簡易檢索 / 詳目顯示

研究生: 陳御昌
Chen, Yu-Chang
論文名稱: 飼糧中添加酵母細胞壁萃取物對有色肉雞生長性能、屠體、腸道及免疫性狀之影響
Effect of dietary supplementing yeast cell wall extract on production performances, carcass traits, intestinal morphology, and immune response of colored native chickens
指導教授: 謝豪晃
Hsieh, How-Hong
學位類別: 碩士
Master
系所名稱: 農學院 - 動物科學與畜產系所
Department of Animal Science
畢業學年度: 107
語文別: 中文
論文頁數: 72
中文關鍵詞: 屠體有色肉雞生長性能免疫反應腸道性狀酵母細胞壁萃取物
外文關鍵詞: carcass traits, colored native chickens, growth performances, immune response, intestinal morphology, yeast cell wall extract
DOI URL: http://doi.org/10.6346/NPUST201900069
相關次數: 點閱:28下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統
  • 本試驗旨在探討飼糧中添加酵母細胞壁(yeast cell wall, YCW)萃取物對黑羽及紅羽土雞生長性能之影響。試驗一為黑羽公土雞試驗,採用240隻14日齡黑羽公土雞,採4處理 × 3重複,每重複20隻雞,並分欄飼養,餵給試驗飼糧分別為A(基礎商用飼糧對照組)、B(添加125 mg/kg之YCW)、C(添加250 mg/kg之YCW)及D(添加500 mg/kg之YCW)等4組,飲水及飼糧皆採任食。每隔兩週將雞隻個別秤重並記錄個別之體重及每欄之飼料消耗量;於試驗前中後期,每欄挑出個別標誌3隻雞抽血進行Newcastle disease(ND)及Infectious bronchitis(IB)抗體力價檢驗,在生長試驗結束後,每處理組逢機挑選6隻雞隻犧牲,進行屠體性狀測定,同時進行腸道菌相及腸道絨毛型態檢測。試驗二為紅羽公土雞試驗,採用240隻1日齡紅羽公土雞,採3處理 × 4重複,每重複20隻雞,飼養於各欄,分別為A(基礎商用飼糧對照組)、B(添加250 mg/kg之YCW)及C(添加500 mg/kg之YCW)等3組,飲水及飼糧皆採任食。每隔兩週將雞隻個別秤重,並記錄個別之體重及每欄之飼料消耗量;在試驗前中後期,每欄挑出個別標誌3隻雞抽血進行ND及IB抗體力價檢驗,於生長試驗結束後,每處理組逢機挑選4隻雞隻犧牲,進行腸道菌相及腸道絨毛型態檢測。
    試驗一結果顯示,生長性能方面添加組在10週齡時,平均體重有較高之趨勢,D組在10週齡時,體重顯著優於A組(2537.02 vs 2440.30 g),從飼養週期2-10週來觀察,D組平均日增重顯著優於A組(41.38 vs 39.63 g/g)。血清學檢測結果,D組ND抗體力價分布集中於較佳的免疫保護狀態,且D組抗體力價之變異係數低於A組(21.6 vs 30.2)。於屠體性狀方面,各組無顯著差異。腸道絨毛型態,迴腸絨毛長度與腺窩深度比則是C組顯著優於A及D組(3.75 vs 2.56, 2.31 )。腸道菌相方面,以C組之直腸大腸桿菌群數顯著低於A、B及D組(1.88 vs 5.77, 5.78, 6.00 cfu/g)。試驗二結果顯示,生長性能方面,在8-10週時C組平均隻日增重顯著高於A組(57.43 vs 49.20 g/bird)。腸道絨毛型態,C組空腸絨毛長度顯著高於A和B組(650.31 vs 538.81, 559.66 μm),各組空腸腺窩深度及絨毛長度與腺窩深度比則無顯著差異;而迴腸絨毛高度與腺窩深度比為C組顯著高於A和B組(4.76 vs 3.71, 3.87)。腸道菌相方面,空腸內各組間乳酸桿菌、大腸桿菌及總生菌無顯著差異,迴腸內A組大腸桿菌菌落數顯著低於C組(2.66 vs 6.16 cfu/g)。綜合上述,飼糧中添加酵母細胞壁萃取物,能有效改善有色肉雞前期體重及體增重,調節疫苗抗體力價,增強雞隻免疫,和增加腸道絨毛高度,強化腸道吸收能力。

    The objectives of this study were to evaluate the effect of dietary supplementing yeast cell wall extract on growth performances, immune response, carcass and intestinal traits of colored native chickens. In experiment 1(Exp. 1), two hundred forty black feather male native chickens of 14 days-old were randomly allotted into 4 treatments × 3 replicates experimental design with 20 birds in each pen. The experimental diets were divided into three phases as starter, grower and finisher. The four treatment groups were fed diets with A(basal diet), B(with 125 ppm YCW), C(with 250 ppm YCW) and D(with 500 ppm YCW)in the experimental period. In experiment 2(Exp. 2), two hundred forty red feather male native chickens of 1 day-old were randomly allotted into 3 treatments × 4 replicates experimental design with 20 birds in each pen. The experimental diets were divided into three phases as starter, grower and finisher. The three treatment groups were fed diets with A(basal diet), B and C(with 250 ppm YCW)in the starter phase. During the grower and finisher phases, the group C were fed diets with 500 ppm YCW. Feed and water were provided ad libitum through the trial. Birds were weighed individually and feed consumptions were recorded every 2 weeks. Serum antibody titers of Newcastle disease(ND)and Infectious bronchitis(IB) were tested from nine birds of each treatment in Exp. 1 and twelve birds of each treatment in Exp. 2. In Exp. 1, at the end of the growth trial, 6 birds from each treatment were sacrificed for carcass characteristics, intestinal flora and jejunal and ileal morphology determination. In Exp. 2, at the end of the growth trial, 4 birds from each treatment were randomly selected for the intestinal flora test and jejunum and ileum morphology examination.
    The results of Exp. 1, showed that the body weight and the average daily gain of all YCW treated groups were higher than the control group at 10 wks of age, and the body weight of group D was significantly higher than group A(2537.02 vs 2440.30 g). However, the FCR were not significantly different among groups. Serology results showed that the antibody titers of ND in group D was concentrated in the better immune protection state, and the coefficient of variation in group D was lower than group A(21.6 vs 30.2). The carcass characteristics were not significantly different among all treatment groups. The ratio of villus height to crypt depth of group C was higher than groups A and D(3.75 vs 2.56, 2.31). The intestinal microflora test, showed that the coliforms counts of rectum in group C was lower than other groups(1.88 vs 5.77, 5.78, 6.00 cfu/g), and the Lactobacillus counts of jejunum in groups A, B and C were significantly higher than group D. The result in Exp.2, showed that the average daily gain of group C was higher than group A(57.43 vs 49.20 g/bird). The antibody titers of ND and IB were not significantly different among all groups. The villus height of group C was higher than groups A and B(650.31 vs 538.81, 559.66 μm), the ratio of villus height to crypt depth were not significantly different among all groups. The ratio of villus height to crypt depth of group C was higher than groups A and B(4.76 vs 3.71, 3.87). The intestinal microflora test, showed that the microbial counts of jejunum in all groups were not significantly different, and the coliforms counts of rectum in group A was significantly lower than group C(2.66 vs 6.16 cfu/g). Overall, the experimental results showed that the supplementation of yeast cell wall extract improve the body weight, average daily gain, intestinal morphology, and antibody titers of vaccination, and resulted in improving the growth performance of colored native chickens in the field trial in southern Taiwan.

    摘要..........I
    Abstract..........III
    謝誌..........VI
    目錄..........VII
    圖表目錄..........X
    壹、前言..........1
    貳、文獻回顧..........2
    一、有色肉雞之簡介..........2
    二、消化道功能..........3
    三、熱緊迫..........6
    四、酵母細胞壁之簡介..........9
    (一)酵母菌(Yeast cell)..........9
    (二)酵母細胞壁(Yeast cell wall, YCW)..........13
    (三)甘露寡醣(Mannan-oligosaccharide, MOS)..........14
    (四)β-葡聚醣(β-glucan)..........15
    參、材料與方法..........16
    一、試驗動物..........16
    二、試驗飼糧與試驗設計..........16
    三、飼養管理..........17
    四、防疫計畫..........18
    五、測定項目..........19
    (一)生長性能測定..........19
    (二)疫苗抗體力價檢驗..........19
    (三)屠體性狀檢測..........19
    (四)腸道絨毛高度及腺窩深度之量測..........20
    (五)腸道菌相檢測..........20
    六、資料分析與統計..........21
    肆、結果與討論..........22
    一、生長性能..........22
    (一)試驗一..........22
    (二)試驗二..........22
    二、抗體力價檢測..........29
    (一)試驗一..........29
    (二)試驗二..........29
    三、屠體性狀..........35
    四、腸道黏膜型態..........37
    (一)試驗一..........37
    (二)試驗二..........37
    五、腸道菌相型態..........41
    (一)試驗一..........41
    (二)試驗二..........41
    伍、結論..........45
    陸、研究建議..........46
    柒、參考文獻..........47
    捌、附錄..........56
    作者簡介..........72

    王三郎。2003。應用微生物學。第88-89頁。高立圖書有限公司。台北縣。
    中華民國養雞協會。2013。台灣土雞產業發展沿革。中華民國養雞協會>養雞產業>台灣土雞>台灣土雞產業發展沿革。2019年5月24日,取自http://www.poultry.org.tw/introduce_sub.php?cate_index=3&item=12.
    石寶明、單安山。2000。寡聚醣及其在豬飼料中的應用。中國科技論文在線。養豬,(1):2-6。2019年5月24日,取自http://www.paper.edu.cn/scholar/showpdf/MUT2ENzINTj0Ux5h
    吳和光。2001。畜牧要覽家禽篇。第3-12頁。華香園出版社。台北市。
    杜姿瑩、黃進發、李河水、華傑。2000。酵母在食品工業之應用。第1-3、22-28、34-36頁。食品工業發展研究所。新竹市。
    李春松、戴晉軍、李彪。2015。酵母細胞壁多醣對免疫功能的作用機制。中國飼料行業信息網。2019年5月24日,取自http://www.feedtrade.com.cn/technology/news/news/2015-04-14/2015963.html.
    余碧。2010。畜牧要覽飼料與營養篇。第311-316頁。睿焴出版社。屏東縣。
    季培元。1979。家禽生理學。臺灣商務卬書館發行。台北市。
    周淑敏。2006。不同雞種與禽舍型式對雞隻生長和發育之影響。碩士論文。國立屏東科技大學。屏東縣,台灣。
    林興誠。2002。台灣黑羽土雞在水簾式棲架雞舍生長與行為觀察之研究。碩士論文。國立屏東科技大學。屏東縣,台灣。
    康獻仁、林正鏞、林德育、梁筱梅。2018。熱休克蛋白70基因型對急性熱緊迫雞隻耐受力之影響。中國畜牧學會會誌,47(1): 37-50。
    連塗發、蔡榮村、盧金鎮。1991。嚴格限飼對土雞生長性能、腹脂含量及脂肪細胞之影響。中國畜牧學會會誌,20(3): 269-281。
    許系淇。2018。飼糧中添加酵母細胞壁及乳酸菌合生劑對產蛋雞及肉雞生產性能之影響。碩士論文。國立屏東科技大學。屏東縣,台灣。
    許陌峻。2014。具大量表現甘露糖蛋白能力之Saccharomyces cerevisiae突變株的酒精發酵特性及其所產生之甘露糖蛋白的乳化特性。碩士論文。靜宜大學。台中市,台灣。
    許慧君。2010。β-葡聚醣之免疫調節活性。碩士論文。國立屏東科技大學。屏東縣,台灣。
    莊宗霖。1990。發酵工業。第28-30、103-110頁。台灣省高級職業學校。台灣。
    潘子明。2001。健康食品之胃腸道功能改善評估方法。機能性醱酵製品研討會論文集。附錄十:第309-310頁。中國農業化學會。台灣。
    顏圭卿。2001。溫度對台灣土雞公雞之精液性狀與精子熱緊迫蛋白質70之影響。碩士論文。國立中興大學。台中市,台灣。
    蘇晉暉。2006。商用紅羽土雞與興大選育土雞於生長性狀、肌肉性狀與免疫能力的差異。碩士論文。國立中興大學。台中市,台灣。
    蔡信雄、張聰洲。2003。家禽衛生管理手冊○17建立最少疾病養雞場參考原則圖說。第118-119頁。行政院農業委員會動植物防疫檢疫局。台北市。台灣。
    Abdelrahman, M. M. 2013. Effects of feeding dry fat and yeast culture on broiler chicken performance. Turk. J. Vet. Anim. Sci. 37: 31-37.
    Aluwong, T., M. Kawu, M. Raji, T. Dzenda, F. Govwang, V. Sinkalu, and J. Ayo. 2013. Effect of yeast probiotic on growth, antioxidant enzyme activities and malondialdehyde concentration of broiler chickens. Antioxidants open access J. 2: 326-339.
    Anderson, R. C., J. E. Dalziel, P. K. Gopal, S. Bassett, A. Ellis, and N. C. Roy. 2012. The role of intestinal barrier function in early life in the development of colitis. InTech. Open access doi: 10.5772/25753.
    Ao, Z. and M. Chot. 2013. Oligosaccharides affect performance and gut development of broiler chickens. Asian-Aust. J. Anim. Sci. 26(1): 116-121.
    Ashraf, S., H. Zaneb, M. S. Yousaf, A. Ijaz, M. U. Sohail, S. Muti, M. M. Usman, S. Ijaz, and H. Rehan. 2013. Effects of dietary supplementation of prebiotics and probiotics on intestinal microarchitecture in broilers reared under cyclic heat stress. J. Anim. Physiol. Anim. Nutri. 97: 68-73.
    Attia, Y. A., H. S. Zeweil, A. A. Alsaffar, and A.S. El-Shafy. 2010. Effect of non-antibiotic feed additives as an alternative to flavomycin on productivity, meat quality and blood parameters in broilers. Arch. Geflügelk. 75: 40-48.
    Attia, Y. A., A. E. Abd Al-Hamid, M. S. Ibrahim, M. A. Al-Harthi, F. Bovera, and A. Sh. Elnaggar. 2014. Productive performance, biochemical and hematological traits of broiler chickens supplemented with propolis, bee pollen, and mannan oligosaccharides continuously or intermittently. Livestock Sci. 164: 87-95.
    Awad, W. A., K. Ghareeb, S. Abdel-Raheem, and J. Böhm. 2009. Effects of dietary inclusion of probiotic and synbiotic on growth performance, organ weights, and intestinal histomorphology of broiler chickens. Poult. Sci. 88: 49-55.
    Beers, K. W., T. J. Raup, W. G. Bottje, and T. W. Odom. 1989. Physiological responses of heat-stressed broilers fed Nicarbazin. Poult. Sci. 68: 428-434.
    Bozkurt, M., K. Küçükyilmaz, A. U. Çatli, M. Çınar, E. Bintaş, and F. Çöven. 2012. Performance, egg quality, and immune response of laying hens fed diets supplemented with mannan-oligosaccharide or an essential oil mixture under moderate and hot environmental conditions. Poult. Sci. 91: 1379-1386.
    Chappell, L., P. Kaiser, P. Barrow, M. A. Jones, C. Johnston, and P. Wigley. 2009. The immunobiology of avain systemic salmonellosis. Vet. Immunol. Immunopathol. 128: 53-59.
    Cheng, A. L., T.M. Pan, H. P. Hung, and C. J. Huang. 2000. Intestinal microflora is improved by the feeding of an oligosaccharide containing soft drink in rats. Nutr. Sci. J. 25(4): 232-242.
    Cox, C. M., L. H. Stuard, S. Kim, A. P. McElroy, M. R. Bedford, and R. A. Dalloul. 2010. Performance and immune response to dietary β-glucan in broiler chicks. Poult. Sci. 89: 1924-1933.
    El-Gendy, E. and K. W. Washburn. 1995. Genetic variation in body temperature and its response to short-term acute heat stress in broilers. Poult. Sci. 74: 225-230.
    Fagarasan, S., S. Kawamoto, O. Kanagawa, and K. Suzuki. 2010. Adaptive immune regulation in the gut: T cell–dependent and T cell–independent IgA synthesis. Annual Review Immunol. 28: 243-273.
    Faivre, L., C. Janvier, and H. H. Hsieh. 2019. Heat stress and Necrotic enteritis. Phileo Poult. Forum. Handbook Page 12-13. Tainan, Taiwan.
    Ferreira, S. R., A. E. Murakami, T. G. V. Silveira, J. M. Gonçalves dos Santos, and J. I. M. Fernandes. 2011. Performance and macrophage activity of broilers fed with a sorghum meal with different yeast wall levels. Braz. Arch. Bio. Technol. 54(2): 363-370.
    Givisiez, P. E. N., J. A. Ferro, M. I. T. Ferro, S. N. Kronka, E. Decuypere, and M. Macari. 1999. Hepatic concentration of heat shock protein 70kD (Hsp70 ) in broilers subjected to different thermal treatments. Bri. Poult. Sci. 40: 292-296.
    Guo, Y. M., D. Liu, and B. K. Zhang. 2014. Intestinal barrier of poultry: function and modulation. Chin. J. Anim. Nutri. 26(10): 3091-3100.
    Huff, G. R., V. Dutta, W. E. Huff, and N. C. Rath. 2011. Effects of dietary yeast extract on turkey stress response and heterophil oxidative burst activity. Bri. Poult. Sci. 52(4): 446-455.
    Jahanian, R. and M. Ashnagar. 2015. Effect of dietary supplementation of mannan-oligosaccharides on performance, blood metabolites, ileal nutrient digestibility, and gut microflora in Escherichia coli-challenged laying hens. Poult. Sci. 94: 2165-2172.
    Kim, G. -B., Y. M. Seo, C. H. Kim, and I. K. Paik. 2011. Effect of dietary prebiotic supplementation on the performance, intestinal microflora and immune response of broilers. Poult. Sci. 90: 75–82.
    Li, X. H., Y. P. Chen, Y. F. Cheng, W. L. Yang, C. Wen, and Y. M. Zhou. 2016. Effect of yeast cell wall powder with different particle sizes on the growth performance, serum metabolites, immunity and oxidative status of broilers. Anim. Feed Sci. Technol. 212: 81-89.
    Liu, N., J. Q. Wang, S. C. Jia, Y. K. Chen, and J. P. Wang. 2018. Effect of yeast cell wall on the growth performance and gut health of broilers challenged with aflatoxin B1 and necrotic enteritis. Poult. Sci. 97: 477-484.
    Mahmoud, U. T., N. S. Abou Khalil, and M. S. A. Elsayed. 2017. Behavioral and physiological effects of Mannan-oligosaccharide and β-glucan prebiotic combination on heat stressed broiler chickens. J. Adv. Vet. Res. 7(3): 81-86.
    May, J. D., J. W. Deaton, and S. L. Branton. 1987. Body temperature of acclimated broilers during exposure to high temperature. Poult. Sci. 66: 378-380.
    May, J. D., J. W. Deaton, F. N. Reece, Norman Mitlin, and L. F. Kubena. 1971. The effect of environmental temperature on blood volume. Poult. Sci. 50(6): 1867-1870.
    Meltzer, A.. 1983. The effect of body temperature on the growth rate of broilers. Br. Poult. Sci. 71: 489-495.
    Morales-López, R., E. Auclair, F. García, E. Esteve-Garcia, and J. Brufau. 2009. Use of yeast cell walls; β-1, 3/1, 6-glucans; and mannoproteins in broiler chicken diets. Poult. Sci. 88: 601-607.
    Moreng, R. E. and C. S. Shaffner. 1951. Lethal internal temperature for the chicken, from fertile egg to mature bird. Poult. Sci. 30: 255-266.
    Obeidah, A., P. Mérat, and A. Bordas. 1977. Polydipsia and polyuria at high environmental temperature in association with the productive traits in the fowl. Ann. Gén. Sél. Anim. 9(4): 431-447.
    Odom, T. W., P. C. Harrison, and W. G. Bottje. 1986. Effects of thermal-induced respiratory alkalosis on blood ionized calcium levels in the domestic hen. Poult. Sci. 65: 570-573.
    Quinteiro-Filho, W. M, M. V. Rodrigues, A. Ribeiro, V. Ferraz-de-Paula, M. L. Pinheiro, L. R. M. Sá, A. J. P. Ferreira, and J. Palermo-Neto. 2012. Acute heat stress impairs performance parameters and induces mild intestinal enteritis in broiler chickens: Role of acute hypothalamic-pituitary-adrenal axis activation. J. Anim. Sci. 90: 1986-1994.
    Ribeiro, A. M. L. and A. M. Penz. 2001. Effects of 2-Hydroxy-4-(methylthio) butanoic acid and dl-methionine on broiler performance and compensatory growth after exposure to two different environmental temperatures. J. Appl. Poult. Res. 10: 419-426.
    Samanya, M. and K-. Yamauchi. 2002. Histological alterations of intestinal villi in chickens fed dried Bacillus subtilis var. natto. Comp. Biochem. Physiol. 133: 95-104.
    Sohail, M. U., A. Ijaz, M. S. Yousaf, K. Ashraf, H. Zaneb, M. Aleem, and H. Rehman. 2010. Alleviation of cyclic heat stress in broilers by dietary supplementation of mannan-oligosaccharide and Lactobacillus-based probiotic: Dynamics of cortisol, thyroid hormones, cholesterol, C-reactive protein, and humoral immunity. Poult. Sci. 89: 1934-1938.
    Song, J., K. Xiao, Y. L. Ke, L. F. Jiao, C. H. Hu, Q. Y. Diao, B. Shi, and X. T. Zou. 2014. Effect of a probiotic mixture on intestinal microflora, morphology, and barrier integrity of broilers subjected to heat stress. Poult. Sci. 93: 581-588.
    Song, Z., L. Liu, A. Sheikhahmadi, H. Jiao, and H. Lin. 2012. Effects of heat exposure on gene expression of feed intake regulatory peptides in laying hens. J. Biomed. Biotechnol. 2012: 484869. Doi: 10. 1155/2012/484869.
    Spring, P., C. Wenk, K. A. Dawson, and K.E. Newman. 2000. The effect of dietary mannan oligosaccharides on cecal parameters and the concentrations of enteric bacteria in the ceca of salmonella-challenged broiler chicks. Poult. Sci. 79: 205-211.
    Subaschandran, D. V. and S. L. Balloun. 1967. Acetyl-paminophenol and Vitamin C in heat-stress bird. Poult. Sci. 46: 1073-1076.
    Tapingkae, W., K. Panyachai, M. Yachai, and H. V. Doan. 2018. Effects of dietary red yeast (Sporidioblus pararoseus) on production performance and egg quality of laying hens. J. Anim. Physiol. Anim. Nutr. 102: 337-344.
    Teeter, R. G., M. O. Smith, F. N. Owens, S. C. Arp, S. Sangiah, and J. E. Breazile. 1985. Chronic heat stress and respiratory aldalosis: occurrence and treatment in broiler chicks. Poult. Sci. 64: 1060-1064.
    Vicente, Y., C. Da Rocha, J. Yu, G. Hernandez-Peredo, L. Martinez, B. Pe´rez-Mies, and J. A. Tovar. 2001. Architecture and function of the Gastroesophageal barrier in the piglet. Dig. Dis. Sci. 46(9): 1899-1908.
    Xue, G. D., S. D. Wu, M. Choct, and R. A. Swick. 2017. Effects of yeast cell wall on growth performance, immune responses and intestinal short chain fatty acid concentrations of broilers in an experimental necrotic enteritis model. Anim. Nutr. 3(4): 399-405.
    Yalçin, S., S. Yalçin, İ. Onbaşilar, H. Eser, and A. Şahin. 2014. Effects of dietary yeast cell wall on performance, egg quality and humoral immune response in laying hens. Ankara Üniv. Vet. Fak. Derg. 61: 289-294.
    Yang, Y., P. A. Iji, and M. Choct. 2007. Effects of different dietary levels of mannanoligosacchride on growth performance and gut development of broiler chickens. Asian-Aust. J. Anim. Sci. 20(7): 1084–1091.
    Zhang, S. J., B. L. Liao, X. A. Li, L. Li, L. B. Ma, and X. H. Yan. 2012. Effects of yeast cell walls on performance and immune responses of cyclosporine A-treated, immunosuppressed broiler chickens. Br. J. Nutr. 107(6): 858-866.
    Zhang, P. W., T. Yan, X. L. Wang, S. C. Kuang, Y. C. Xiao, W. W. Lu, and D. G. Bi. 2017. Probiotic mixture ameliorates heat stress of laying hens by enhancing intestinal barrier function and improving gut microbiota. Ital. J. Anim. Sci. 16(2): 292-300.

    下載圖示
    QR CODE