簡易檢索 / 詳目顯示

研究生: 宋英平
Song, Ying-Ping
論文名稱: 陽明山國家公園重金屬土壤細菌群落調查及臺灣二葉松菌根於該土壤對細菌群落結構與重金屬濃度之影響
Bacterial Composition in Heavy-metal Soils from Yangmingshan National Park and Effect of Pinus taiwanensis Mycorrhiza on the Soil Bacterial Community Structure and Heavy-metal Concentration
指導教授: 吳羽婷
Wu, Yu-Ting
學位類別: 碩士
Master
系所名稱: 農學院 - 森林系所
Department of Forestry
畢業學年度: 107
語文別: 中文
論文頁數: 131
中文關鍵詞: 外生菌根菌重金屬細菌群落結構次世代定序交互作用復育
外文關鍵詞: ectomycorrhiza fungi, heavy-metal, bacterial community structure, next-generation sequencing, interaction, remediation
DOI URL: http://doi.org/10.6346/NPUST201900012
相關次數: 點閱:24下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統
  • 本研究分為兩部分,第一部分分析陽明山國家公園境內三處不同火山土壤(冷水坑、竹子湖及磺嘴山自然保護區)之細菌群落結構,了解該特殊地質環境所孕育的土壤細菌群落結構外,進一步探討不同火山土壤的物理化學性質對土壤細菌群落結構的影響。第二部分探討臺灣二葉松(Pinus taiwanensis)幼苗接種不同外生菌根菌對陽明山含有重金屬的火山土壤復育情況,以及其對根部、原試土與根域土壤的細菌群落結構變化的影響。第一部分的研究結果顯示,陽明山地區三處不同火山土壤細菌群落結構明顯不同。竹子湖地區土壤細菌Shannon多樣性指數顯著高於冷水坑及磺嘴山自然保護區。Proteobacteria是磺嘴山自然保護區土壤中最具優勢的細菌門,Actinobacteria、Acidobacteria則在冷水坑地區、竹子湖地區土壤中具有較高的相對豐富度。pH值、有效磷、有機質、Zn、Cu、Pb、Cr都是影響三種不同火山土壤細菌群落結構的重要因子(P< 0.05)。
    第二部分研究中使用的兩株外生菌根菌,一株為本研究自臺灣二葉松根部分離出之外生菌根菌Pezicula ericae K2,另一株為彩色豆馬勃(Pisolithus tinctorius) (作為正對照組)。在不同濃度重金屬固體培養基試驗中,彩色豆馬勃、Pez. ericae K2在生長後期不同濃度之間的菌落直徑幾乎無顯著差異,且仍持續生長,顯示鋅濃度0-30 ppm及銅和砷濃度0-20 ppm,皆為彩色豆馬勃及Pez. ericae K2可耐受之範圍。菌落直徑的生長狀況顯示,Pez. ericae K2對重金屬鋅、銅、砷之耐受性的表現皆比彩色豆馬勃佳。將兩種外生菌根菌分別接種於臺灣二葉松苗木,並移植試驗用土壤,6個月後分析土壤化學性質變化以及植體重金屬累積。結果顯示,接種Pez. ericae K2與彩色豆馬勃處理的苗木生長量顯著高於未接種對照組。接種外生菌根菌之處理能顯著提升土壤K+、Na+、Ca2+、Mg2+含量、pH值,而土壤重金屬Zn2+、Cu2+、As3-含量則顯著降低。在不同處理下根部重金屬累積量皆比地上部高,以總累積量檢視,接種Pez. ericae K2處理可以吸收最多之重金屬,顯示外生菌根之吸收效應。接種後的根域土與根尖之細菌群落結構明顯有差異,根域土優勢菌群主要為酸桿菌門 (Acidobacteria)、變形菌門 (Proteobacteria)、綠彎菌門 (Chloroflexi),而不同處理下之根域土多樣性指數無顯著差異。根域土細菌群落結構的變化受土壤pH值、Mg2+、Ca2+、Na+、K+、Zn2+、Cu2+、As3-、全氮量等環境因子顯著影響(P< 0.05)。外生菌根根尖與未接種根尖細菌群落結構具顯著差異,且外生菌根根尖物種豐富度與多樣性指數顯著高於未接種根尖。優勢菌群主要有放線菌目(Actinomycetales)、伯克霍氏菌目(Burkholderiales)、根瘤菌目(Rhizobiales),其中Burkholderiales、Rhizobiales是與植物共生重要的固氮細菌。根尖細菌群落結構與重金屬Zn2+、Cu2+及As3-皆有顯著相關性。Frankia sp. 只在接種Pez. ericae K2根尖中被檢測到,這可能是Pez. ericae K2在降低土壤重金屬含量的過程中具有重要交互作用細菌群。綜合上述,Pez. ericae K2在本研究中顯示具有較佳的重金屬吸附能力,且有正向交互作用的細菌群。這些結果反映了外生菌根菌、土壤化學性質、重金屬、細菌群落結構以及宿主植物之間潛在複雜的交互關係。將來以外生菌根復育重金屬土壤時,建議可以同時接種外生菌根菌與細菌,使重金屬土壤復育更有效率。

    The study consists of two parts. The first part was to analyze the bacterial community structure of three different volcanic soils (Lengshueikeng, Jhuzihhu and Mt. Huangzui Ecological Protected area) from Yangmingshan National Park (YNP), and to investigate the effects of soil physicochemical properties on soil bacterial community structure. The second part was to explore the capacity of Pinus taiwanensis inoculated with ectomycorrhizal fungi (ECMF) to reduce the heavy metals in the soil from YSP and its effects on the bacterial community structure in the root tip of the host plant and rhizospheres soil. The results of the first part showed that the bacterial community structure of three different volcanic soils in YNP significantly differed. Shannon diversity index of the Jhuzihhu area soil was significantly greater than both Lengshueikeng area and Mt. Huangzui Ecological Protected area. Proteobacteria was the most dominant bacterial phylum in the soil of Mt. Huangzui Ecological Protected area while Actinobacteria and Acidobacteria were the most dominat phyla in Lengshueikeng and Jhuzihhu, respectively. The environmental explanatory including pH, available phosphorus, total nitrogen, organic matter, Zn2+, Cu2+, Pb2+, and Cr3+ explained the soil bacterial community structure in the three different volcanic soils with P value less than 0.05.
    In the second part, two ECMF were utilized in this study including Pezicula ericae K2 was isolated from the roots of the Pinus taiwanensis pure stand at Hehuan Mountain, and the other one is Pisolithus tinctorius (as a positive control). The experiment of fungal growth in solid agar of different heavy-metal concentration showed no significant difference in the diameter of colonies of both Pis. tinctorius and Pez. ericae K2 at the late stage, and colonies were continued to extend. Therefore Pis. tinctorius and Pez. ericae K2 were tolerant of Zn (0-30 ppm), Cu and As (0-20 ppm). However, the status of colonies showed that the Pez. ericae K2 had greater tolerant capacity to heavy-metal than Pis. tinctorius. In further, Pin. taiwanensis seedlings were successfully confirmed to be inoculated with the two ECMF. The ECM Pin. taiwanensis seedlings had been transplanted in heavy-metal soil for 6 months for the subsequent experiment. After harvesting, plant biomass (dry weight) of the treatment with inoculation of Pis. tinctorius and Pez. ericae K2 was significantly higher than that of the treatment without inoculation of ECMF. Moreover, in the treatment with ECMF, soil K+, Na+, Ca2+, Mg2+ and pH were significantly increased, while soil heavy metals including Zn2+, Cu2+, and As3- were significantly reduced. The accumulation of heavy metals in the roots was generally higher than the aboveground (stem and leaves) across all treatments. According to the total accumulation of heavy metals, the treatment with inoculation of Pez. ericae K2 had absorbed the highest amount of heavy metals, indicating the absorption capacity of ectomycorrhizal, specifically Pez. ericae K2. The bacterial community structure of rhizosphere soil and root tip significantly differed across all treatments. The soil bacterial assemblage was dominated by Acidobacteria, Proteobacteria, and Chloroflexi. The Shannon diversity index of rhizosphere soil has no significant difference across all treatments. The variation of bacterial community structure in the rhizosphere soil was affected by the environmental factors including soil pH , Mg2+, Ca2+, Na+, K+, Zn2+, Cu2+, As3-(P< 0.05). The bacterial community structures of ectomycorrhizal root tips and non-mycorrhizal root tips were significantly different, and the species richness and diversity index of ectomycorrhizal root tips were significantly higher than non-mycorrhizal root tips. In addition, Actinomycetales, Burkholderiales, Rhizobiales were the most three dominant orders, among which Burkholderiales and Rhizobiales are important nitrogen-fixing bacteria associated with plants. The variation of bacterial community structure of root tips was significantly droved by the heavy-metals including Zn2+, Cu2+ and As3-. Frankia sp. was only detected in the root tip of Pez. ericae K2 mycorrhiza, which might play an important role with Pez. ericae K2 in the reduction of soil heavy-metals. In conclusion, Pez. ericae K2 were able to significantly reduce the heavy metals and showed a better capability than Pis. tinctorius to absorb soil heavy metals in this study, and had positive interaction with the associated bacteria. In other words, the results indicated that ECMF, soil chemical properties, heavy-metals, bacterial community structure, and host plants had potential interactions. In the future, remediation of soil heavy metals by ectomycorrhizal fungi, we recommend to inoculate both ECMF and bacteria to achieve more effective remediation work.

    目錄
    摘要 I
    Abstract III
    謝誌 VI
    圖表目錄 X
    壹、前言 1
    貳、文獻回顧 3
    一、外生菌根菌之概述與特性 3
    二、外生菌根菌於植物復育重金屬土壤之機制與重要性 5
    三、外生菌根菌與土壤細菌交互作用對植物的影響 7
    四、研究土壤微生物群落結構的技術發展 9
    參、研究材料與方法 12
    一、供試土壤採集 12
    二、苗木培育 12
    三、苗木菌根接種試驗 12
    四、外生菌根菌分離培養與菌種鑑定 13
    (一)外生菌根菌分離培養 13
    (二)菌種鑑定 13
    五、外生菌根菌於不同重金屬濃度之固體培養基生長試驗 15
    (一)固體培養基配製 15
    (二)菌種之生長試驗 15
    六、重金屬土壤化學性質分析 15
    (一)土壤pH值 15
    (二)土壤交換性陽離子(Ca2+、Mg2+、Na+、K+)與陽離子置換能力(cation exchange capacity, CEC) 16
    (三)土壤全氮量測定 16
    (三)土壤重金屬離子(Zn2+、Cu2+、As3-) 17
    七、掃描式電子顯微鏡(scanning electron microscope, SEM)觀察 18
    八、植體重金屬蓄積量分析 18
    九、土壤、根尖細菌群落結構分析 19
    (一)土壤、根尖DNA萃取 19
    (二) 16S rDNA基因PCR擴增 20
    十、生物資訊分析與統計 20
    肆、結果 23
    一、陽明山土壤細菌多樣性調查 23
    (一)陽明山不同火山土壤細菌菌種豐度與歧異度 23
    (二)陽明山不同火山土壤細菌群落結構 25
    (三)熱點圖分析優勢細菌於陽明山地區不同火山土壤相對豐富度 31
    (四) 陽明山不同火山土壤細菌群落結構與環境參數相關性 33
    二、接種外生菌根菌於重金屬土壤復育及對根域細菌群落結構之影響 37
    (一)菌根菌分離培養與菌種鑑定 37
    (二)外生菌根菌於不同重金屬濃度固體培養基之生長試驗 40
    (三)接種外生菌根菌及顯微構造觀察與栽種試驗 49
    (四)接種菌根菌於重金屬土壤復育之效應 52
    (五)原試土與接種外生菌根菌處理後根域細菌群落結構分析 55
    伍、討論 97
    一、陽明山不同火山土壤之細菌多樣性及群落結構 97
    二、接種外生菌根於重金屬土壤復育及根域細菌群落結構之變化 98
    (一)外生菌根菌分離及苗木接種親合狀況 98
    (二)外生菌根菌對重金屬鋅、銅、砷之耐受性 100
    (三)外生菌根菌接種二葉松於重金屬土壤之復育效應 101
    (四)接種不同外生菌根菌之根域細菌群落結構 103
    陸、結論 109
    參考文獻 112
    附錄 129
    作者簡介 131

    王孟宇 (2013) 生物炭對叢枝菌根菌產孢量和宿主植物生長之影響。國立屏東科技大學森林系所碩士學位論文,143頁。
    王義仲、許立達、林敏宜、林志欽 (2003) 陽明山國家公園之長期生態研究-植被變遷與演替調查。內政部營建署陽明山國家公園管理處委託研究報告,96頁。
    余炳盛、劉金龍、呂祺竹 (2004) 陽明山國家公園土壤重金屬含量調查及其地質意義之探討。內政部營建署陽明山國家公園管理處委託研究報告,154頁。
    呂斯文、張喜寧 (1998) 菌根菌與土壤微生物間之交互作用。科學農業 46(5,6): 217-225。
    林瑞進、李明仁、王也珍 (2010) 台灣杜鵑與內生菌 Cryptosporiopsis sp. 共生形成杜鵑類菌根。中華林學季刊 43(1): 171-179。
    柯俞帆、李明仁 (2013) 外生菌根菌 Cryptosporiopsis sp. 對臺灣水青岡苗木生長及生理特性之效應。中華林學季刊 46(4): 411-426。
    孫岩章、林秀穗、謝煥儒 (2006) 茶白紋羽病及其病原菌。臺大實驗林研究報告 20 (3): 205-213。
    高嘉鴻 (2005) 中果塊菌(Tuber mesentericum Vitt.) 之分離、菌落生長及半無菌菌根合成。臺灣大學森林學研究所學位論文。74頁。
    陳庭筠 (2012) 添加鋁及菌根接種對台灣五葉松 (Pinus morrisonicola) 苗木生長之影響。國立中興大學森林學系所碩士學位論文,51頁。
    陳潔音、顏江河 (2004) 菌根於重金屬土壤之復育效應。臺大實驗林研究報告18(2): 101-113。
    蔡呈奇、陳尊賢、黃政恆 (2008) 陽明山國家公園全區土壤分析調查。內政部營建署陽明山國家公園管理處委託研究報告,76頁。
    Abeln, E. C. A., M. A. D. Pagter and G. J. M. Verkley (2000) Phylogeny of Pezicula, Dermea and Neofabraea inferred from partial sequences of the nuclear ribosomal RNA gene cluster. Mycologia 92(4): 685-693.
    Adriaensen, K., D. V. D. Lelie, A. V. Laere, J. Vangronsveld and J. V. Colpaert (2004) A zinc‐adapted fungus protects pines from zinc stress. New Phytologist 161(2): 549-555.
    Ahangar, M. A., G. H. Dar and Z. A. Bhat (2012) Growth response and nutrient uptake of blue pine (Pinus wallichiana) seedlings inoculated with rhizosphere microorganisms under temperate nursery conditions. Annals of Forest Research 55(2): 217-227.
    Angus, A. A., A. Lee, M. R. Lum, M. Shehayeb, R. Hessabi, N. A. Fujishige, S. Yerrapragada, S. Kano, N. Song, P. Yang, P. E. de los Santos, S. M. de Faria, F. D. Dakora, G. Weinstock and A. M. Hirsch (2013) Nodulation and effective nitrogen fixation of Macroptilium atropurpureum (siratro) by Burkholderia tuberum, a nodulating and plant growth promoting beta-proteobacterium, are influenced by environmental factors. Plant and Soil 369(1-2): 543-562.
    Baker, D. E. and M. C. Amacher (1982) Nickel, Copper, Zinc, and Cadmium. In A. L. page et al. (eds.) Methods of Soil Analysis. Part 2. 2 nd ed. Agronmy 9: 323-336.
    Barua A., S. D. Gupta, M. A. U. Mridha and M. K. Bhuiyan (2010) Effect of arbuscular mycorrhizal fungi on growth of Gmelina arborea in arsenic-contaminated soil. Journal of Forestry Research 21(4): 423-432.
    Bässler, C., J. Heilmann-Clausen, P. Karasch, R. Brandl and H. Halbwachs (2015). Ectomycorrhizal fungi have larger fruit bodies than saprotrophic fungi. Fungal Ecology 17: 205-212.
    Bellion, M., M. Courbot, C. Jacob, D. Blaudez and M. Chalot (2006) Extracellular and cellular mechanisms sustaining metal tolerance in ectomycorrhizal fungi. FEMS Microbiology Letters 254(2): 173-181.
    Blaudez, D., C. Jacob, K. Turnau, J. V. Colpaert, U. Ahonen-Jonnarth, R. Finlay, B. Bottona and M. Chalota (2000) Differential responses of ectomycorrhizal fungi to heavy metals in vitro. Mycological Research 104(11): 1366-1371.
    Boer, W. D., L. B. Folman, R. C. Summerbell and L. Boddy (2005) Living in a fungal world: impact of fungi on soil bacterial niche development. FEMS Microbiology Reviews 29(4): 795-811.
    Bois, G., F. J. Bigras, A. Bertrand, Y. Piché, M. Y. P. Fung and D. P. Khasa (2006) Ectomycorrhizal fungi affect the physiological responses of Picea glauca and Pinus banksiana seedlings exposed to an NaCl gradient. Tree Physiology 26(9): 1185-1196.
    Bonfante, P. and I. A. Anca (2009) Plants, mycorrhizal fungi, and bacteria: a network of interactions. Annual Review of Microbiology 63: 363-383.
    Brulé, C., P. Frey-Klett, J. C. Pierrat, S. Courrier, F. Gerard, M. C. Lemoine, J. L. Rousselet, J. Sommer and J. Garbaye (2001) Survival in the soil of the ectomycorrhizal fungus Laccaria bicolor and the effects of a mycorrhiza helper Pseudomonas fluorescens. Soil Biology and Biochemistry 33: 1683-1694.
    Brundrett, M. (2004) Diversity and classification of mycorrhizal associations. Biological Reviews. 79(3): 473-495.
    Brunner, I. and B. Frey (2000) Detection and localization of aluminum and heavy metals in ectomycorrhizal Norway spruce seedlings. Environmental Pollution 108(2): 121-128.
    Chalot, M., and A. Brun (1998) Physiology of organic nitrogen acquisition by ectomycorrhizal fungi and ectomycorrhizas. FEMS Microbiology Reviews 22(1): 21-44.
    Chanmugathas, P. and J. M. Bollag (1987) Microbial role in immobilization and subsequent mobilization of cadmium in soil suspensions 1. Soil Science Society of America Journal 51(5): 1184-1191.
    Chen, M. and Q. Yao (2016) The diversity of endophytic fungi in wild Vaccinium sp.. Unpublished doctoral dissertation. South China Agricultural University, China.
    Chojnacka, K., A. Chojnacki, H. Gorecka and H. Górecki (2005) Bioavailability of heavy metals from polluted soils to plants. Science of the Total Environment 337(1-3): 175-182.
    Churchland, C. and S. J. Grayston (2014) Specificity of plant-microbe interactions in the tree mycorrhizosphere biome and consequences for soil C cycling. Frontiers in Microbiology 5: 261.
    Colpaert, J. V., and J. A. V. Assche (1987) Heavy metal tolerance in some ectomycorrhizal fungi. Functional Ecology 1(4): 415-421.
    Colpaert, J. V., J. H. Wevers, E. Krznaric and K. Adriaensen (2011) How metal-tolerant ecotypes of ectomycorrhizal fungi protect plants from heavy metal pollution. Annals of Forest Science 68(1): 17-24.
    Coninx, L., V. Martinova and F. Rineau (2017) Mycorrhiza-assisted phytoremediation. In Advances in Botanical Research 83: 127-188.
    Cumming, J. R., C. Zawaski , S. Desai and F. R. Collart (2015) Phosphorus disequilibrium in the tripartite plantectomycorrhiza-plant growth promoting rhizobacterial association. Journal of Soil Science and Plant Nutrition 15 (2): 464-485.
    Deveau, A., C. Brulé, B. Palin, D. Champmartin, P. Rubini, J. Garbaye, A. Sarniguet and P. Frey‐Klett (2010) Role of fungal trehalose and bacterial thiamine in the improved survival and growth of the ectomycorrhizal fungus Laccaria bicolor S238N and the helper bacterium Pseudomonas fluorescens BBc6R8. Environmental Microbiology Reports 2(4): 560-568.
    Deveau, A., S. Antony-Babu, F. Le Tacon, C. Robin, P. Frey-Klett and S. Uroz (2016) Temporal changes of bacterial communities in the Tuber melanosporum ectomycorrhizosphere during ascocarp development. Mycorrhiza 26(5): 389-399.
    Duponnois, R. and C. Plenchette (2003) A mycorrhiza helper bacterium enhances ectomycorrhizal and endomycorrhizal symbiosis of Australian Acacia species. Mycorrhiza 13(2): 85-91.
    Edgar, R. C. (2013) UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nature Mthods 10(10): 996-998.
    Epstein, W. (2003) The roles and regulation of potassium in bacteria. Progress in Nucleic Acid Research and Molecular Biology 75: 293-320.
    Erlacher, A., T. Cernava, M. Cardinale, J. Soh, C. W. Sensen, M. Grube and G. Berg (2015) Rhizobiales as functional and endosymbiontic members in the lichen symbiosis of Lobaria pulmonaria L.. Frontiers in Microbiology 6: 53.
    Fakruddin, M. and K. S. B. Mannan (2013) Methods for analyzing diversity of microbial communities in natural environments. Ceylon Journal of Science 42(1): 19-33.
    Francis, I., Holsters, M. and D. Vereecke (2010) The Gram‐positive side of plant-microbe interactions. Environmental Microbiology 12(1): 1-12.
    Franco, A. R. and P. M. Castro (2015) Inoculation of Pinus pinea seedlings with Pisolithus tinctorius and Suillus bellinii promotes plant growth in benfluralin contaminated soil. Plant and soil 386(1-2): 113-123.
    Frey‐Klett, P., J. A. Garbaye and M. Tarkka (2007) The mycorrhiza helper bacteria revisited. New phytologist 176(1): 22-36.
    Frey‐Klett, P., M. Chavatte, M. L. Clausse, S. Courrier, C. L. Roux, J. Raaijmakers, M. G. Martinotti, J. C. Pierrat and J Garbaye (2005) Ectomycorrhizal symbiosis affects functional diversity of rhizosphere fluorescent pseudomonads. New phytologist 165(1): 317-328.
    Galli, U., H. Schüepp and C. Brunold (1994) Heavy metal binding by mycorrhizal fungi. Physiologia Plantarum 92(2): 364-368.
    Garbaye, J. (1994) Helper bacteria: a new dimension to the mycorrhizal symbiosis. New Phytologist 128(2): 197-210.
    Garcia-Pausas, J. and E. Paterson (2011) Microbial community abundance and structure are determinants of soil organic matter mineralisation in the presence of labile carbon. Soil Biology and Biochemistry 43(8): 1705-1713.
    Gaulke, L. S., C. L. Henry and S. L. Brown (2006) Nitrogen fixation and growth response of Alnus rubra amended with low and high metal content biosolids. Scientia Agricola 63(4): 351-360.
    Gauri, A. K. S., R. P. Bhatt and S. Pant (2012) Effects of zinc on cell viability and cell surface components of rhizobium sp isolated from root nodules of Trifolium alexandrinum. Journal of Agricultural Technology 8(3): 941-959.
    Hall, J. (2002) Cellular mechanisms for heavy metal detoxification and tolerance. Journal of Experimental Botany 53(366): 1-11.
    Han, H. S. and K. D. Lee (2006) Effect of co-inoculation with phosphate and potassium solubilizing bacteria on mineral uptake and growth of pepper and cucumber. Plant Soil and Environment 52(3): 130-136.
    Harley, J. L. (1989) The significance of mycorrhiza. Mycological Research, 92(2), 129-139.
    Hartley, J., J. W. Cairney and A. A. Meharg (1997) Do ectomycorrhizal fungi exhibit adaptive tolerance to potentially toxic metals in the environment? Plant and Soil 189(2): 303-319.
    Hayat, R., S. Ali, U. Amara, R. Khalid and I. Ahmed (2010) Soil beneficial bacteria and their role in plant growth promotion: a review. Annals of Microbiology 60(4): 579-598.
    Hermans, S. M., H. L. Buckley, B. S. Case, F. Curran-Cournane, M. Taylor and G. Lear (2017) Bacteria as emerging indicators of soil condition. Applied Environmental Microbiology 83(1): e02826-16.
    Hill, G. T., N. A. Mitkowski, L. Aldrich-Wolfe, L. R. Emele, D. D. Jurkonie, A. Ficke, S. Maldonado-Ramirez, S. T. Lynch and E. B. Nelsona (2000) Methods for assessing the composition and diversity of soil microbial communities. Applied Soil Ecology 15(1): 25-36.
    Hobbie, J. E., and E. A. Hobbie (2006) 15N in symbiotic fungi and plants estimates nitrogen and carbon flux rates in Arctic tundra. Ecology 87(4): 816-822.
    Izumi, H., I. C. Anderson, I. J. Alexander, K. Killham and E. R. B. Moore (2006) Diversity and expression of nitrogenase genes (nifH) from ectomycorrhizas of Corsican pine (Pinus nigra). Environmental Microbiology 8(12): 2224-2230.
    Jentschke, G., S. Winter and D. L. Godbold (1999) Ectomycorrhizas and cadmium toxicity in Norway spruce seedlings. Tree Physiology 19(1): 23-30.
    Joa, J. H., H. Y. Weon, H. N. Hyun, Y. C. Jeun and S. W. Koh (2014) Effect of long-term different fertilization on bacterial community structures and diversity in citrus orchard soil of volcanic ash. Journal of Microbiology 52(12): 995-1001.
    Johnston, P. R., K. A. Seifert, J. K. Stone, A. Y. Rossman and L. Marvanová (2014) Recommendations on generic names competing for use in Leotiomycetes (Ascomycota). IMA Fungus 5(1): 91-120.
    Jumpponen, A. (2001) Dark septate endophytes–are they mycorrhizal? Mycorrhiza 11(4): 207-211.
    Jumpponen, A., K. G. Mattson, and J. M. Trappe (1998) Mycorrhizal functioning of Phialocephala fortinii with Pinus contorta on glacier forefront soil: interactions with soil nitrogen and organic matter. Mycorrhiza 7(5): 261-265.
    Kayama, M., and T. Yamanaka (2014) Growth characteristics of ectomycorrhizal seedlings of Quercus glauca, Quercus salicina, and Castanopsis cuspidata planted on acidic soil. Trees 28(2): 569-583.
    Kerfahi, D., R. Tateno, K. Takahashi, H. Cho, H. Kim and J. M. Adams (2017) Development of soil bacterial communities in volcanic ash microcosms in a range of climates. Microbial Ecology 73(4): 775-790.
    Khullar, S. and M. S. Reddy (2018) Ectomycorrhizal fungi and its role in metal homeostasis through metallothionein and glutathione mechanisms. Current Biotechnology 7(3): 231-241.
    Kirk, J. L., L. A. Beaudette, M. Hart, P. Moutoglis, J. N. Klironomos, H. Lee and J. T. Trevors (2004) Methods of studying soil microbial diversity. Journal of Microbiological Methods 58(2): 169-188.
    Krupa, P. and J. Kozdrój (2007) Ectomycorrhizal fungi and associated bacteria provide protection against heavy metals in inoculated pine (Pinus sylvestris L.) seedlings. Water, Air, and Soil Pollution 182(1-4): 83-90.
    Lauber, C. L., M. Hamady, R. Knight and N. Fierer (2009) Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Applied and Environmental Microbiology 75(15): 5111-5120.
    Leake, J., D. Johnson, D. Donnelly, G. Muckle, L. Boddy, and D. Read (2004) Networks of power and influence: the role of mycorrhizal mycelium in controlling plant communities and agroecosystem functioning. Canadian Journal of Botany 82(8): 1016-1045.
    Lepleux, C., M. P. Turpault, P. Oger, P. Frey-Klett and S. Uroz (2012) Correlation of the abundance of betaproteobacteria on mineral surfaces with mineral weathering in forest soils. Applied and Environmental Microbiology 78(19): 7114-7119.
    Leveau, J. H. and G. M. Preston (2008) Bacterial mycophagy: definition and diagnosis of a unique bacterial-fungal interaction. New Phytologist 177(4): 859-876.
    Leyval, C., K. Turnau and K. Haselwandter (1997) Effect of heavy metal pollution on mycorrhizal colonization and function: physiological, ecological and applied aspects. Mycorrhiza 7(3): 139-153.
    Li, Q., J. Zhao, C. Xiong, X. Li, Z. Chen, P. Li and W. Huang (2017) Tuber indicum shapes the microbial communities of ectomycorhizosphere soil and ectomycorrhizae of an indigenous tree (Pinus armandii). PloS one, 12(4): e0175720.
    Li, X., L. Zhang and G. Wang (2014) Genomic evidence reveals the extreme diversity and wide distribution of the arsenic-related genes in Burkholderiales. PloS one 9(3): e92236.
    Liang, Z., R. A. Drijber, D. J. Lee, I. M. Dwiekat, S. D. Harris and D. A. Wedin (2008) A DGGE-cloning method to characterize arbuscular mycorrhizal community structure in soil. Soil Biology and Biochemistry 40(4): 956-966.
    Linderman, R. (1988) Mycorrhizal interactions with the rhizosphere microflora: the mycorrhizosphere effect. Phytopathology 78(3): 366-371.
    Liu, S. H., G. M. Zeng, Q. Y. Niu, , Y. Liu , L. Zhou, L. H. Jiang, X. F. Tan, P. Xu, Z. Cheng and M. Cheng (2017) Bioremediation mechanisms of combined pollution of PAHs and heavy metals by bacteria and fungi: A mini review. Bioresource Technology 224: 25-33.
    Luo, Z. B., C. Wu, C. Zhang, H. Li, U. Lipka and A. Polle (2014) The role of ectomycorrhizas in heavy metal stress tolerance of host plants. Environmental and Experimental Botany 108: 47-62.
    MacDonald, D. C. (1977) Methods of soil and tissue analysis used in the analytical laboratory. Canadian Forestry Service Information Report MM-X-78.
    Marupakula, S., S. Mahmood and R. D. Finlay (2016) Analysis of single root tip microbiomes suggests that distinctive bacterial communities are selected by Pinus sylvestris roots colonized by different ectomycorrhizal fungi. Environmental Microbiology 18(5): 1470-1483.
    Matsumoto, A., and Y. Takahashi (2017) Endophytic actinomycetes: promising source of novel bioactive compounds. The Journal of Antibiotics 70(5): 514-519.
    McLean, E. O. (1982) Soil pH and lime requirement. Methods of soil analysis. In A. L. Page et al. (eds.) Methods of soil analysis Part 2. 2nd ed. Agronomy 9: 199-233.
    Mediavilla, O., J. Olaizola, L. Santos-del-Blanco, J. A. Oria-de-Rueda and P. Martín-Pinto (2016) Mycorrhization between Cistus ladanifer L. and Boletus edulis Bull is enhanced by the mycorrhiza helper bacteria Pseudomonas fluorescens Migula. Mycorrhiza 26(2): 161-168.
    Mikola, P. (1988) Ectendomycorrhiza of conifers. Silva Fennica 22(1): 19-27.
    Miransari, M. (2011) Interactions between arbuscular mycorrhizal fungi and soil bacteria. Applied Microbiology and Biotechnology 89(4): 917-930.
    Nguyen, N. H. and T. D. Bruns (2015) The microbiome of Pinus muricata ectomycorrhizae: community assemblages, fungal species effects, and Burkholderia as important bacteria in multipartnered symbioses. Microbial Ecology 69(4): 914-921.
    Nihorimbere, V., M. Ongena, M. Smargiassi and P. Thonart (2011) Beneficial effect of the rhizosphere microbial community for plant growth and health. Biotechnology Agronomy Society and Environment 15(2): 327-337.
    Ning, C. (2014) Functional response of ectomycorrhizal fungal community to nitrogen deposition on Slash Pine (Pinus Elliottii) Plantation in South-central China. (Doctoral dissertation). Retrieved from: https://arch.library.northwestern.edu/
    Nocker, A., M. Burr and A. K. Camper (2007) Genotypic microbial community profiling: a critical technical review. Microbial Ecology 54(2): 276-289.
    O'Donnell, A. G., I. M. Young, S. P. Rushton, M. D. Shirley and J. W. Crawford (2007) Visualization, modelling and prediction in soil microbiology. Nature Reviews Microbiology 5(9): 689-699.
    Oliveira, R. S., A. R. Franco and P. M. L. Castro (2012) Combined use of Pinus pinaster plus and inoculation with selected ectomycorrhizal fungi as an ecotechnology to improve plant performance. Ecological Engineering 43: 95-103.
    Otgonsuren, B. and M. J. Lee (2012) Pinus sylvestris can form ectomycorrhiza with Phialocephala fortinii. Taiwan Journal of Forest Science 27(3): 265-281.
    Otgonsuren, B., B. Rewald, D. L. Godbold and H. Göransson (2016) Ectomycorrhizal inoculation of Populus nigra modifies the response of absorptive root respiration and root surface enzyme activity to salinity stress. Flora 224: 123-129.
    Pereira, M. C., D. I. Rocha, T. G. R. Veloso , O. L. Pereira, D. M. T. Francino, R. M. S. A. Meira and M. C. M. Kasuya (2015) Characterization of seed germination and protocorm development of Cyrtopodium glutiniferum (Orchidaceae) promoted by mycorrhizal fungi Epulorhiza spp. Acta Botanica Brasilica 29(4): 567-574.
    Rajkumar, M., N. Ae, M. N. V. Prasad and H. Freitas (2010) Potential of siderophore-producing bacteria for improving heavy metal phytoextraction. Trends in Biotechnology 28(3): 142-149.
    Rey, T., and B. Dumas (2017) Plenty is no plague: Streptomyces symbiosis with crops. Trends in Plant Science 22(1): 30-37.
    Rhoades, J. D. (1982) Cation exchange capacity. In A. L. Page et al. (eds.) Methods of soil analysis. Part 2. 2nd ed. Agronomy 9: 149-157.
    Richardson, A. E., J. M. Barea, A. M. McNeill and C. Prigent-Combaret (2009) Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant and Soil 321(1-2): 305-339.
    Rodriguez, H., T. Gonzalez, I. Goire and Y. Bashan (2004) Gluconic acid production and phosphate solubilization by the plant growth-promoting bacterium Azospirillum spp.. Naturwissenschaften 91(11): 552-555.
    Roesch, L. F., R. R. Fulthorpe, A. Riva, G. Casella, A. K. Hadwin, A. D. Kent, S. H. Daroub, F. A. O. Camargo, W. G. Farmerie and E. W. Triplett (2007) Pyrosequencing enumerates and contrasts soil microbial diversity. The ISME Journal 1(4): 283-290.
    Sakoda, S., K. Aisu, H. Imagami and Y. Matsuda (2019) Comparison of actinomycete community composition on the surface and inside of Japanese black pine (Pinus thunbergii) tree roots colonized by the ectomycorrhizal fungus Cenococcum geophilum. Microbial ecology 77(2): 370-379.
    Sebastiana, M., A. B. D. Silva, A. R. Matos, A. Alcântara, S. Silvestre and R. Malhó (2018) Ectomycorrhizal inoculation with Pisolithus tinctorius reduces stress induced by drought in cork oak. Mycorrhiza 28(3): 247-258.
    Sebastiana, M., V. T. Pereira, A. Alcântara, M. S. Pais and A. B. Silva (2013) Ectomycorrhizal inoculation with Pisolithus tinctorius increases the performance of Quercus suber L. (cork oak) nursery and field seedlings. New forests 44(6): 937-949.
    Sigler, L., T. Allan, S. R. Lim, S. Berch and M. Berbee (2005) Two new Cryptosporiopsis species from roots of ericaceous hosts in western North America. Studies in Mycology 53: 53-62.
    Silva, U. C., J. D. Medeiros, L. R. Leite, D. K. Morais, S. Cuadros-Orellana, C. A. Oliveira, U. G. D. P. Lana, E. A. Gomes and V. L. D. Santos (2017) Long-term rock phosphate fertilization impacts the microbial communities of maize rhizosphere. Frontiers in Microbiology 8: 1266.
    Smith, S. E. and D. J. Read (2010) Mycorrhizal symbiosis. 3rd ed. Academic Press. 769 pp.
    Sousa, N. R., A. R. Franco, M. A. Ramos, R. S. Oliveira and P. M. L. Castro (2015) The response of Betula pubescens to inoculation with an ectomycorrhizal fungus and a plant growth promoting bacterium is substrate-dependent. Ecological Engineering 81: 439-443.
    Tam, P. C. (1995) Heavy metal tolerance by ectomycorrhizal fungi and metal amelioration by Pisolithus tinctorius. Mycorrhiza 5(3): 181-187.
    Tang, Y., L. Shi, K. Zhong, Z. Shen and Y. Chen (2019) Ectomycorrhizal fungi may not act as a barrier inhibiting host plant absorption of heavy metals. Chemosphere 215: 115-123.
    Tedersoo, L., T. W. May and M. E. Smith (2010) Ectomycorrhizal lifestyle in fungi: global diversity, distribution, and evolution of phylogenetic lineages. Mycorrhiza 20(4): 217-263.
    Ubalde, M. C., V. Braña, F. Sueiro, M. A. Morel, C. Martínez-Rosales, C. Marquez and S. Castro-Sowinski (2012) The versatility of Delftia sp. isolates as tools for bioremediation and biofertilization technologies. Current Microbiology 64(6): 597-603.
    Uroz, S., M. Buée, C. Murat, P. Frey‐Klett and F. Martin (2010) Pyrosequencing reveals a contrasted bacterial diversity between oak rhizosphere and surrounding soil. Environmental Microbiology Reports 2(2): 281-288.
    Uroz, S., P. E. Courty, J. C. Pierrat, M. Peter, M. Buée, M. P. Turpault, J. Garbaye and P. Frey-Klett (2013) Functional profiling and distribution of the forest soil bacterial communities along the soil mycorrhizosphere continum. Microbial Ecology 66(2): 404-415.
    Verkley, G. J. M. (1999) A monograph of the genus Pezicula and its anamorphs. Studies in Mycology 44: 1-180.
    Verkley, G. J., J. D. Zijlstra, R. C. Summerbell and F. Berendse (2003) Phylogeny and taxonomy of root-inhabiting Cryptosporiopsis species, and C. rhizophila sp. nov., a fungus inhabiting roots of several Ericaceae. Mycological Research 107(6): 689-698.
    Vik, U., R. Logares, R. Blaalid, R. Halvorsen, T. Carlsen, I. Bakke, A. B. Kolstø, O. A. Økstad and H. Kauserud (2013) Different bacterial communities in ectomycorrhizae and surrounding soil. Scientific Reports 3: 3471.
    Wagg, C., S. F. Bender, F. Widmer and M. G. A. van der Heijden (2014) Soil biodiversity and soil community composition determine ecosystem multifunctionality. Proceedings of the National Academy of Sciences 111(14): 5266-5270.
    Walker, J. K. M., H. Cohen, L. M. Higgins and P. G. Kennedy (2013) Testing the link between community structure and function for ectomycorrhizal fungi involved in a global tripartite symbiosis. New Phytologist 202(1): 287-296.
    Wani, P. A., M. S. Khan and A. Zaidi (2007) Chromium reduction, plant growth-promoting potentials, and metal solubilizatrion by Bacillus sp. isolated from alluvial soil. Current Microbiology 54(3): 237-243.
    Wei, G., L. Fan, W. Zhu, Y. Fu, J. Yu and M. Tang (2009) Isolation and characterization of the heavy metal resistant bacteria CCNWRS33-2 isolated from root nodule of Lespedeza cuneata in gold mine tailings in China. Journal of Hazardous Materials 162(1): 50-56.
    Wen, Z. G., J. Wang, Y. Z. Tang, S. Liang, L. Z. Hong, Z. G. Shen, Chen Y. H. (2017) The application potential of ectomycorrhizal gungus Pisolithus tinctorius assisting plant in phytoremediation of Cu-contaminated soils. Biotechnology Bulletin 33(4): 149-156.
    Wen, Z., L. Shi, Y. Tang, Z. Shen, Y. Xia and Y. Chen (2017) Effects of Pisolithus tinctorius and Cenococcum geophilum inoculation on pine in copper-contaminated soil to enhance phytoremediation. International Journal of Phytoremediation 19(4): 387-394.
    Weyens, N., D. van der Lelie, S. Taghavi and J. Vangronsveld (2009) Phytoremediation: plant-endophyte partnerships take the challenge. Current Opinion in Biotechnology 20(2): 248-254.
    Wu, Y., J. Zeng, Q. Zhu, Z. Zhang and X. Lin (2017) pH is the primary determinant of the bacterial community structure in agricultural soils impacted by polycyclic aromatic hydrocarbon pollution. Scientific Reports 7: 40093.
    Yamada, A., T. Ogura, Y. Degawa and M. Ohmasa (2001) Isolation of Tricholoma matsutake and T. bakamatsutake cultures from field-collected ectomycorrhizas. Mycoscience 42(1): 43-50.
    Zabihi, H. R., G. R. Savaghebi, K. Khavazi, A. Ganjali, and M. Miransari, (2011) Pseudomonas bacteria and phosphorous fertilization, affecting wheat (Triticumaestivum L.) yield and P uptake under greenhouse and field conditions. Acta Physiologiae Plantarum 33(1): 145-152.
    Zhang, R. Q., M. Tang, H. Chen and Z. Q. Tian (2011) Effects of ectomycorrhizal fungi on damping‐off and induction of pathogenesis‐related proteins in Pinus tabulaeformis seedlings inoculated with Amanita vaginata. Forest Pathology 41(4): 262-269.

    下載圖示
    QR CODE