Rev. Plant Physiol. 25: 135-166.
    Muthukrishnan, S., J. H. F. Benjamin, and M. V. Rao (2013) Influence of agar concentration and liquid medium on in vitro propagation of Ceropegia thwaitesii Hook- an endemic species. Int. J. Agric. Tech. 9: 1013-1022.
    Ono, E. O., J. F. Grana Junior, and J. D. Rodrigues (2004) Reguladores vegetais na quebra da dominância apical de mamoeiro (Carica papaya L.). Rev. Bras. Frutic. 26: 348-350.
    Parasnis, A. S., V. S. Gupta, S. A. Tamhankarl, and P. K. Ranjekar (2000) A highly reliable sex diagnostic PCR assay for mass screening of papaya seedlings. Mol. Breed. 6: 337-344.
    Parasnis, A. S., W. Ramakrishna, K. V. Chowdari, V. S. Gupta, and P. K. Ranjekar (1999) Microsatellite (GATA)n reveals sex-specific differences in papaya. Theor. Appl. Genet. 99: 1047-1052.
    Purseglove, J. W. (1968) Caricaceae. p.45-51. In: Tropical Crops. Dicotyledons (Vol 1). Longmans, Bristol.
    Rajeevan, M. S., and R. M. Pandey (1986) Lateral bud culture of papaya (Carica papaya L.) for clonal propagation. Plant Cell Tiss. Org. Cult. 6: 181-188.
    Ramkhelawan, E., and N. Baksh (1998) Vegetative propagation of papaya (Carica papaya L.) in Trinidad. Trop. Fruit News. 29: 9-11.
    Reuveni, O., and D. R. Shlesinger (1990) Rapid vegetative propagation of papaya plants by cuttings. Acta Hortic. 275: 301-306.
    Reuveni, O., D. R. Shlesinger, and U. Lavi (1990) In vitro clonal propagation of dioecious Carica papaya. Plant Cell Tiss. Org. Cult. 20: 41-46.
    Rimberia, F. K., S. Adaniya, Y. Ishimine, and T. Etoh (2007) Morphology of papaya plants derived via anther culture. Sci. Hortic. 111: 213-219.
    Roy, P. K., S. K. Roy, and M. L. Hakim (2012) Propagation of papaya (Carica papaya L.) cv. Shahi through in vitro culture. Bangladesh J. Bot. 41: 191-195.
    Rubinstein, B., and M. A. Nagao (1976) Lateral bud outgrowth and its control by the apex. Bot. Rev. 42: 84-113.
    Santamaria, J.M., and G. Kerstiens (1994) The lack of control of water loss in micropropagated plants is not related to poor cuticle development. Physiol. Plant. 91: 191-195.
    Schmildt, O., E. Campostrini, E. R. Schmildt, A. T. Netto, A. L. Peçanha, T. M. Ferraz, G. A. Ferreguetti, R. S. Alexandre, and J. C. González (2016) Effects of indol butyric acid concentration on propagation from cuttings of papaya cultivars ‘Golden’ and ‘Uenf/Caliman 01’. Fruits 71: 27-33.
    Sekeli, R., J. O. Abdullah, P. Namasivayam, P. Muda, and U. K. Abu Bakar (2013) Better rooting procedure to enhance survival rate of field grown Malaysian eksotika papaya transformed with 1-aminocyclopropane-1-carboxylic acid oxidase gene. ISRN Biotechnol. 2013: 958945. Retrieved January 28, 2018, from the World Wide Web: https://www.hindawi.com/journals/isrn/2013/958945/
    Sekeli, R., M. H. Hamid, R. A. Razak, C. Y. Wee, and J. O. Abdullah (2018) Malaysian Carica papaya L. var. Eksotika: Current research strategies fronting challenges. Front. Plant Sci. 9: 1-9. Retrieved January 17, 2019, from the World Wide Web:
    https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6154280/
    Senthilkumar, S., N. Kumar, K. Soorianathasundaram, and P. Jeya Kumar (2014) Aspects on asexual propagation in papaya (Carica papaya L.) – A review. Agri. Review 35: 307-313.
    Sookmark, S., and E. A. Tai (1975) Vegetative propagation of papaya by budding. Acta Hortic. 49: 85-90.
    Storey, W. B. (1953) Genetics of the papaya. J. Hered. 44: 70-78.
    Storey, W. B. (1969) Papaya (Carica papaya L.) p.389-407. In: Ferwerda, P., and Wit, F. (eds.) Outline of Perennial Crop Breeding in the Tropics, H Veenman and Zonen, Wageningen.
    Suksa-Ard, P., I. Kataoka, K. Beppu, and Y. Fujime (1998) Root development of tissue-cultured papaya shoots in several rooting substrates. Environ. Control Biol. 36: 115-120.
    Teo, C. K. H., and L. K. Chan (1994) The effects of agar content, nutrient concentration, genotype and light intensity on the in vitro rooting of papaya microcuttings. J. Hortic. Sci. 69: 267-273.
    Tetsushi, H., K. Sadao, Y. Masahiko, and F. Hiroshi (2008) Mass-production of papaya (Carica papaya L.) saplings using shoot-tip culture for commercial use. South Pac. Stud. 28: 87-95.
    Tsay, H. S., and C. Y. Su (1985) Anther culture of papaya (Carica papaya L.). Plant Cell Rep. 4: 28-30.
    Urasaki, N., M. Tokumoto, K. Tarora, Y. Ban, T. Kayano, H. Tanaka, H. Oku, I. Chinen, and R. Terauchi (2002) A male and hermaphrodite specific RAPD marker for papaya (Carica papaya L.). Theor. Appl. Genet. 104: 281-285.
    van Staden, J., E. Zazimalova, and E. F. George (2008) Plant growth regulator II: Cytokinins, their analogues and antagonists. p.205-226. In: George, E. F., M. A. Hall and G. J. De Klerk (eds.) Plant Propagation by Tissue Culture. Springer, The Netherlands.
    Wang, Y., D. D. Feng, X. B. Li, and J. P. Chen (2015) An effective route for the micropropagation of Medinilla formosana through ovary culture in vitro. Ann. For. Res. 58: 235-243.
    Weatherhead, M. A., J. Burdon, and G. G. Henshaw (1978) Some effects of activated charcoal as an additive to plant tissue culture media. Zeitschrift für Pflanzenphysiologie 89: 141-147.
    Went, F. W (1939) The dual effect of auxin on root formation. Am. J. Bot. 26: 24-29.
    Wu, K. L., S. J. Zeng, Z. L. Chen, and J. Duan (2012) In vitro mass propagation of hermaphroditic Carica papaya cv. Meizhonghong. Pak. J. Bot. 44: 1669-1676.
    Yie, S. T., and S. I. Liaw. 1977. Plant regeneration from shoot tips and callus of papaya. In Vitro 13(9): 564-568.
    Yu, T. A., S. D. Yeh, Y. H. Cheng, and J. S. Yang (2000) Efficient rooting for establishment of papaya plantlets by micropropagation. Plant Cell Tiss. Org. Cult. 61: 29-35.

    下載圖示
    QR CODE