簡易檢索 / 詳目顯示

研究生: 郭家和
Kuo, Chia-Ho
論文名稱: 恆春半島地區銀合歡移除造林及其生態服務價值評估
Valuing Forest Ecosystem Services and Afforestation on Removal of Leucaena leucocephala (Lam.) de Wit in Hengchuen Peninsula Area
指導教授: 陳朝圳
Chen, Chaur-Tzuhn
學位類別: 博士
Doctor
系所名稱: 農學院 - 生物資源研究所
Graduate Institute of Bioresources
畢業學年度: 106
語文別: 中文
論文頁數: 199
中文關鍵詞: 外來入侵植物主動恢復能值評估森林生態服務復育造林
外文關鍵詞: Invasive alien plants, Active restoration, Emergy analysis, Forest ecosystem services, Reforestation of degraded lands
DOI URL: http://doi.org/10.6346/DIS.NPUST.BI.001.2018.D01
相關次數: 點閱:24下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統
  • 銀合歡(Leucaena leucocephala (Lam.) de Wit)已在臺灣地區形成嚴重生態入侵(Ecological invasion),造成原生森林生態系之服務功能衰退及喪失。政府單位長期以來對於恆春半島地區之銀合歡入侵問題,投入大量人力及費用,進行移除防治及造林復育等試驗工作,已有良好成效;然而,在進行大面積銀合歡移除造林前,對於銀合歡的抑制效果及造林復育對森林生態系服務功能的效益,應進行整合性的探討與評估。本研究以林務局屏東林區管理處於2001至2015年,所進行之銀合歡移除造林區域為研究範圍,並依據銀合歡生育環境及造林方式,共設置10個銀合歡未移除之對照樣區,及21個銀合歡移除造林樣區;依據所選擇7項評估指標所需資料,進行樣區之土壤、木本植群、地被植群及5種陸域動物等調查。藉由能值評估法進行銀合歡移除造林之森林服務價值評估;銀合歡大面積移除造林是否對於環境及銀合歡入侵族群變化有所影響方面,以無人飛行載具收集監測樣區之高解析力影像,分析銀合歡復育移除造林對水土保持的影響;並以不同期Landsat衛星分析不同時期之海岸退縮、陰陽海變化情況來探討銀合歡復育移除造林對環境衝擊之負面影響。同時透過1988、1993、1998、2003、2008、2013及2016年等7期Landsat衛星進行恆春半島銀合歡入侵面積變化分析。研究結果顯示,銀合歡經整治復育造林後,對於土壤及動植物多樣性具有顯著性差異。在土壤化學性質方面,銀合歡移除後土壤有機質從對照區0.11-0.12 g/kg提高至0.13-0.30 g/kg;動植物多樣性方面,經移除後造林約8-15年後,銀合歡重要值則降至7.7且未再發現胸徑大於5 cm以上的銀合歡入侵;透過木本植物與陸域動物Shannon-Wiener多樣性指標相關性分析結果顯示,兩者間Shannon-Wiener多樣性指標具有顯著性正相關(r=0.7217, P=0.029),顯示木本植物多樣性增加對於陸域動物物多樣性有正面提升之效益。在生態服務效益價值評估上,銀合歡移除造林在生態服務價值估算為40,310.4-53,023.6元/ha/year,高於銀合歡未移除林相之10,495.6-19,556.0元/ha/year;其中,以碳吸存功能(61.6%),為整體生態系服務經濟價值中最主要之項目。此外,由銀合歡入侵分佈範圍分析結果得知,目前銀合歡在恆春半島地區面積約佔5,535 ha,每年擴散速率約16.41 ha/ya-1;從各期分佈面積分析顯示,銀合歡面積自2009年開始呈現逐年下降之趨勢,其主要原因為該年度起,恆春半島地區開始進行大面積銀合歡移除造林作業。然而,此種造林方式是否對於環境造成影響,本研究利用多期衛星影像及現地調查進行分析其結果顯示,造林作業短期內會對植被及土壤沖蝕產生影響,但長期而言,銀合歡移除後重新造林會逐漸恢復水土保持之功能。以整體性之生態系服務功能及多樣性保育評估,顯示以人為方式,進行銀合歡移除,並進行造林撫育,對於銀合歡整治為一有效之措施;除能維護及提高生物多樣性外,亦可抑制銀合歡再度入侵,並有助於生態服務價值提升。

    The ecological invasion of Leucaena leucocephala (Lam.) de Wit has become more severe and is causing rapid decrease of native forest ecosystem services in Taiwan. With long term comprehensive efforts by the government establishments in Henchun peninsula area, the removal of L. leucocephala (Lam.) and reforestation, displayed positive results, better than before. However, few studies assess and discusses about the relationship between afforestation and the impact of ecosystem services with a large area to remove the L. leucocephala (Lam.) and reforestation. This study aims at covering the project of the afforestation on removal of L leucocephala (Lam.) de Wit carried out from 2001 to 2015 by Pingtung Forest District Office, Forestry Bureau. Based on the environment for planting and the approach for afforestation of L. leucocephala (Lam.) de Wit, a total of 10 control sample plots without having the plants removed have been established. In addition, 21 afforestation sample plots have also been set. Seven (7) assessment indexes are selected by referring to the ecosystem services and regulating services. Then, a survey is conducted to collect the information on soil, woody vegetation, understory vegetation, five terrestrial animals and so on from these sample plots for the purpose of calculating the 7 assessment indexes. In this study, the information collected from the survey on these sample plots is used to explore how different approaches for afforestation on removal of L. leucocephala (Lam.) de Wit can affect biodiversity and to what extent the depression effect is on the species. Moreover, Emergy analysis, an approach of forest ecosystem assessment, is applied to obtain the results of the afforestation on removal of L. leucocephala (Lam.) de Wit and to assess the economic value of forest services. Apart from what mentioned above, this study also attempts to discuss the effects of large-scale afforestation on removal of L. leucocephala (Lam.) de Wit on the environment and population change brought by the invasion of L leucocephala (Lam.) de Wit. In this study, Unmanned Aerial Vehicle (UAV) is arranged to collect high-resolution images of the sample plots so as to analyze how the afforestation on removal of L leucocephala (Lam.) de Wit affects soil and water conservation. Using the large-scale satellite images of the sample plots recorded by Landsat respectively in the years of 1988, 1993, 1998, 2003, 2008, 2013 and 2016, the changes in the areas invaded by this species in Hengchun Peninsula were analyzed. According to results, the removal of L. leucocephala (Lam.) de Wit demonstrate that factors including animals, plants and soil are significantly different. In terms of soil chemical properties, after the removal of L. leucocephala (Lam.) de Wit, the organic matters increase from 0.11-0.12 g/kg to 0.13-0.30 g/kg. In terms of biodiversity, woody plants and terrestrial animals within sampling areas had been investigated all year round, and the difference of biodiversity between the effects of the plantation with the removal of L. leucocephala was analyzed. The Important Value (IVI) of L. leucocephala was decreased to 7.7 after 8-15 years of afforestation. It has been transformed from a pure stand of the dominant species of L. leucocephala to a high complexity species stand, where the biodiversity index of the woody plants in the afforestation area had significantly raised than the control areas. Woody plant and terrestrial animal are positively and significantly correlated r=0.7217, P=0.029), The L. leucocephala (Lam.) de Wit has been successfully eradicated and was gradually restored with high diversity forest types, the diversity of terrestrial animal in afforestation area had significantly increased in pace with the higher vegetation diversity. The value of the ecosystem service is higher after removal and reforestation (40,310.4 to 53,023.6 NTD/ha/yr), compared to the value before removal (10,495.6 to 19,556.0 NTD/ha/yr). Overall, According to the 7 evaluation indicators, carbon sequestration service, which is the highest accounts for 61.6% of the entire ecosystem services value.The results of the distribution of L. leucocephala (Lam.) de Wit obtained from the above mentioned analysis revealed that this species currently covers an area of 5,535 ha in Hengchun Peninsula. It spreads at an annual rate of 16.41 ha ya-1. The analysis on the distribution areas in each time period demonstrated that the area covered by this species has been decreasing year by year since 2009. This mainly resulted from the large-scale afforestation on removal of L. leucocephala (Lam.) de Wit in Hengchun Peninsula starting from 2009. However, the information collected from the satellite images of different time periods and field surveys proved that the afforestation has imposed some effects on the environment. From a short-term perspective, the afforestation has produced effects on vegetation and soil erosion. On the other hand, the functions of water and soil conservation will gradually restore after the afforestation on removal of L. leucocephala (Lam.) de Wit in the future. Thus, for the ecosystem functions and biodiversity conservation, removing invasive plant, reforestation and tending by artificial process is necessary. Not only to maintain and increase the biodiversity but also inhibit alien species invasions.

    摘要....................................................I
    Abstract..............................................III
    謝誌...................................................VI
    目錄..................................................VII
    圖目錄................................................XII
    表目錄.................................................XV
    壹、前言.................................................1
    一、研究動機.............................................1
    二、研究目的.............................................3
    三、研究創新與突破.......................................4
    貳、前人研究.............................................5
    一、外來植物生態入侵的特性................................5
    (一)外來入侵種定義及入侵過程..............................5
    (二)外來植物生態入侵種之生理特性...........................6
    (三)促成外來植物生態入侵之外在因子........................10
    二、外來植物生態入侵的防治...............................12
    (一)外來植物入侵的預防策略...............................12
    (二)外來植物入侵的移除策略...............................15
    三、臺灣地區銀合歡的生態入侵.............................16
    (一)銀合歡的生長特性....................................16
    (二)銀合歡的擴散機制....................................19
    (三)臺灣地區銀合歡的生態入侵.............................23
    四、外來植物生態入侵對森林生態系服務之影響.................25
    (一)外來植物生態入侵對森林生態系功能的影響................25
    (二)以服務價值評估探討外來植物對森林生態系服務之影響.......29
    參、材料與方法..........................................39
    一、研究區概述..........................................39
    (一)地理位置............................................39
    (二)氣候...............................................40
    (三)調查樣區設置........................................40
    二、研究方法............................................46
    (一)植物調查............................................46
    (二)動物調查............................................47
    (三)土壤調查............................................52
    (四)銀合歡入侵分佈調查之遙測影像資料......................54
    三、監測樣區調查資料分析.................................57
    (一)木本植物重要值指標...................................57
    (二)生物多樣性指標.......................................57
    (三)碳蓄積與碳吸存量推估.................................58
    (四)銀合歡分佈範圍分類及其變遷之探討......................60
    (五)生態服務效益能值指標量化及計算........................62
    四、資料統計分析........................................68
    五、研究流程............................................68
    肆、結果與討論..........................................70
    一、銀合歡移除造林之成效及對動植物多樣性之影響.............70
    (一)銀合歡移除造林作業區之土壤分析........................70
    (二)銀合歡移除不同作業方式之造林成效分析...................78
    (三)不同銀合歡移除復育作業對植物多樣性之影響...............86
    (四)銀合歡移除造林及對照區內陸域動物之調查情況.............89
    (五)銀合歡移除造林對動物多樣性之影響......................97
    二、不同銀合歡移除造林之生態價值估算......................105
    (一)碳吸存功能..........................................105
    (二)營養物質循環及土壤碳吸存.............................107
    (三)水土保持功能........................................109
    (四)淨化空氣功能........................................110
    (五)生物多樣性功能......................................113
    (六)涵養水源功能........................................114
    (七)銀合歡移除復育之生態系服務總經濟價值..................115
    三、銀合歡移除再復育造林對於環境之影響....................122
    (一)銀合歡移除復育作業後地被物恢復及銀合歡再入侵調查.......122
    (二)銀合歡移除造林短期內對於水土保持之影響................127
    (三)銀合歡移除造林對於海洋泥沙污染衝擊....................135
    (四)銀合歡移除造林對於海岸退縮之影響......................140
    四、銀合歡分佈範圍時空變遷...............................144
    伍、結論...............................................149
    陸、銀合歡防治策略之建議.................................151
    一、銀合歡防治策略......................................151
    二、銀合歡移除造林作業方式...............................152
    (一)國有林班地或國有林山坡地.............................152
    (二)區外保安林或海岸林地作業.............................153
    (三)銀合歡變遷監測及生態廊道營造.........................154
    柒、參考文獻............................................155
    附錄...................................................180
    附件1、陸域動物調查方式於各永久樣區復育型態的配置..........180
    附件2、恆春半島地區土地利用型分類定義.....................181
    附件3、植物名錄.........................................182
    附件4、動物名錄.........................................190
    作者簡介...............................................199

    王怡平、邱祈榮 (2017) 臺灣森林生態系服務價值估算初探 台灣林業43(1):3-11。
    王相華 (2008) 墾丁熱帶海岸林植生復舊。林業研究專訊 15(1):22-24。
    王相華、郭耀綸 (2009) 墾丁熱帶海岸林生態復舊研究及監測計畫。墾丁國家公園管理處委託計畫,18-46頁。
    王相華、陳芬蕙 (2010) 銀合歡移除及栽植作業對現地保留原生木本植物之短期影響-以墾丁海岸林復舊地為例。國家公園學報 20(1):15-25。
    王相華、田玉娟、李玟樑 (2011) 恆春半島熱帶海岸林之植群結構與組成。國家公園學報 21(1):23-34。
    田玉娟、王相華 (2012) 墾丁熱帶海岸林之土壤種子庫組成。國家公園學報 22(2):37-46。
    田佳玫 (2016) 外來入侵種生物防治措施衝擊減輕之偏好研究。國立臺中教育大學永續觀光暨遊憩管理碩士論文,137頁。
    任憶安 (1986) 臺灣巨型銀合歡造林投資之經濟分析。林試所試驗報466:1-16。
    朱育儀、彭采宸、張智強 (2017) 恆春半島外來入侵種銀合歡整治復育造林概況。臺灣林業43(1):35-41。
    行政院農業委員會林務局 (1997) 台灣林產處分調查用立木材積表 林務局編印,251頁。
    行政院農業委員會林務局 (2016) GISP外來入侵種法制架構發展手冊,124頁。
    行政院環境保護署 (2011) 動物生態評估技術規範。92.12.29 環署綜字第1000058655C號,46頁。
    余炳盛、方建能、陳耀麟、王詠絢 (1998) 從陰陽海問題談地質背景與工污染之區分。礦冶 42(2):41-50。
    吳立心、吳文哲、王巧萍、陳玄武 (2008) 以銀合歡豆象進行銀合歡生物防治可行性評估 台灣林業 34(4):31-37。
    吳坤真 (2009) 墾丁國家公園地景變遷與銀合歡入侵之關係。國立屏東科技大學碩士論文,86頁。
    吳坤真、何芫薇、陳建璋、陳朝圳 (2013) 墾丁國家公園地景變遷與銀合歡入侵之關係。國家公園學報 23(4):32-41。
    吳孟珊 (2014) 生態系服務的定義與特性。林業研究專訊 21(5):54-57。
    吳俊賢、陳溢宏 (2010) 綠色造林對水源涵養之效益評估 林業研究專訊 17(6):56-59。
    吳慱昕、蔡尚悳、邱清安、王偉、曾喜育、呂金誠 (2014) 惠蓀林場土壤種子庫組成。林業研究季刊 36(2):85-100。
    呂光洋、陳添喜、高善、孫承矩、朱哲民、蔡添順、何一先、鄭振寬 (1996) 臺灣野生動物資源調查-兩生類動物調查手冊。行政院農委會,29頁。
    呂明倫、鍾玉龍 (2007) 墾丁國家公園銀合歡空間分佈特徵之研究。特有生物研究 9(2):7-18。
    呂明倫、黃靜宜、鍾玉龍 (2009) 恆春半島銀合歡入侵分佈之動態與區位分析。航測及遙測學刊 14(1):1-9。
    呂明倫 (2016) 外來入侵物種銀合歡族群擴散模擬之研究。航測及遙測學刊 21(2):65-74。
    呂福原、陳民安 (2002) 墾丁國家公園外來種植物對原生植群之影響以銀合歡為例。墾丁國家公園管理處 研究報告第112號,45頁。
    李金平、王志石 (2004) 1983-2003年澳門生態系服務價值的變化。生態環境 13(4):605-607。
    李昭宗 (2003) 恆春地區銀合歡入侵及擴散之研究。國立屏東科技大學森林學系研究所碩士論文,70頁。
    李潔、列志暘、許松葵、薛立、黃威龍 (2016) 不同密度的銀合歡林生長分析。中南林業科技大學學報 36(6):70-74。
    卓家榮 (2005) 土壤肥力檢測及營養診斷。台南區農業改良場技術專刊 132:63-74。
    周大慶、翁榮炫、謝宗宇 (2008) 墾丁國家公園鳥類圖鑑(2版)。內政部營建署墾丁國家公園管理處,270頁。
    周天穎、杜昌柏、白金城 (1992) 地理資訊系統及遙測技術應用於空間分析之研究。遙感探測 17:50-67。
    林子玉、楊豐昌、伍木林 (1978) 臺灣產相思樹材積表。林務局研究報告 171:1-32。
    林其臻 (2011) 銀合歡種子發芽及小苗更新特性。國立屏東科技大學 碩士論文,52頁。
    林金樹 (1999) 森林植生季節性光譜特性之研究。臺灣林業科學 14(3):289-306。
    林金樹 (2008) 疏伐強度對平地造林林分蓄積及地上部生物量影響之研究。行政院農業委員會林務局委託研究計畫,68頁。
    林映儒、鄭智馨、曾聰堯 (2011) 臺灣平地造林之碳吸存潛能:以長期果園廢耕地與造林地為例。中華林學季刊 44(4):567-588。
    林淑芬 (2011) 應用數位照片觀測陰陽海表面變化之研究。國立臺灣海洋大學海洋境資訊學系碩士論文,78頁。
    林義雄 (2010) 生態旅遊資源調查之探究-以墾丁埔頂地區為例。國立屏東教育大學生態休閒教育所碩士論文,145頁。
    林瓊瑤 (2002) 墾丁國家公園及鄰近地區歷史古蹟現況調查。內政部營建署墾丁國家公園管理處自行研究報告第36號,50頁。
    邱志明 (2006) 疏伐撫育經營策略對森林碳吸存之影響。林業研究專訊 13(1):6-9。
    邱祈榮 (2012) 森林價值知多少-自然資產與生態系服務之簡介。林業研究專訊 19(6):36-44。
    邱祈榮、林俊成 (2017) 森林生態系服務面面觀。科學發展 529:30-35。
    邱祈榮、陳乃維、莊媛卉 (2017) FSCTM森林生態系服務驗證介紹與現況 林業研究專訊 24(2):83-87。
    邱清安、徐憲生 (2015) 面對退化地之抉擇:被動的自生演替恢復vs.主動的人為生態復育。林業研究季刊 37(2):85-98。
    金絜之、魏浚紘、陳朝圳 (2007) 墾丁國家公園銀合歡入侵之研究。華岡農科學報 20:41-52。
    姜博仁、蔡世超、蔡哲民、王建仁、吳禎祺、蔡政修 (2010) 野生動物調查自動錄音技術開發與應用評估(2/2)。行政院農業委員會林務局農科-8.7.3-務-e1。
    洪千祐、顏添明 (2015) 以過去發表資料為基礎分析臺灣地區人工針葉樹林、闊葉樹林和竹林之碳吸存量。林業研究季刊 37(4):259–268。
    胡金印 (2001) 恆春地區農業活動對落山風的調適。國立臺灣師範大學博士論文,302頁。
    孫元勳、葉慶龍、林可欣、錢亦新 (2009) 墾丁國家公園生物多樣性指標監測系統之規劃建置。墾丁國家公園管理處研究調查報告,155頁。
    徐玲明 (2013) 臺灣外來植物的監測與管理策略。行政院農業委員會農業藥物毒物試驗所技術專刊 232(111):1-10。
    徐玲明、林玉珠、白瓊專 (2013) 外來侵入植物的監測與管理。中華民國雜草學會會刊 34(1):33-43。
    袁孝維、丁宗蘇、盧道杰、謝欣怡 (2005) 森林生態系經營示範區鳥類群聚監測。臺灣大學生物資源暨農學院實驗林研究報告 19(2):77-87。
    國立東華大學 (2009) 兩生類監測標準作業手冊。行政院農業委員會林務局,62頁。
    國立臺灣大學生物多樣性研究中心 (2009) 鳥類監測標準作業手冊。行政院農業委員會林務局,66頁。
    張崴、蕭宇伸、張榮傑 (2017) UAV航拍技術應用於河道變遷土砂監測和淺山區地形製圖之可行性分析。中華水土保持學報 48(1):1-13。
    莊甲子、曾迪華 (1994) 陰陽海支流況與污染擴散的研究。港口技術學報 9:137-150。
    許博行 (2000) 平地造林不同樹種對淨化空氣汙染物之研究。行政院農業委員會林務局委託研究計畫系列 99-00-5-1。
    許博行 (2006) 海岸木麻黃林分易衰老原因之探討。臺灣林業 32(2):40-44。
    許皓捷 (2003) 臺灣淺山區鳥類群聚空間及季節性變化。國立臺灣大學動物學研究所博士論文,187頁。
    郭昱君 (2008) 土地利用變遷對入侵植物分佈之影響-以墾丁國家公園銀合歡為例。國立臺灣大學碩士論文,33頁。
    郭耀綸 (2007) 入侵樹種銀合歡的生態性狀及管理方案。臺灣博物季刊 94:86-89。
    陳千佩、劉瓊霦 (2014) 平地造林對空氣污染物的淨化功能-以屏東林後四林園區為例 林業研究專訊 21(6):6-10。
    陳玉峰 (1985) 墾丁國家公園海岸植被。墾丁國家公園管理處,264頁。
    陳怡茹 (2012) 颱風對海岸防風林及鳥類多樣性影響評估。國立中興大學園藝學系所碩士論文,110頁。
    陳明杰 (2007) 疏伐作業對人工林林地水土保持影響。林業研究專訊 14(1):10-13。
    陳奐潣、羅漢強、鄭祈全、吳治達 (2011) 應用遙測技術監測澎湖銀合歡擴散之研究。中華林學季刊 44(1):133-144。
    陳建璋、馮郁筑、魏浚紘、陳朝圳 (2011) 航空照片應用於恆春半島尖山、關山、後灣與大尖石山地區之銀合歡植群擴散。華岡農科學報 27:81-99。
    陳朝圳 (2009) 銀合歡砍除造林更新對於銀合歡入侵抑制之影響。行政院農委會林務局委託研究,103頁。
    陳朝圳、范貴珠 (1989) 恆春地區巨型銀合歡生長與收穫之研究。屏東農專學報 30:66-83。
    陳朝圳、陳建璋、魏浚紘 (2011) 建立台灣主要造林樹種之碳儲存推估系統。台灣林業 37(2):10-15。
    陳鴻堂、林景和、紀秋來、王銀波 (1994) 本省中部地區設施內土壤鹽分累積調查研究。臺中區農業改良場研究彙報 45:19-26。
    陸象豫 (2011) 森林涵養水資源的功能。林業研究專訊 18(5):48-49。
    曾聰堯、杜清澤、林國銓、鄭智馨、邱祈榮、王亞男 (2014) 六種綠色造林樹種表土有機碳含量初探II。林業研究專訊 21(4):76-77。
    馮豐隆、黃志成 (1991) 新化林場大葉桃花心木生長收穫之探討。興大實驗林研究報告 15(1):121-141。
    馮豐隆 (2000) 森林與氣候變遷。2000氣候變化綱要公約 24:8-11。
    馮豐隆、高義盛 (2000) 臺灣森林生態系經營的準則和指標之研擬。林業研究季刊 22(1):79-90。
    黃文樹 (2010) 恆春半島海階土壤之成因及其在地形演育之意義。國立彰化師範大學地理學系碩士論文,226頁。
    黃青萸 (2002) 南仁山森林落葉層兩生類與無脊椎動物對落葉分解之影響。國立成功大學生物學研究所。碩士論文,89頁。
    黃書禮 (2004) 都市生態經濟與能量。詹氏書局,271頁。
    黃國靖、楊懿如、許育誠、吳海音 (2011) 花蓮縣平地造林區森林性動物監測計畫。行政院農業委員會林務局委託研究計畫系列99-00-6-03,77頁。
    黃淑玲、蕭祺暉 (2015) 淺談外來入侵植物防治現況。台灣林業 41(2):16-21。
    楊斯堯、詹錢登、黃文舜、曾國訓 (2010) 運用時雨量資料推估降雨沖蝕指數。中華水土保持學報 41(3):189-199。
    楊順帆 (2013) 墾丁地區七年生更新造林林分與相鄰銀合歡林分地上部生物量及碳貯存量之比較。國立屏東科技大學森林系碩士論文,71頁。
    葉慶龍 (1994) 恆春半島山地植群生態及其保育評估。國立臺灣大學,博士論文,172頁。
    葛兆年、陳一銘、莊鈴木、邱志明 (2014) 農地造林對鳥類群聚及其多樣性之影響。臺灣生物多樣性研究 16(3):225-239。
    壽克堅、費立沅、陳勉銘、魏正岳、洪嘉妤、黃怡婷 (2012) 高屏溪上游地區地形地質對河床土砂之影響分析。中華水土保持學報 43(3):206-213。
    趙仁方、湯奇霖 (2001) 台東臺灣獼猴自然保護區蝶類相及其多樣性研究。東臺灣研究 6:47-68。
    劉棠瑞、蘇鴻傑 (1983) 森林生態學。台灣商務印書館股份有限公司 台灣台北,490頁。
    劉慎孝、林子玉 (1968) 臺灣中南部相思樹林分收穫表及材積表。中興大學農學院森林學系,47頁。
    劉潔、李賢偉、紀中華、張健、張良輝、周義貴 (2011) 元謀干熱河谷三種植被恢復模式土壤貯水及入滲特性。生態學報 31(8):2331-2340。
    劉瓊霦 (2008) 平地綠化樹種對空氣懸浮微粒和重金屬的截留能力比較研究。行政院農業委員會林務局委託研究計畫 tfb-970510,39頁。
    潘富俊 (1993) 留存萌蘖枝數對銀合歡萌芽更新林分生長的影響。林業試驗所研究報告季刊 8(3):219-228。
    潘富俊 (2014) 福爾摩沙植物記:101種台灣植物文化圖鑑及27則台灣植物文化議題。遠流出版社,331頁。
    蔣慕琰 (2003)台灣外來及侵佔性植物概觀。入侵種生物管理研討會論文集 37-46。
    蔣慕琰、徐玲明、袁秋英、陳富永、蔣永正 (2003) 台灣外來植物之危害與生態。小花蔓澤蘭危害與管理研討會專刊 97-109。
    鄭志文、謝坤成、何宗儒、趙彥豪 (2014) 陰陽海表面流場分析-影像特徵追蹤之應用。航測及遙測學刊 18(3):175-183.
    盧惠生、林壯沛、林介龍、王秋嫻 (2013)台灣南部屏東平地造林土壤入滲與逕流來源。坡地防災學報 12(1):37-51。
    蕭國鑫、李元炎、吳啟南、陳仁仲 (1993) 濁水溪口環境變遷分析。遙感探測 19:1-24。
    謝欣怡、袁孝維、王力平、丁宗蘇 (2006) 臺灣中部溪頭地區天然林與人工林內之陸域脊椎動物多樣性。中華林學季刊 39(4):421-436。
    關永才、莊銘豐、劉俊良 (2007) 人工林經營對兩生類動物族群及群聚組成之影響。成之影響。林業研究專訊 14(1):17-19。
    台灣採購公報網 (2017) 行政院農業委員會林務局屏東林區管理處公開招標案件。https://www.taiwanbuying.com.tw/default.asp
    交通部中央氣象局 (2017) 1976-2016年恆春地區氣象統計資料。 http://www.cwb.gov.tw/V7/index.htm
    臺灣氣候變遷推估與資訊平台(2017) (Taiwan Climate Change Projection and Information Platform) https://tccip.ncdr.nat.gov.tw/v2/index.aspx
    Alam, M., A. Olivier, A. Paquette, J. Dupras, J. P. Revéret, and C . Messier (2014) A general framework for the quantification and valuation of ecosystem services of tree-based intercropping systems. Agroforest Systems 88: 679-691.
    Alatalo, R. V. (1981) Problems in the Measurement of Evenness in Ecology. Oikos 37(2): 199-204.
    Ansong, M. and C. Pickering (2014) Weed seeds on clothing: A global review. Journal of Environmental Management 144: 203-211.
    Barrett, K., and C. Guyer (2008) Differential responses of amphibians and reptiles in riparian and stream habitats to land use disturbances in western Georgia, USA. Biological Conservation 141:2290-2300.
    Baveye, P. C., J Baveye, and J. Gowdy (2013) Monetary valuation of ecosystem services: It matters to get the timeline right. Ecological Economics 95:231-235.
    Beretta, A. N., Silbermann, A. V., Paladino, L., Torres, D., Bassahun, D., Musselli, R., and García-Lamohte, A. (2014) Soil texture analyses using a hydrometer: modification of the Bouyoucos method. Cienciae Investigación Agraria. 41(2): 263-271.
    Blake, J. G. and B. A. Loiselle (2000) Diversity of birds along an elevational gradient in the Cordillera Central. Costa Rica 117: 663-686.
    Bond, I., M. Grieg-Gran, S. Wertz-Kanounnikoff, P. Hazlewood, S. Wunder, A. Angelsen (2009) Incentives to Sustain Forest Ecosystem Services-A Review and Lessons for REDD. Russell Press, Nottingham. Pp.66.
    Bonilla, C. A., and O. I. Johnson (2012) Soil erodibility mapping and its correlation with soil properties in Central Chile. Geoderma 189: 116-123.
    Borrelli, P., P. Panagos, M. Märker,, S. Modugno, B. Schütt (2017) Assessment of the impacts of clear-cutting on soil loss by water erosion in Italian forests: First comprehensive monitoring and modelling approach 143(3): 770-781.
    Brown, M. T. and R. A. Herendeen (1996) Embodied energy analysis and emergy analysis: a comparative view. Ecological Economics 19: 219-235.
    Brown, M.T. and E. Bardi (2001) Handbook of Emergy Evaluation Folio 3:Emergy of Ecosystems. Center for Environmental Policy, University of Florida, Gainesville. 90 pp.
    Brown, P. and A. Daigneault (2014) Cost-benefit analysis of managing the invasive African tulip tree (Spathodea campanulata) in the Pacific. Environmental Science and Policy 39: 65-76.
    Campbell, E. T. and D. R. Tilley (2014) Valuing ecosystem services from Maryland forests using Environmental accounting. Ecosystem Services 7: 141-151.
    Campbell, E. T. and M. T. Brown (2012) Environmental accounting of natural capital and ecosystem services for the US national forest system. Environment, Development and Sustainability 14(5): 691-724.
    Campbell, E. T., and O. Andrew (2009).Environmental Accounting Using Emergy: Evaluation of Minnesota. United States Environmental Protection Agenc. Document 600/R-09/002.
    Capitán, J. A., S. Cuenda, and D. Alonso (2017) Stochastic competitive exclusion leads to a cascade of species extinctions. Journal of Theoretical Biology 419: 137-151.
    Chen, C., D. Huang, Q. Wang, J. Wu, and K. Wang (2016) Invasions by alien plant species of the agro-pastoral ecotone in northern China: Species-specific and environmental determinants. Journal for Nature Conservation 34: 133-144.
    Chou, C. H. and Y. L. Kou (1986) Allelopathic research of subtropical vegetation in Taiwan III-allelopathic exclusion of understory by Leucaena leucocephala (Lam.) de Wit. Journal of Chemical Ecology 12(6): 1431-1448.
    Chowdhury, A. R., R. Banerji, G. Misra, S. K. Nigam (1984) Studies on leguminous seeds. Journal of the American Oil Chemists' Society 61: 1023-1024.
    Chowtivannakul, P., B. Srichaikul, and C. Talubmook (2016) Antidiabetic and antioxidant activities of seed extract from Leucaena leucocephala (Lam.) de Wit. Agriculture and Natural Resources 50(5): 357-361.
    Cohen, J. (1960) A Coefficient of Agreement for Nominal Scales. Educational and Psychological Measurement 20: 37-46.
    Costanza, R., R. d'Arge, R. D. Groot, S. Farber, M. Grasso, B. Hannon, K. Limburg, S. Naeem, R. V. O'Neill, J. Paruelo, R. G. Raskin, P. Sutton, and M. V. D. Belt (1997) The value of the world’s ecosystem services and natural capital. Nature 387: 253-260.
    Costello, D. A., I. D. Lunt, and J. E. Williams (2000) Effects of invasion by the indigenous shrub Acacia sophorae on plant composition of coastal grasslands in southeastern Australia. Biological Conservation 96: 113-121.
    Craig, D. J., J. E. Craig, S. R. Abella, and C. H. Vanier (2010) Factors affecting exotic annual plant cover and richness along roadsides in the eastern Mojave Desert, USA. Journal of Arid Environments 74(6): 702-707.
    Danley, B. and C. Widmark (2016) Evaluating conceptual definitions of ecosystem services and their implications. Ecological Economics 126: 132-138.
    Davis, M. A (2013) Invasive Plants, and Animal Species: Threats to Ecosystem Services. Reference Module in Earth Systems and Environmental Sciences 4: 51-59.
    Dew, L. A., D. Rozen-Rechels, E. le-Roux, J. P. G. M. Cromsigt, and M. te-Beest (2017) Evaluating the efficacy of invasive plant control in response to ecological factors. South African Journal of Botany 109: 203-213
    Díaz, L. (2006) Influences of forest type and forest structure on bird communities in oak and pine woodlands in Spain. Forest Ecology and Management 223(1-3): 54-65.
    Doren, R. F., J. C. Volin and J. H. Richardsc (2009) Invasive exotic plant indicators for ecosystem restoration: An example from the Everglades restoration program. Ecological Indicators 9(6): 29-36.
    Downey, P. O. and D. M. Richardson (2016) Alien plant invasions and native plant extinctions: a six-threshold framework. Aob Plants 8: 1-47.
    Du-Plessis, S.P., A. Rink, V. Goodall, H. Kaplan, N. Jubase, and E. Van Wyk (2018) Assessment and management of the invasive shrub. Cistus ladanifer, in South Africa. South African Journal of Botany 117: 85-94.
    Fox, J. C., Y. M. Buckley, F. D. Panetta, J. Bourgoin, and D. Pullar (2009) Surveillance protocols for management of invasive plants: modeling Chilean needle grass (Nassella neesiana) in Australia. Diversity and Distributions 12: 577-589.
    Fu, B., Y. Li, Y. Wang, B. Zhang, S. Yin, H. Zhu and Z. Xing. (2016) Evaluation of ecosystem service value of riparian zone using land usedata from 1986 to 2012. Ecological Indicators 69: 873-881.
    Fujimori, T. (2001) Ecological and silvicultural strategies for sustainable forest management. New York : Elsevier Science. 412pp.
    Garcia-Ruiz, F., S. Sankaran, J. M. Maja, W. S. Lee, J. Rasmussen and R. Ehsani (2013) Comparison of two aerial imaging platforms for identification of Huanglongbing-infected citrus trees. Computers and Electronics in Agriculture 91: 106-115.
    Genovesi, P., C. Carboneras, M. Vilà, and P. Walton (2015) EU adopts innovative legislation on invasive species: a step towards a global response to biological invasions?. Biological Invasions 17: 1307-1311.
    Goodale,L., K. Lajtha, K. J. Nadelhoffer, E. W. Boyer, N. A. Jaworski (2002) Forest nitrogen sinks in large eastern U.S. watersheds : estimates from forest inventory and an ecosystem model. Biogeochemistry 57: 239-266.
    Grebner, D. L., P. Bettinger, J. P. Siry (2012) Introduction to forestry and natural resources. Academic Press. 508pp.
    Harper, J. L. (1977) Population Biology of Plants Academic Press, London. 12-15 pp.
    Hsiao, W. Y., T. S. Dingand and H. I. Hsieh (2005) Short-term Responses of Animal Communities to Thinning in a Cryptomeria japonica (Taxodiaceae) Plantation in Taiwan. Zoological Studies 44(3): 393-402.
    Hsieh, M. L., P. M. Liew, M. Y. Hsu (2004) Holocene tectonic uplift on the Hua-tung coast, eastern Taiwan, Quaternary International 115-116: 47-70.
    Hsu, H. M. and W. Y. Kao (2014) Vegetative and reproductive growth of an invasive weed "Bidens pilosa var. radiata"and its noninvasive congener "Bidens bipinnata"in Taiwan. Taiwania 59(2): 119-126.
    Hu, C. Y. (2002) History, transformation, and impact of the sisal industry in Hengchun area, Taiwan. Journal of Pingtung History 6: 16-46.
    Hwang, T. Y., L. M. Hsu, and C. Y. Wang (2009) Study on the Control of Lead Tree [ Leucaena leucocephala (Lamark) de Wit] by Herbicides. Environment and Bioinformatics 6:157-163
    International Union for Conservation of Nature, IUCN (2000) IUCN guidelines for the prevention of biodiversity loss caused by invasive species. SSC Invasive Species Specialist Group, 51st Meeting of the IUCN Council, Gland Switzerland, February 2000.
    Jackson, T. (2015) Addressing the economic costs of invasion alien species: some methodological and empirical. International Journal of Sustainable Society 7(3): 221-240.
    Jones, R. J. and R. G. Megarrity (1986) Successful transfer of DHP‐degrading bacteria from Hawaiian goats to Australian ruminants to overcome the toxicity of Leucaena. Australian Veterinary Journal 63(8): 259-262.
    Juradoa, E., F. Joel, N. José, and J. Jiméneza (1998) Seedling establishment under native tamaulipan thornscrub and Leucaena leucocephala plantation. Forest Ecology and Management 105(1-3): 151-157.
    Kallis, G., E. Gómez-Baggethun, and C. Zografos (2013) To value or not to value? That is not the question. Ecological Economics 94: 97-105.
    Keller, R. P., J. Geist, J. M. Jeschke, and I. Kühn (2011) Invasive species in Europe: ecology, status, and policy. Environmental Sciences Europe 23(1): 1-23.
    Kganyag, M., J. Odindi, C. Adjorlolo, and P. Mhangara (2018) Evaluating the capability of Landsat 8 OLI and SPOT 6 for discriminating invasive alien species in the African Savanna landscape. International Journal of Applied Earth Observation and Geoinformation 67: 10-19.
    Kolar, C. S. and D. M. Lodge (2001) Progress in invasion biology: Predicting invaders. Trends in Ecology and Evolution 16(4): 199-204.
    Kuittinen, M., C. Moinel, and K. Adalgeirsdottir (2016) Carbon sequestration through urban ecosystem services A case study from Finland. Science of the Total Environment 563: 623-632.
    Kuo, Y. L. (2003) Ecological characteristics of three invasive plants (Leucaena leucocephala, Mikania micrantha, and Stachytarpheta urticaefolia) in southern Taiwan. Food and Fertilizer Technology Center Extension Bulletin 541: 1-11.
    Lazzaro, L., G. Mazza, G. d'Errico, A. Fabiani, C. Giuliani, A. F. Inghilesi, A. Lagomarsino, S. Landi, L. Lastrucci, R. Pastorelli, P. F. Roversi, G.Torrini, E. Tricarico and B. Foggi (2018) How ecosystems change following invasion by Robinia pseudoacacia: Insights from soil chemical properties and soil microbial, nematode, microarthropod and plant communities. Science of The Total Environment 622-623: 1509-1518.
    Le Maitre, D. C., M. Gaertner, E. Marchante, E. J. Ens, P. M. Holmes, A. Pauchard, P. J. O'Farrell, A. M. Rogers, R. Blanchard, J. Blignaut, D. M. Richardson (2011) Impacts of invasive Australian acacias: implications for management and restoration. Diversity and Distributions 17(5): 1015-1029.
    Leff, J. W., W. R. Wieder, P. G. Taylor, A. R. Townsend, D. R. Nemergut, A. S. Grandy, and C. C. Cleveland (2012) Experimental litterfall manipulation drives large and rapid changes in soil carbon cycling in a wet tropical forest. Global Change Biology 19(9): 2969-2979.
    Li, D., J. Zhu, E. C.M. Hui, B. Y. P. Leung, and Q. Li (2011) An emergy analysis-based methodology for eco-efficiency evaluation of building manufacturing. Ecological Indicators 11: 1419-1425.
    Li, W. H., S. X. Zheng, and Y. F. Bai (2014) Effects of grazing intensity and topography on species abundance distribution in a typical steppe of Inner Mongolia. Chinese Journal of Plant Ecology 38(2): 178-187.
    Lillesand, T. M., and R. W. Kiefer (2000) Remote Sensing and Image Interpretation. 3rd ed. John Wiley and Sons Press, New York. 724pp.
    Lim, T. K. (2012) Edible medicinal and non-medicinal plant: Volume 2, Fruits. Springer Netherlands.754-762pp.
    Lin, Y. C., S. L. Huang and W. W. Budd (2013) Assessing the environmental impacts of high-altitude agriculture in Taiwan: A Driver-Pressure-State-Impact-Response (DPSIR) framework and spatial emergy synthesis. Ecological Indicators 32: 42-50.
    Lins, C. E. L., U. M. T. Cavalcante, E. V. S. B. Sampaio, A. S. Messias, L. C. Maia (2006) Growth of mycorrhized seedlings of Leucaena leucocephala (Lam.) de Wit. in a copper contaminated soil. Applied Soil Ecology 31: 181-185.
    Lopez, F., M. M. Garcia, R. Yanez, R. Tapias, M. Fernandez, M. J. Diaz (2008) Leucaena species valoration for biomass and paper production in 1 and 2 yr harvest. Bioresource Technology 99: 4846-4853.
    Lorenz, K. and R. Lal (2015) Soil organic carbon sequestration in agroforestry systems. A review. Agronomy for Sustainable Development 34: 443-454.
    Malh, S. S., M. Nyborg, and J. T. Harapiak (1998) Effects of long-term N fertilizer-induced acidification and liming on micronutrients in soil and in bromegrass hay. Soil and Tillage Research 48(1-2): 91-101.
    Maza, I., F. Caballero, J. Capitán, J. Martínez-de-Dios and A. Ollero (2011) Experimental results in multi-UAV coordination for disaster management and civil security applications. Journal of Intelligent and Robotic Systems 61(1): 563-585.
    McLean, E. O. (1982) Soil pH and lime requirement. In A. L. Page et al (ed.) Methods of soil analysis, Part 2. 2nd ed. Agronomy Monograph no. 9 pp.199-224.
    Merino, L., F. Caballero, J. R. Martínez-de Dios, J. Ferruz and A. Ollero (2006) A cooperative perception system for multiple UAVs: application to automatic detection of forest fires. Journal of Field Robotics 33: 165-184.
    Molles, M. (2015). Ecology: Concepts and Applications. McGraw-Hill Education: New York. 592pp.
    Mostert, E., M. Gaertner, P. M. Holmes, A. G. Rebelo, and D. M. Richardson (2017) Impacts of invasive alien trees on threatened lowland vegetation types in the Cape Floristic Region, South African Journal of Botany. South African Journal of Botany 108: 209-222.
    Nakagoshi, N. (1985) Buried viable seeds in temperate forest. in The Population Structure of Vegetation. Buried Viable Seeds in Temperate Forests 87(1): 551-570.
    Nelson, D. W., and L. E. Sommer (1982) Total carbon, organic carbon, and organic matter. In: A. L. Page et al. (ed) Methods of soil analysis. Part 2. 2nd ed. ASA and SSSA. Madison. WI. USA. pp.539-579.
    Nikolic, T., B. Mitic´, B. Milasˇinovic´, and S. D. Jelaska (2013) Invasive alien plants in Croatia as a threat to biodiversity of South-Eastern Europe: Distributional patterns and range size. Comptes Rendus Biologies 336(2): 109-121.
    Ninan, K. N. and A. Kontoleon (2016) Valuing forest ecosystem services and disservices-Case study of a protected area in India. Ecosystem Services 20: 1-14.
    Ninan, K. N. and M. Inoue (2013) Valuing forest ecosystem services: What we know and what we don't. Ecological Economics 93: 137-149.
    Niu, Y. F., Y. L. Feng, J. L. Xie, and F. C. Luo (2011) Effects of disturbance intensitv on seed germination, seedling establishment and growth of Ageratina adenophora. Guihaia 31(6): 795-800.
    Nowak, D. J., D. E. Crane and J. C. Stevens (2006) Air pollution removal by urban trees and shrubs in the United States. Urban Forestry and Urban Greening 4: 115-123.
    Odum, H. T. (1988) Self-organization, transformity and information. Science 242: 1132-1139.
    Olff, H., D. Alonso, M. P. Berg, B. K. Eriksson, M. Loreau, T. Piersma (2009) Parallel ecological networks in ecosystems. Philosophical Transactions of the Royal Society of London. Series. 364: 1755-1779.
    Olsen, S. R. and L. E. Sommers (1982) Phosphorus. In A. L. Page, R. H. Miller, and D. R. Keeney.(eds.) Methods of Soil Analysis. Part 2. Academic Press, Inc. New York. . p.403-430.
    Ordonez, A., I. J. Wright, and H. Olff (2010) Functional differences between native and alien species: a global-scale comparison. Functional Ecology (24): 1353-1361.
    Pandey, V. C. and A. Kumar (2013) Leucaena leucocephala: an underutilized plant for pulp and paper production. Genetic Resources and Crop Evolutio 60: 1165-1171.
    Parendes, L. A. and J. A. Jones (2000) Role of light availability and dispersal in alien plant invasion along roads and streams in the H. J. Andrews Experimental Forest, Oregon. Conservation Biology 14(1): 64-75.
    Petren, K. and T. J. Case (1998) Habitat structure determines competition intensity and invasion success in gecko lizards. Proceedings of the National Academy of Sciences 95: 11739-11744.
    Pouteau, R., J. Y. Meyer and B. Stoll (2011) A SVM-based model for predicting distribution of the invasive tree Miconia calvescens in tropical rainforests. Ecological Modelling. 222(15): 2631-2641.

    Prasad, J. V. N. S., G. R. Korwar, K. V. Rao, U. K. Mandal, G. R. Rao, I. Srinivas, B. Venkateswarlu, S. N. Rao, and H. D. Kulkarn (2011) Optimum stand density of Leucaena leucocephala for wood production in Andhra Pradesh, Southern India. Biomass and Bioenergy 35(1): 227-235.
    Rabitsch W, P. Genovesi, R. Scalera, K. Biała, M. Josefsson, and F. Essl (2016) Developing and testing alien species indicators for Europe. Journal for Nature Conservation 29: 89-96.
    Reid, A. M., L. Morin, P. O. Downey, K. Frenchand, and J. G. Virtue (2009) Does invasive plant management aid the restoration of natural ecosystems. Biological Conservation 142: 2342-2349.
    Richardson, D. M., N. Allsopp, C. D'Antonio, S. J. Milton, and M. Rejamánek (2000) Plant invasions-the role of mutualisms. Biological Reviews of the Cambridge Philosophical Society 75: 65-93.
    Richardson, D. M. and P. Pyšek (2012) Naturalization of introduced plants: ecological drivers of biogeographical patterns. New Phytologist 196(2): 383-396.
    Rouget, M., C. Hui, J. Renteria, D. M. Richardson, and J. R. U. Wilson (2015) Plant invasions as a biogeographical assay: Vegetation biomes constrain the distribution of invasive alien species assemblages. South African Journal of Botany 101: 24-31.
    Saatkamp, A., P. Poschlod, and D. L. Venable (2014) The functional role of soil seed banks in natural communities.The Ecology of Regeneration in Plant Communities, CAB International, Wallingford UK. 263-295pp.
    Shannon, C. E., and W. Weaver. (1963) The mathematical theory of communication. University of Illinois Press, Urbana. 117pp.
    Shena, P., L. M. Zhanga, H. X. Chena and L. Gaoa (2017) Role of vegetation restoration in mitigating hillslope erosion and debris flows. Engineering Geology 216: 122-133.
    Shoyama, K. C. Kamiyama, J. Morimoto, M. Ooba, and T. Okuro (2017) A review of modeling approaches for ecosystem services assessment in the Asian region. Ecosystem Services 26: 316-328.
    Silva, P. H. M., J. P. Bouillet, and R. C. Paula (2016) Assessing the invasive potential of commercial Eucalyptus species in Brazil: Germination and early establishment. Forest Ecology and Management 374(15): 129-135.
    Simberloff, D., J. L. Martin, P. Genovesi, and V. Maris (2011) Impacts of biological invasions: what's what and the way forward. Trends in Ecology and Evolution 28(1): 25-66.
    Simpson, E. H. (1949) Measurement of Diversity. Nature. 688pp.
    Singh, A. (2015) Soil salinization and waterlogging: A threat to environment and agricultural sustainability. Ecological Indicators, 57 128-130.
    Smith, C. M., and L. J. Walters (1999) Fragmentation as a strategy for caulerpa species: Fates of fragments and implications for management of an invasive weed. Marine Ecology 20(3-4): 307-319.
    Smith, T. M. and R. L. Smith (2009) Elements of ecology seven edition. Pearson International Edition, Benjamin Cummings. 658pp.
    Soil Survey Staff (2014) Keys to soil taxonomy, 12th ed. USDA-Natural Resources Conservation Service, Washington, D.C, USA.
    Stefanowicz, A. M., M. Stanek, M. Nobis, and S. Zubek (2017) Few effects of invasive plants Reynoutria japonica, Rudbeckia laciniata and Solidago gigantea on soil physical and chemical properties 574: 938-946.
    Stohlgren, T. J., P. Pyšek, J. Kartesz, M. Nishino, A. Pauchard, M. Winter, J. Pino, D. M. Richardson, J. R. U. Wilson and B. R. Murray (2011) Widespread plant species: natives versus aliens in our changing world. Biological Invasions 13: 1931-1944.
    Sutherland, I. J., E. M. Bennett, and S. E. Gergel (2016) Recovery trends for multiple ecosystem services reveal non-linear responses and long-term tradeoffs from temperate forest harvesting. Forest Ecology and Management 374: 61-70.
    Sutherland, I. J., S. E. Gergel and E. M. Bennett (2016) Seeing the forest for its multiple ecosystem services: Indicators for cultural services in heterogeneous forests. Ecological Indicators 71: 123-133.
    Syrbe, R. U. and U. Walz (2012) Spatial indicators for the assessment of ecosystem services: providing, benefiting and connecting areas and landscape metrics. Ecological Indicators 21: 80-88.
    Tang, J. W., M. Cao, J. H. Zhang, and M. H. Li (2010) Litterfall production, decomposition and nutrient use efficiency varies with tropical forest types in Xishuangbanna, SW China: a 10-year study. Plant Soil 335: 271-288.
    Terwei, A., S. Zerbe, A. Zeileis, P. Annighöfer, H. Kawaletz, and I. Mölder (2013) Which are the factors controlling tree seedling establishment in North Italian floodplain forests invaded by non-native tree species?. Forest Ecology and Management 304(15): 192-203.
    Tews, J., U. Brose, V. Grimm, K. Tielborger, M. C. Wichmann, M. Schwager, and F. Jeltsch (2004) Animal species diversity driven by habitat heterogeneity/diversity: the importance of keystone structures. Journal of Biogeography 31: 79-92.
    Thoms, G. W. (1996) Soil pH and soil acidity. Methods of soil analysis, Part3.ASA and SSSA, Madison. WI. USA. pp.475-490.
    Tilleya. D. R. and W. T. Swankb (2004)EMERGY-based environmental systems assessment of a multi-purpose temperate mixed-forest watershed of the southern Appalachian Mountains, USA. Journal of Environmental Management 69(3): 213-227.
    Ulgiati., S and M. T. Brownb (2009) Emergy and ecosystem complexity. Communications in Nonlinear Science and Numerical Simulation 14(1): 310-321.
    United Nations Environment Programme, UNEP (2010) The TEEB for Business Report. Kenya: United Nations Environment Programme.
    Vilà, M., J. L. Espinar, M. Hejda, P. E. Hulme, V. Jarošik, J. L. Maron, J. Pergl, U. Schaffner, Y. Sun, and P. Pyšek (2011) Ecological impacts of invasive alien plants: a meta-analysis of their effects on species, communities and ecosystems. Ecology Letters 14(7): 702-708.
    Vincent, B., P. Jourand, F. Juillot, M. Ducousso, A. Galiana (2018) Biological in situ nitrogen fixation by an Acacia species reaches optimal rates on extremely contrasted soils. European Journal of Soil Biology 86: 52-62.
    Vítková, M., J. Müllerová, J. Sádlo, J. Pergl, and P. Pyšek (2017) Black locust (Robinia pseudoacacia) beloved and despised: A story of an invasive tree in Central Europe. Forest Ecology and Management 384(15): 287-302.
    Vitousek, P. M. (1990) Biological invasions and ecosystem processes: towards an integration of population biology and ecosystem studies. Oikos 57: 7-13.
    Warr, S. J., K. Thompson, and M. Kent (1993) Seed banks as a neglected area of biogeographic research: a review of literature and sampling techniques. Progress in Physical Geography 17(3): 329-347.
    Wei, X., Q. Li, Y. Liu, S. Liu, X. Guo, L. Zhang, D. Niu and W. Zhan (2013) Restoring ecosystem carbon sequestration through afforestation: A sub-tropic restoration case study. Forest Ecology and Management 300: 60-67.
    Wilcke, W., Yasin, S., Schmitt, A., Valarezo, C., and W. Zech (2008) Soils along the along the altitudinal transect and in catchments. Ecological Studies 198: 75-85.
    Williams, M. C. and G. M. Wardle (2007) Pine and eucalypt litterfall in a pine-invaded eucalypt woodland: The role of fire and canopy cover. Forest Ecology and Management 253(1-3): 1-10.
    Wilson, S. D. and B. D. Pinno (2012) Environmentally-contingent behaviour of invasive plants as drivers or passengers. Oikos 122: 129-135.
    Wischmeier, W. H. and D. D. Smith.1978. Predicting Rainfall Erosion Losses: A Guide to Conservation Department of Agricultural, Agric. Handbook No.537, USDA, Washington, DC. 58pp.
    Witkowski, E. T. F., and R. D. Garner (2008) Seed production, seed bank dynamics, resprouting and long-term response to clearing of the alien invasive Solanum mauritianum in a temperate to subtropical riparian ecosystem. South African Journal of Botany 74(3): 476-484.
    Wolfe, B. T., and S. V. Bloem (2012) Subtropical dry forest regeneration in grass-invaded areas of Puerto Rico: Understanding why Leucaena leucocephala dominates and native species fail. Forest Ecology and Management 267(1): 253-2610.
    Wu, L. H., C. P. Wang, and W. J. Wu (2013) Effects of temperature and adult nutrition on the development of Acanthoscelides macrophthalmus, a natural enemy of an invasive tree, Leucaena leucocephala. Biological Control 65(3): 322-329.
    Xin, Q., M. Broich, A. E. Suyker, L. Yu, and P. Gong (2015) Multi-scale evaluation of light use efficiency in MODIS gross primary productivity for croplands in the Midwestern United States. Agricultural and Forest Meteorology. 201: 111-119.
    Xuan, T. D., A. A. Elzaawely, F. Deba, M. Fukuta and S. Tawata (2006) Mimosine in Leucaena as a potent bio-herbicide. Agronomy for Sustainable Development 26: 89-97.
    Young, S. L., J. N. Barney, and J. B. Kyser (2009) Functionally similar species confer greater resistance to invasion: Implications for grassland restoration. Restoration Ecology 17: 884-892.
    Zhang, J., Y. Wang, C. Wang, R. Wang, and F. Li (2016) Quantifying the emergy flow of an urban complex and the ecological services of a satellite town: a case study of Zengcheng, China. Journal of Cleaner Production 1-10.
    Zimdahl, R. L. and C. S. Brown (2018) Fundamentals of Weed Science Chapter 8-Invasive Plants. Elsevier Science Publishing Co Inc. San Diego, United States. 209-252pp.
    United States Department of Agriculture (2017) Climate Change Resource Center-Forest Service. https://www.usda.gov
    Secretariat of the Convention on Biological Diversity (2015). Convention on Biological Diversity. Retrieved from https://www.cbd.int/copyright/

    下載圖示
    QR CODE