簡易檢索 / 詳目顯示

研究生: 劉敏莉
Liu, Min-Li
論文名稱: 胡瓜苗期耐熱篩選指標之研究
Study on Screening Indices for Heat-tolerance of Cucumber seedlings
指導教授: 謝清祥
Hsieh, Ching-Hsiang
學位類別: 博士
Doctor
系所名稱: 農學院 - 農園生產系所
Department of Plant Industry
畢業學年度: 107
語文別: 中文
論文頁數: 86
中文關鍵詞: 胡瓜耐熱根系抗氧化酵素生理指標
外文關鍵詞: Cucumber (Cucumis sativus L.), Heat tolerance, Root system, Antioxidant enzymes, Physiological indexes
DOI URL: http://doi.org/10.6346/DIS.NPUST.PI.001.2019.D04
相關次數: 點閱:22下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統
  • 在這日益暖化環境下,胡瓜 (Cucumis satives L.)在夏季的生產遭遇高溫已呈常態,因此解決高溫對胡瓜生產之影響,除了選擇適當的栽培措施外,選育耐熱品種為主要育種目標。在育種工作中,若能利用苗期進行篩選,且建立與田間產量結果對應之模式,可減輕後代繁瑣的育種選拔之工作量。本論文利用KS no. 3 (高雄3號)、Wen nong 210和CU-127等小胡瓜品種為材料,探討不同溫度及培植方式之苗期耐熱性狀變異篩選,並進行不同高溫處理苗期後其農藝性狀、生理及抗氧化酵素的變化及高溫下根系之反應,期能建立穩定及有效的胡瓜苗期耐熱篩選指標。不同苗期培植篩選方法試驗,組培瓶苗變方差值大於穴盤苗,顯示瓶苗有較大變異量,在進行溫度處理時反應較為靈敏,而穴盤苗的整齊度相對優於組培瓶苗,在考量時間及試驗材料之整齊度上,選擇以穴盤苗作為篩選方式。熱逆境下三個品種的一本葉幼苗進行在不同高溫處理下農藝性狀及根部性狀之分析結果,胡瓜幼苗經高溫處理 (28,35,38,43及45℃)於三個胡瓜品種KS no. 3,Wen nong 210和CU-127調查苗期植株性狀及根系發展表現的結果,發現葉綠素計讀值、幼苗之葉長、葉寬、葉重、地上部鮮重、乾重及地下部根乾重等性狀在胡瓜幼苗期對溫度敏感,且除葉綠計讀值外,各性狀之平均值在43℃及45℃均有明顯下降,顯示43℃為小胡瓜幼苗期高溫逆境之反應溫度。在地下部性狀,KS no. 3在根長、和根乾重之平均值優於其他二個品種,在開花期根系分布密度調查中,KS no. 3根系分布密度在土下40cm、50cm和總數上明顯優於其他兩個品種,且高溫期根之伸長及分佈的量與產量存在顯著正相關,此結果亦顯示根系分布密度可為耐熱篩選指標之一。在生理及抗氧化酵素變化之試驗中,CU-127品種之細胞膜對熱穩定性高於KS no. 3品種,在45℃臨界溫度時,CU-127 品種之F0值與Fv/Fm值均顯著高於KS no. 3 品種,顯示胡瓜的幼苗在高溫下細胞膜的穩定性越高時耐熱性越佳。再以生理指標 (葉綠素含量、H2O2含量與MDA含量)及抗氧化酵素活性 (CAT)與滲透調節物質 (脯胺酸)為測試參數,在抗氧化酵素分析試驗中KS no. 3品種在28-43℃處理時,H2O2含量均高於其他品種,因此推測Wen none 210與CU-127兩品種在高溫逆境下,藉由提高APX活性而降低H2O2含量,增加細胞膜的穩定性,進而減緩葉綠素降解。三種胡瓜品種脯胺酸含量會隨著處理溫度提高而有逐漸增加的趨勢,顯示胡瓜在高溫下會同時提高抗氧化酵素CAT活性與脯胺酸含量保護細胞膜的穩定性,以上這些參數在各試驗溫度間均達極顯著差異且表現趨勢一致,CV值均在10%以下具穩定性。綜合試驗之結果,胡瓜幼苗高溫臨界溫度為45℃,及葉綠素含量、H2O2含量及MDA含量等生理指標之變化可視為重要之耐熱指標。因此,若進行胡瓜苗期篩選時,在高溫環境下葉綠素降解緩慢、H2O2和MDA含量低,且具有強勢的根系之品系,即是選拔之目標。

    When the temperature exceeds 35°C, cucumbers (Cucumis sativus L.) are subjected to physiological disorders that affect the growing of male and female flowers and the shape of fruits, thus reducing crop quality. To mitigate the effects of high temperature on growth of cucumber, in addition to adopting appropriate cultivation measures, selecting suitable varieties is crucial for plant breeding. Successful screening during the seedling stage can reduce the burden of the complex offspring selection process. In this study, seedlings of three cucumber varieties Wen nong 210, CU-127, and KS no. 3 were treated with different temperatures (i.e. 28°C, 35°C, 43°C, and 48°C) under different selection methods. After, selectee a more suitable screen method changes in their growth and root performance, physiological traits and antioxidant enzyme activities were analyzed to provide a reference for screening heat-tolerant varieties. In different temperature and culture mode, the mean square of vitro cultural seedlings was larger than the plug seedlings, indicating the reaction was more sensitive when the different temperature was processed. But the plug seedling method was chosen due to the uniform of the plant and the efficiency on the growth. Under heat stresses temperature, three cucumber varieties (KS no. 3, Wen nong 210 and CU-127) were grown under different high temperatures (28, 35, 38, 43 and 45℃) to test their growth and root performance. The experiment observed the seedling traits after high temperature treatment, show SPAD value, leaf length, leaf width, leaf weight, shoot weight, dry weight and root dry weight responses were significantly different among different temperatures. And except for the SPAD value, the mean of each trait is significantly reduced at 43 ° C and 45 ° C which indicating that 43 ° C is the threshold temperature for high temperature stress in the vegetative state of cucumber. The root length and root dry weight of KS no. 3 seedling were higher than the other three varieties. Particularly, the root distribution at 40 cm, 50 cm below the soil and their total number of KS no.3 were significantly higher than other two varieties during the flowering stage. Significant positive correlations founded on the root elongation and different depth distribution of roots and yield in the high temperature period. This result also indicating that root desity can be a selection index for heat tolerance. The experiment of changes in physiology and antioxidant enzymes, showed that the thermal stability of the cell membrane of CU-127 was more favorable than that of KS no. 3, simultaneously, Furthermore, at the critical temperature of 45°C, the F0 and Fv/Fm values of CU-127 were substantially higher than those of KS no. 3, indicating that for cucumbers, a high membrane stability under high temperature equates to a superior heat tolerance. Subsequently, physiological indices (i.e., the contents of chlorophyll, H2O2, and MDA), the activities of antioxidant enzyme of CAT, and osmosis regulatory substance (i.e., proline) were adopted as testing parameters. When treated at 28–43°C, KS no. 3 exhibited higher H2O2 content than its counterparts. This Speculated that under high temperature stress, Wen none 210 and CU-127 increased their APX activity to reduce H2O2 content so as to increase membrane stability, which subsequently slowed down chlorophyll degradation. Increasing the treatment temperature caused the proline content in the three cucumber verities gradually increased; indicating that cucumbers both increase the activity of antioxidant CAT and proline content to maintain membrane stability under high temperatures. And, their CV values were all under 10%, showing that during the heat tolerance screening they responded stably to different temperature treatment. As a result of the comprehensive test, 45°C is the heat threshold for cucumbers during the vegetative state. Thus, this heat tolerance screening method can be recommended to use in seedling stage which choose the first leaf stage of plug seedling as a screening method under high temperature stress which root traits, changes in H2O2, MDA, and chlorophyll content can be used as physiological indicators of the heat tolerance of cucumbers for seedling heat tolerance selection. Therefore, if the cucumber seedling screening was carried out, the line selected will possess with slowly chlorophyll degradation, lower H2O2 and MDA content, and strong root system in the high temperature.

    目錄
    摘 要...............................................II
    Abstract............................................IV
    謝 誌...........................................VII
    目 錄..............................................VIII
    圖表目錄.............................................X
    第一章 前 言........................................1
    第二章 前人研究
    一、 胡瓜一般特性概述.................................3
    二、 胡瓜產業概況.....................................4
    (一)全球胡瓜產業概況..................................4
    (二) 臺灣胡瓜產業發展.................................5
    (三) 臺灣胡瓜品種發展概況.............................5
    三、苗期不同培植方式之應用............................5
    四、高溫逆境下胡瓜之生長與生理反應.....................6
    第三章 胡瓜苗期在不同溫度及培植方式之耐熱性狀變異探討
    一、 前言............................................11
    二、 材料與方法......................................11
    三、 結果............................................13
    四、 討論............................................15
    第四章 自交系與F1組合田間耐熱性篩選
    一、 前言............................................28
    二、 材料與方法.......................................28
    三、 結果與討論.......................................30
    第五章 高溫逆境對胡瓜園藝性狀之影響
    一、 前言.............................................38
    二、 材料與方法.......................................39
    三、 結果.............................................41
    四、 討論.............................................43
    第六章 高溫逆境下胡瓜苗期之生理及抗氧化酵素變化之研究
    一、 前言.............................................53
    二、 材料與方法.......................................55
    三、 結果.............................................59
    四、討論..............................................62
    第七章 結 論.........................................72
    參考文獻..............................................75
    作者簡介..............................................86

    王毓華、林子凱、林照能 (2011) 農業環境變遷對葫蘆科蔬菜育種與栽培技術之挑戰。因應氣候變遷作物育種及生產環境管理研討會專刊,行政院農業委員會農業試驗所主辦。臺灣台中。第153-161頁。
    王裕權、謝桑煙、陳博惠 (2002) 不同穴盤型式及格數對甘藍、結球白菜移植苗品質、產量之影響。台南區農業改良場研究彙報 39:23-31。
    石佩玉、施任青、張連宗、羅筱鳳 (2013) 花椰菜高溫淹水耐受性之生理指標。臺灣園藝59:191-204。
    朱玉、趙秀淓 (2000) 播種後不同移植時期對大波斯菊、孔雀草及一串紅三種草花穴盤苗的生長及開花之影響。宜蘭技術學報: 27-32。
    朱德民 (1995) 植物與環境逆境。明文書局股份有限公司。台北。
    何曉明、林毓娥、陳清華、鄧江明 (2002) 高溫對黃瓜幼苗生長, 脯氨酸含量及 SOD 酶活性的影響。上海交通大學學報:農業科學版20:30-33。
    呂秀英 (1991) 獨立性環境指標在落花生產量穩定性分析之建立與應用。中華農業研究 40:385-395。
    李建明、鄒志榮、王忠紅 (2006) 甜瓜苗期溫度與水分驅動生長發育類比模型的建立與驗證。西北農林科技大學學報:自然科學版34(8):129-133。
    肖深根、施晉傑、鄭志華、孔令雲、劉志敏 (2007) 苗期溫度誘導對黃瓜高溫逆境生長和產量形成影響的模擬研究。安徽農學通報13:73-74。
    周長久、王鳴 (1996) 現代蔬菜育種學。北京:科學技術文獻出版社。
    孟令波、李淑敏 (2003) 高溫脅迫對黃瓜生理、生化過程的影響。 哈爾濱學院學報(教育)24:121-125。
    林子凱、蕭吉雄 (2005) 胡瓜。台灣農家要覽 第三版。第475-480頁。
    徐曉昀、郁繼華、頡建明 (2007) 高溫脅迫對黃瓜葉片葉綠素螢光猝滅的效應。甘肅農業大學學報42:60-62。
    高景輝 (2005) 植物生理分析技術。五南圖書出版股份有限公司。台北。
    張紅梅、金海軍、丁小濤、余紀柱 (2011) 黃瓜幼苗對熱脅迫的生理反應及葉綠素螢光特性。上海交通大學學報:農業科學版 29: 61-66。
    張師竹 (2012) 國際瓜果類蔬菜種苗市場概況。2012種苗科技暨產業發展研討會專輯,臺南區農業改良場主辦。
    梁肇均、林毓娥、黃河勳 (2006) 黃瓜的高溫傷害及耐熱性研究進展。廣東農業科學:21-23。
    郭孚耀 (2001) 蔬菜栽培高溫障礙的發生機制。臺中區農業改良場特刊 第4~5頁。
    陳思如、葉德銘 (2013) 非洲菊耐熱相關之形態適應與生理特性。臺灣園藝 59:123-138。
    程智慧、聶文娟、孟煥文、王明欽 (2011) 黃瓜耐熱性芽苗期鑒定指標篩選及預測方程的建立。西北農林科技大學學報:自然科學版39:121-126。
    黃鵬 (1996) 利用穴盤苗生產夏季蔬菜。花蓮區農業專訊16:2-3。
    楊純明、李裕娟、蕭巧玲、王毓華、林子凱 (2011) 特定光輻射延長明期光照對西瓜及胡瓜苗株生長之影響。作物環境與生物資訊8(3):201-208。
    裴孝伯、李世誠、張福墁、蔡潤 (2005) 溫室黃瓜葉面積計算及其與株高的相關性研究。中國農學通報 21(8):80-82。
    趙銘欽、王文基、趙輝 (2010) 水鉀互作對烤菸乾物質積累的影響。中國菸草學報 16(4):35-39。
    劉敏莉 (2010) 夏季高溫對胡瓜生產之影響。高雄區農業專訊:26-27。
    蔡金川、李孟穎、蕭吉雄 (1997) 胡瓜栽培與營養,生理障害。財團法人農友社會福利基金會。
    盧孟明、卓盈旻、李思瑩、李清縢、林昀靜 (2012) 臺灣氣候變化: 1911- 2009年資料分析。大氣科學 40:297-321。
    蕭吉雄、楊偉正、沈百奎 (1998) 主要瓜類蔬菜育種。蔬菜育種技術研習會專刊,行政院農業委員會農業試驗所主辦。臺灣台中。第193-221頁。
    戴振洋 (2001) 蔬菜耐熱品種篩選方法之探討。臺中區農業改良場特刊 第20-21頁。
    繆旻瑉、張玉華、蔣亞華、薛林寶 (2005) 黃瓜耐熱性與其葉片, 根系和花粉性狀關係的研究。揚州大學學報:農業與生命科學版 26:83-85。
    韓毅科、杜勝利、張桂華、魏愛民、劉楠、哈玉潔 (2009) 黃瓜苗期耐高溫性鑒定。中國瓜菜 22:1-4。
    聶文娟、孟煥文、程智慧、王明欽 (2010) 自然高溫條件下黃瓜耐熱性成株期鑒定技術研究。 北方園藝:22-25。
    譚俊傑 (1990) 中國農業百科全書 蔬菜卷 黃瓜條目。北京:農業出版社。
    Adams, W. W., B. Demmig-Adams, K. Winter and U. Schreiber (1990) The ratio of variable to maximum chlorophyll fluorescence from photosystem II, measured in leaves at ambient temperature and at 77K, as an indicator of the photon yield of photosynthesis. Planta 180: 166-174.
    Ali, I., U. Kafkafi, I. Yamaguchi, Y. Sugimoto and S. Inanaga (1996) Effects of low root temperature on sap flow rate, soluble carbohydrates, nitrate contents and on cytokinin and gibberellin levels in root xylem exudate of sand‐grown tomato. J. Plant Nutr. 19: 619-634.
    Apel, K. and H. Hirt (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu. Rev. Plant Biol. 55: 373-399.
    Aroca, R., F. Tognoni, J. J. Irigoyen, M. Sánchez-Díaz and A. Pardossi (2001) Different root low temperature response of two maize genotypes differing in chilling sensitivity. Plant Physiol. Biochem. 39: 1067-1073.
    Aroca, R., R. Porcel and J. M. Ruiz-Lozano (2012) Regulation of root water uptake under abiotic stress conditions. J. Exp. Bot. 63:43-57.
    Arun, K. T. and C. T. Baishnab (1998) Temperature-stress-induced impairment of chlorophyll biosynthetic reactions in cucumber and wheat. Plant Physiol. 117: 851-858.
    Bates, L., R. Waldren and I. Teare (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39: 205-207.
    Bhattacharjee, S. (2005) Reactive oxygen species and oxidative burst: Roles in stress, senescence and signal transducation in plants. Curr. Sci. 89: 1113-1121.
    Bloom, A., M. Zwieniecki, J. Passioura, L. Randall, N. Holbrook and D. St Clair (2004) Water relations under root chilling in a sensitive and tolerant tomato species. Plant Cell Environ. 27: 971-979.
    Bolwell, G. P. and P. Wojtaszek (1997) Mechanisms for the generation of reactive oxygen species in plant defence–a broad perspective. Physiol. Mol. Plant Pathol. 51: 347-366.
    Buchanan, B. B., W. Gruissem and R. L. Jones (2000) Biochemistry & molecular biology of plants (Vol. 40). American Society of Plant Physiologists Rockville, MD
    Chauhan, Y. S., and T. Senboku (1996) Thermostabilities of cell-membrane and photosynthesis in cabbage cultivars differing in heat tolerance. J. Plant Physiol. 149: 729-734.
    Chen, W.-L., W.-J. Yang, H.-F. Lo and D.-M. Yeh (2014) Physiology, anatomy, and cell membrane thermostability selection of leafy radish (Raphanus sativus var. oleiformis Pers.) with different tolerance under heat stress. Sci. Hortic. 179: 367-375.
    Chiu, Y.-C., C.-K. Liao and Y.-C. Chang (2013) Study of the disease detection for crop seedlings by using chlorophyll fluorescence. CIOSTA XXXV Conference., Denmark: Billund. 1-26.
    Choudhury, B., S. Chowdhury and A. K. Biswas (2011) Regulation of growth and metabolism in rice (Oryza sativa L.) by arsenic and its possible reversal by phosphate. J. Plant Interact. 6: 15-24.
    Collado, R., N. Veitía, I. Bermúdez-Caraballoso, L. R. García, D. Torres, C. Romero, J. L. R. Lorenzo and G. Angenon (2013) Efficient in vitro plant regeneration via indirect organogenesis for different common bean cultivars. Sci. Hortic. 153: 109-116.
    Dhindsa, R. S., P. Plumb-Dhindsa and T. A. Thorpe (1981) Leaf senescence: correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase. J. Exp. Bot. 32: 93-101.
    Dinar, M. and J. Rudich (1985) Effect of heat stress on assimilate partitioning in tomato. Ann. Bot. 56: 239-248.
    Dodd, I., J. He, C. Turnbull, S. Lee and C. Critchley (2000) The influence of supra-optimal root-zone temperatures on growth and stomatal conductance in Capsicum annuum L. J. Exp. Bot. 51: 239-248.
    Dreesen, D. R. and R. W. Langhans (1991) Uniformity of impatiens plug seedling growth in controlled environments. J. Am. Soc. Hortic. Sci. 116: 786-791.
    Dreesen, D. R. and R. W. Langhans (1992) Temperature effects on growth of impatiens plug seedlings in controlled environments. J. Am. Soc. Hortic. Sci. 117: 209-215.
    Du, Y. C., and S. Tachibana (1994a) Photosynthesis, photosynthate translocation and metabolism in cucumber roots held at supraoptimal temperature. J. Jpn. Soc. Hortic. Sci. 63(2):401-408.
    Du, Y. C., and S. Tachibana (1994b) Effect of supraoptimal root temperature on the growth, root respiration and sugar content of cucumber plants. Sci. Hortic. 58: 289-301.
    Fanizza, G., L. Ricciardi and C. Bagnulo (1991) Leaf greenness measurements to evaluate water stressed genotypes in Vitis vinifera. Euphytica 55: 27-31.
    Feierabend, J. (1977) Capacity for chlorophyll synthesis in heat-bleached 70S ribosome-deficient rye leaves. Planta 135: 83-88.
    Furtana, G. B. and R. Tipirdamaz (2010) Physiological and antioxidant response of three cultivars of cucumber (Cucumis sativus L.) to salinity. Turkish J. Biol. 34: 287-296.
    Gechev, T. S., F. Van Breusegem, J. M. Stone, I. Denev and C. Laloi (2006) Reactive oxygen species as signals that modulate plant stress responses and programmed cell death. Bioessays 28: 1091-1101.
    Gemes-Juhasz, A., P. Balogh, A. Ferenczy and Z. Kristof (2002) Effect of optimal stage of female gametophyte and heat treatment on in vitro gynogenesis induction in cucumber (Cucumis sativus L.). Plant Cell Rep. 21: 105-111.
    Gifford, M. L., J. A. Banta, M. S. Katari, J. Hulsmans, L. Chen, D. Ristova, D. Tranchina, M. D. Purugganan, G. M. Coruzzi and K. D. Birnbaum (2013) Plasticity regulators modulate specific root traits in discrete nitrogen environments. PLoS Genet. 9: e1003760.
    Haque, M. S., K. H. Kjaer, E. Rosenqvist, D. K. Sharma and C. O. Ottosen (2014) Heat stress and recovery of photosystem II efficiency in wheat (Triticum aestivum L.) cultivars acclimated to different growth temperatures. Environ. Exp. Bot. 99: 1-8.
    Hasselt, P. R. and J. Strikwerda (1976) Pigment degradation in discs of the thermophilic Cucumis sativus as affected by light, temperature, sugar application and inhibitors. Physiol. Plant. 37: 253-257.
    Heath, R. L. and L. Packer (1968) Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Arch. Biochem. Biophys. 125: 189-198.
    Hemantaranjan, A., A. N. Bhanu, M. Singh, D. Yadav, P. Patel, R. Singh and D. Katiyar (2014) Heat stress responses and thermotolerance. Adv. Plants Agric. Res 1: 12-22.
    Hodges, D. M. and C. F. Forney (2000) The effects of ethylene, depressed oxygen and elevated carbon dioxide on antioxidant profiles of senescing spinach leaves. J. Exp. Bot. 51: 645-655.
    Hodges, D. M., C. J. Andrews, D. A. Johnson and R. I. Hamilton (1996) Antioxidant compound responses to chilling stress in differentially sensitive inbred maize lines. Physiol. Plant. 98: 685-692.
    Huang, B. and X. Liu (2003) Summer root decline. Crop Sci. 43:258-265.
    Huang, B., S. Rachmilevitch and J. Xu (2012) Root carbon and protein metabolism associated with heat tolerance. J. Exp. Bot. 63:3455-3465.
    Hurewitz, J. and H. W. Janes (1983) Effect of altering the root-zone temperature on growth, translocation, carbon exchange rate, and leaf starch accumulation in the tomato. Plant Physiol. 73:46-50.
    Jana, S. and M. A. Choudhuri (1981) Glycolate metabolism of three submersed aquatic angiosperms: effect of heavy metals. Aquat. Bot. 11: 67-77.
    Janka, E., O. Körner, E. Rosenqvist and C. O. Ottosen (2013) High temperature stress monitoring and detection using chlorophyll a fluorescence and infrared thermography in chrysanthemum (Dendranthema grandiflora). Plant Physiol. Biochem. 67: 87-94.
    Jung, J. K. H. M. and S. R. M. McCouch (2013) Getting to the roots of it: genetic and hormonal control of root architecture. Front. Plant Sci. 4: 186.
    Kashiwagi, J., L. Krishnamurthy, R. Purushothaman, H. D. Upadhyaya, P. M. Gaur, C. L. L. Gowda, O. Ito, and R. K. Varshney (2015) Scope for improvement of yield under drought through the root traits in chickpea (Cicer arietinum L.). Field Crops Res. 170: 47-54.
    Kato, M. and S. Shimizu (1985) Chlorophyll metabolism in higher plants VI. Involvement of peroxidase in chlorophyll degradation. Plant Cell Physiol. 26: 1291-1301.
    Kaur, V., R. K. Behl, T. Shinano, and M. Osaki (2008) Interacting effects of high temperature and drought stresses in wheat genotypes under semiarid tropics-an appraisal. Trop. 17: 225-234.
    Kim, J.-W., S.-K. Han, S.-Y. Kwon, H.-S. Lee, Y. P. Lim, J. R. Liu and S.-S. Kwak (2000) High frequency shoot induction and plant regeneration from cotyledonary hypocotyl explants of cucumber (Cucumis sativus L.) seedlings. J. Plant Physiol. 157: 136-139.
    Knudson, L. L., T. W. Tibbitts and G. E. Edwards (1977) Measurement of ozone injury by determination of leaf chlorophyll concentration. Plant Physiol. 60: 606-608.
    Kuroyanagi, T. and G. Paulsen (1988) Mediation of high‐temperature injury by roots and shoots during reproductive growth of wheat. Plant Cell Environ. 11:517-523.
    Li, X. and L. Zhiying (2009) Physiological and biochemical responses of cucumber (Cucumis sativus L.) under prolonged high temperature. Chin. J. Trop. Crop 30: 1238-1245.
    Liu, M.-L., C.-H. Hsieh and Y.-Y. Chao (2017) Kaohsiung no. 3 cucumber: An early flowering variety tolerant to heat and moisture. HortScience 52: 1435-1437.
    Liu, X. and B. Huang (2000) Heat stress injury in relation to membrane lipid peroxidation in creeping bentgrass. Crop Sci. 40: 503-510.
    Lynch JP (2007) Turner review no.14. Roots of the second green revolution. Aust. J. Bot. 55: 493–512.
    Lynch, J. P. and K. M. Brown (2012) New roots for agriculture: Exploiting the root phenome. Philos. Trans. R. Soc. B: Biol. Sci. 367: 1598-1604.
    Martineau, J., J. Specht, J. Williams and C. Sullivan (1979) Temperature tolerance in soybeans. I. Evaluation of a technique for assessing cellular membrane thermostability. Crop Sci. 19: 75-78.
    Martineau, J., Williams, J., and Specht, J. (1979). Temperature tolerance in soybeans. II. Evaluation of segregating populations for membrane thermostability. Crop Sci. 19: 79-81.
    McMichael, B. (2002) Temperature effects on root growth. Plant roots: The hidden half. CRC Press 717-728pp.
    Moon, J. H., H. O. Boo and I.O. Jang (2007) Effect of Root-Zone Temperature on water relations and hormone contents in cucumber. Hortic. Environ. Biotech. 48(5):257-264.
    Nakano, Y. and K. Asada (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol. 22: 867-880.
    Ngaklunchon, R., W.-L. Huang, M.-L. Liu, S.-F. Tai and H.-S. Chi (2010) Change of antioxidant enzyme activities during heat stress in cucumber (Cucumis sativus L.). J. Agric. For. (NCYU) 7: 118-134.
    Nielsen, K. (1974) Roots and root temperatures. Proc Plant Root Environ.
    Pardales Jr, J., Y. Kono and A. Yamauchi (1992) Epidermal cell elongation in sorghum seminal roots exposed to high root-zone temperature. Plant Sci. 81: 143-146.
    Pigliucci, M. (2005) Evolution of phenotypic plasticity: where are we going now? Trend. Ecol. Evol. 20: 481-486.
    Poire, R., A. Wiese-Klinkenberg, B. Parent, M. Mielewczik, U. Schurr, F. Tardieu and A. Walter (2010) Diel time-courses of leaf growth in monocot and dicot species: endogenous rhythms and temperature effects. J. Exp. Bot. 61: 1751-1759.
    Sailaja, B., N. Anjum, V. V. Prasanth, N. Sarla, D. Subrahmanyam, S. Voleti, B. Viraktamath, and S. K. Mangrauthia (2014). Comparative study of susceptible and tolerant genotype reveals efficient recovery and root system contributes to heat stress tolerance in rice. Plant Mol. Biol. Rep. 32: 1228-1240.
    Sakamoto, M. and T. Suzuki (2015) Effect of root-zone temperature on growth and quality of hydroponically grown red leaf lettuce (Lactuca sativa L. cv. Red Wave). Am. J. Plant Sci. 6: 2350-2360.
    Salin, M. L. (1988) Toxic oxygen species and protective systems of the chloroplast. Physiol. Plant. 72: 681-689.
    Sangu, E., F. I. Tibazarwa, A. Nyomora, and R. C. Symonds (2015). Expression of genes for the biosynthesis of compatible solutes during pollen development under heat stress in tomato (Solanum lycopersicum). J. Plant Physiol. 178, 10-16.
    Seemann, J. R., T. D. Sharkey, J. Wang and C. B. Osmond (1987) Environmental effects on photosynthesis, nitrogen-use efficiency, and metabolite pools in leaves of sun and shade plants. Plant Physiol. 84: 796-802.
    Selvaraj, N., A. Vasudevan, M. Manickavasagam and A. Ganapathi (2006) In vitro organogenesis and plant formation in cucumber. Biol. Plant. 50: 123-126 (In English).
    Sharma, P., A. B. Jha, R. S. Dubey and M. Pessarakli (2012) Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J. Bot. 2012: e 217037.
    Shi, Q., Z. Bao, Z. Zhu, Q. Ying and Q. Qian (2006) Effects of different treatments of salicylic acid on heat tolerance, chlorophyll fluorescence, and antioxidant enzyme activity in seedlings of Cucumis sativa L. Plant Growth Regul. 48: 127-135.
    Shü, Z.-h., C. C. Chu, L. J. Hwang and C. S. Shieh (2001) Light, temperature, and sucrose affect color, diameter, and soluble solids of disks of wax apple fruit skin. HortScience 36: 279-281.
    Smith, S. and I. De Smet (2012) Root system architecture: insights from arabidopsis and cereal crops. Phil. Trans. R. Soc. B.367:1441-1452.
    Srinivasan, A., H. Takeda, and T. Senboku (1996). Heat tolerance in food legumes as evaluated by cell membrane thermostability and chlorophyll fluorescence techniques. Euphytica 88, 35-45.
    Sundaresan, M., Z.-X. Yu, V. J. Ferrans, K. Irani and T. Finkel (1995) Requirement for generation of H2O2 for platelet-derived growth factor signal transduction. Science 270: 296-299.
    Venema, J. H., B. E. Dijk, J. M. Bax, P. R. van Hasselt and J. T. M. Elzenga (2008) Grafting tomato (Solanum lycopersicum) onto the rootstock of a high-altitude accession of Solanum habrochaites improves suboptimal-temperature tolerance. Environ. Exp. Bot. 63: 359-367.
    Veselova, S. V., R. G. Farhutdinov, S. Y. Veselov, G. R. Kudoyarova, D. S. Veselov and W. Hartung (2005) The effect of root cooling on hormone content, leaf conductance and root hydraulic conductivity of durum wheat seedlings (Triticum durum L.). J. Plant Physiol. 162: 21-26.
    Wahid, A., S. Gelani, M. Ashraf, and M. R. Foolad (2007). Heat tolerance in plants: An overview. Environ. Exp. Bot. 61: 199-223.
    Wintermans, J. and A. De Mots (1965) Spectrophotometric characteristics of chlorophylls a and b and their phenophytins in ethanol. Biochim. Biophys. Acta 109: 448-453.
    Xu, Q. and B. Huang (2000a) Effects of differential air and soil temperature on carbohydrate metabolism in creeping bentgrass. Crop Sci. 40: 1368-1374.
    Xu, Q. and B. Huang (2000b) Growth and physiological responses of creeping bentgrass to changes in air and soil temperatures. Crop Sci. 40: 1363-1368.
    Ya'acov, Y. L. (1988) Plant senescence processes and free radicals. Free Radic. Biol. Med. 5: 39-49.
    Yeh, D. M., and H. F. Lin (2003). Thermostability of cell membranes as a measure of heat tolerance and relationship to flowering delay in chrysanthemum. J. Am. Soc. Hortic. Sci. 128: 656-660.
    Yin, Y., S. Li, W. Liao, Q. Lu, X. Wen and C. Lu (2010) Photosystem II photochemistry, photoinhibition, and the xanthophyll cycle in heat-stressed rice leaves. J. Plant physiol. 167: 959-966.

    QR CODE