簡易檢索 / 詳目顯示

研究生: 蕭子淳
Shiao, Tzu-Chun
論文名稱: 地面雷射掃瞄系統於樣區尺度之立木測計
Terrestrial Laser Scanning Systems for Measuring Tree based on Plot-Scale Data
指導教授: 陳建璋
Chen, Jan-Chang
魏浚紘
Wei, Chun-Hung
學位類別: 碩士
Master
系所名稱: 農學院 - 森林系所
Department of Forestry
畢業學年度: 107
語文別: 中文
論文頁數: 79
中文關鍵詞: 地面雷射掃瞄系統森林調查自動化測計點雲資料
外文關鍵詞: Terrestrial Laser Scanning system, forest inventory, automated extraction, point clouds data
DOI URL: http://doi.org/10.6346/NPUST201900090
相關次數: 點閱:16下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統
  • 森林決策之訂定仰賴於精確之森林調查資訊,故如何準確地蒐集立木及林分性態值為重要之方法。地面雷射掃瞄儀(Terrestrial Laser Scanning, TLS)具高精度、可重複檢核、非破壞性量測及可快速獲取大量三維地表資訊之特性,其點雲(Point Clouds)資訊可透過視覺化及自動化等方式測計,獲取準確之立木及林分性態值,如胸徑、樹高及樹冠幅之取得、蓄積量及生長量推估以及透過其進行森林健康度評估等。本研究係以TLS取得立木三維點雲資料,透過點雲資料探討四種不同立木胸徑與樹高之測計方法(人工判釋測計法、自動化偵測法、去除界外值之自動化偵測法與半自動化偵測法等)探討其於樣區尺度立木測計之可行性,後續並以樣區每木實測胸徑與樹高資料,進行迴歸分析及單因子變異數分析,探討TLS量測立木胸徑與樹高之準確度,亦討論不同架站模式及不同掃瞄解析度對於樣區點雲生成之影響。結果顯示,實測胸徑除了以自動化偵測法對於立木性態值測計與實測具有顯著差異外,其他三種處理方法皆無顯著性差異,樹高測計方面,在人工判釋測計法及半自動化偵測法所測計之樹高與實測樹高無顯著性差異,自動化偵測法及去除界外值之自動化偵測法則具有顯著性偏高之差異。以TLS點雲獲取之林木性態值與實測值之胸徑、樹高進行迴歸分析,結果顯示,透過人工判釋測計法 (胸徑R2 = 0.99、樹高R2 = 0.91)或半自動化偵測法 (胸徑R2 = 0.99、樹高R2 = 0.89)不論在胸徑或樹高上均具其準確性,樹高RMSE均小於1.50 m;胸徑RMSE則小於0.53 cm,另外掃瞄解析度為1/4 (43.70 MPts)及1/2 (174.80 MPts)時,其所測計之胸徑、樹高與實測值無顯著差異,而解析度為1/2 (174.80 MPts) 時,其精度並未上升,故在本研究之樣區類型以掃瞄解析度1/4 (43.70 MPts) 時,可取得準確之立木胸徑;本研究亦發現樣區內架站數越多則其所生成之點雲資料越完整,可有效降低遮蔽導致之誤差現象,但相對而言,資料量也越龐大,各站萃取之胸徑R2值分別為0.11、0.41、0.85、0.94、0.99,樹高R2值分別為0.38、0.59、0.72、0.90及0.92,即掃瞄站數之多寡與胸徑、樹高萃取準確度呈正相關,故於人工闊葉林掃描時,架站數量應以四站以上為佳。

    Accurately to collect the tree attributes in plot-scale forest measurement is an important task for making the strategies of forest management. The features of the Terrestrial Laser Scanning (TLS) system includes advantages such as high precision scans, repeatable access, browse non-destructive measurement, and the ability to acquire a number of 3D surface information. Point cloud information acquired from TLS allows obtaining accurate forest attributes through visualization and automated extraction, such as diameter at breast height (DBH), tree height (H), canopy width, volume estimation, tree growth, and forest health assessments. The purposes of this study include using TLS to obtain 3D point cloud information and extract tree attributes, followed by accuracy assessments on four different methods of point cloud extraction that include artificial extraction, semi-automatic extraction, automated extraction and automated extraction of removal of outliers are used to extract DBH and H within plot-scale. We would discuss the impact of point cloud generation in different resolution and station number settings in the same plot. The result shows that there is a significant difference between the measured DBH and the automatic extraction, and there are no significant differences with the other three types of extraction. On the other hand, the measured H was not significantly different between the artificial extraction and semi-automatic extraction, but with automated extraction and automated extraction of removal of outliers is significantly different and has a high trend. 1:1 linear regression analysis between the tree attributes obtained by TLS and real values of DBH, H showed that the artificial extraction (DBH, R2 = 0.99, H, R2 = 0.91) or semi-automatic extraction (DBH, R2 = 0.99, H, R2 = 0.89) is highly correlated in DBH or H, RMSE is less than 1.50 m in H measurement and 0.53 cm in DBH measurement. The greater the number of the station in the sample area was set, the more complete the point cloud information was generated, which effectively reduces the error caused by the shadowing. Comparing scanning resolution of 1/4 (43.70 MPts) and 1/2 (174.80 MPts), no significant difference between the extracted DBH, H and the true value was found. The accuracy remains when the resolution is set to 1/2 (174.80 MPts) therefore, accurate data can acquire with a scan resolution of 1/4 (43.70 MPts). The more the number of stations in the sample area, the more complete the point cloud data generated, which can effectively reduce the error caused by the masking. The R2 of the DBH by each station are 0.11, 0.41, 0.85, 0.94, 0.99, and the R2 of the H are 0.38, 0.59, 0.72, 0.90 and 0.92. That is, the number of scanning stations is positively correlated with the DBH and H extraction accuracy. Therefore, the number of stations should be more than four stations.

    摘要 I
    Abstract III
    謝誌 V
    目錄 VI
    圖目錄 IX
    表目錄 XIII
    壹、前言 1
    貳、前人研究 3
    一、森林地面樣區調查之目的與應用 3
    (一)大尺度森林蓄積量之推估 3
    (二)立體化資料於森林樣區調查的必要性 5
    二、地面雷射掃瞄系統之掃瞄原理及特性 7
    (一)地面雷射掃瞄系統之原理 7
    (二)地面雷射掃瞄系統之特性及其應用限制 9
    三、地面雷射掃瞄在森林地面樣區調查之應用 12
    (一)地面雷射掃瞄在森林樣區立體化測計之應用 12
    (二)地面雷射掃瞄在立木測計之應用 13
    參、研究材料與方法 20
    一、研究區域概況 20
    (一)地理位置 20
    (二)氣候環境 21
    (三)研究樹種 22
    二、研究設備與材料 23
    (一)林分地面樣區之實測值測計 23
    (二)地面雷射掃瞄儀 23
    三、研究方法 25
    (一)地面樣區實測資料之測計 25
    (二)以地面雷射掃瞄系統進行地面樣區調查 26
    (三)地面雷射掃瞄系統點雲資料之前處理 29
    (四)以地面雷射掃瞄系統進行立木性態值測計之準確性分析 33
    (五)不同掃瞄解析度對立木性態值測計之影響 34
    (六)比較不同掃瞄站數對林木性態值測計之影響 34
    肆、結果與討論 35
    一、調查樣區之實測值分析 35
    二、不同點雲資料處理方法對立木性態值測計之準確度 37
    (一)雷射掃瞄之點雲資料以人工判釋測計法進行林分性態值測計與實測值之準確度評估 45
    (二)雷射掃瞄之點雲資料以自動化測計法進行林分性態值測計值與實測值之準確度評估 46
    三、以地面雷射掃瞄系統進行森林樣區調查之試驗設計 54
    (一)比較不同掃瞄點雲密度對林木胸徑及樹高測計之影響 56
    (二)比較不同架站數對林木胸徑及樹高測計之影響 61
    伍、結論 70
    陸、參考文獻 71

    何岱傑、張維恕、林慶偉、劉守恆 (2014) 應用數值地形及光學影像於潛在大規模崩塌地形特徵判釋。航測及遙測學刊 18(2): 109-127。
    周朝富、鄭祈全 (1994) 航空照片掃瞄資料應用於林地變遷監測之研究。林業試驗所研究報告季刊 9(2): 87-115。
    林建中 (1999) 雷射測距技術與研究現況。光連:光電產業與技術情報 19: 30-33。
    林務局 (1995) 第三次臺灣森林資源及土地利用調查,行政院農業委員會林務局。
    林務局 (2015) 第四次森林資源調查成果報告,行政院農業委員會林務局。
    陳淯婷、顏添明 (2018) 惠蓀林場香杉人工林之森林健康評估。林業研究季刊 40(1): 1-12。
    陳朝圳 (2006) 第四次森林資源調查項目之評估,林務局委託研究計畫報告書。
    陳朝圳、陳建璋 (2015) 森林經營學。台北 正中書局股份有限公司 417頁。
    彭炳勳、謝依達、陳朝圳 (2008) 空載光達雷射穿透率指數與柳杉林葉面積指數之關係探討。臺灣林業科學 23(Supplement): S63-73。
    馮郁筑、魏浚紘、陳建璋、陳朝圳 (2009) 恆春半島尖山、關山、後灣與大尖石山地區土地利用變遷對銀合歡入侵之影響。華岡農科學報 24: 69-81。
    馮豐隆、張愷玲、張鈞媛 (2010) 大葉桃花心木的生物、生態與利用。生物科學 52(2): 15-24。
    黃國楨、鍾玉龍、林美雲、李久先 (2004) 航空照片應用於大鵬灣土地利用變遷之研究。航測及遙測學刊 9(4): 35-46。
    楊榮啟、林文亮 (2003) 森林測計學。國立編譯館 309頁。
    管立豪 (2007) 光達技術在林業經營管理利用。臺灣林業期刊33 (6): 25-29。
    劉知妤、王兆桓 (2008) 以林齡-蓄積量模式估算柳杉及檜木人工林的碳吸存量。宜蘭大學生物資源學刊 4(1): 35-45。
    劉宣誠、林銘輝、曲俊麒 (1981) 大葉桃花心木造林木枝生長與木材性質之研究。林試所試驗報告地135號,38頁。
    蔡馨儀 (2012) 以地面光達資料重建大葉桃花心木三維模型。國立屏東科技大學森林學系碩士論文 76頁。
    衛強、王亞男、蔡明哲、鄭景鵬 (2010) 臺大實驗林溪頭營林區西川試驗地柳杉生長量之研究。臺大實驗林研究報告 24(3): 169-183。
    蕭國鑫、劉進金、曾義星、王晉倫 (2010) 三維雷射掃瞄應用於崩塌土石量化之研究。航測及遙測學刊 15(2): 97-109。
    賴志凱 (2004) 地面雷射掃瞄儀的精度分析與檢定。國立成功大學測量及空見資訊學系碩士論文 116頁。
    謝漢欽、汪大雄、王慈憶、張鈞媛、邱志明 (2011) 應用福衛二號影像與地面樣區資料於光蠟樹平地造林地之碳吸存推估。航測及遙測學刊16(2): 79-99。
    魏浚紘 (2014) 應用光達技術於人工林之經營與監測。國立屏東科技大學生物資源研究所博士論文 213頁。
    魏浚紘、陳朝圳 (2016) 光達技術應用於人工林之經營與監測。航測及遙測學刊 20(4): 231-250。
    魏浚紘、陳朝圳、彭炳勳、李崇誠、陳建璋 (2013) 地面光達應用於林木競爭之研究。航測及遙測學刊 16(4): 278-287。
    Al-kheder, S., Y. Al-shawabkeh, and N. Haala (2009) Developing a documentation system for desert palaces in Jordan using 3D laser scanning and digital photogrammetry. Journal of Archaeological Science 36: 537-546.
    Astrup, R., M. J. Ducey, A. Granhus, T. Ritter, and N. von Lüpke (2014) Approaches for estimating stand-level volume using terrestrial laser scanning in a single-scan mode. Canadian Journal of Forest Research 44: 666-676.
    Boehler, W., and A. Marbs (2002) 3D scanning instruments, i3mainz, Institute for Spatial Information and Surveying Technology, FH Mainz, University of App;ied Sciences.
    Bütler, R., and R. Schlaepfer (2004) Spruce sand qualification by coupling color infrared aerial photos and a GIS. Forest Ecology and Management 195: 325-339.
    Cabo, C., C. Ordóñez, C. A. López-Sánchez, and J. Armesto (2018) Automatic dendrometry: Tree detection, tree height and diameter estimation using terrestrial laser scanning. International Journal of Applied Earth Observation and Geoinformation 69: 164-174
    Cale, J. A., J. G. Klutsch, N. Erbilgin, J. F. Negrón, and H. D. Castello (2016) Using structural sustainability for forest health monitoring and triage: Case study of a mountain pine beetle (Dendroctonus ponderosae)-impacted landscape. Ecological Indicators 70: 451-459.
    Cifuentes, R., D. V. der Zande, J. Farifteh, C. Salas, and P. Coppin (2014) Effects of voxel size and sampling setup on the estimation of forest canopy gap fraction from terrestrial laser scanning data. Agricultural and Forest Meteorology 194(15): 230-240.
    Fabbri, S., B. M. S. Giambastiani, F. Sistilli, F. Scarelli, and G. Gabbianelli (2017) Geomorphological analysis and classification of foredune ridges based on Terrestrial Laser Scanning (TLS) technology. Geomorphology 295(15): 436-451.
    Fernández-Sarría, A., I. López-Cortés, J. Estornell, B. Velázquez-Martí, and D. Salazar (2019) Estimating residual biomass of olive tree crops using terrestrial laser scanning. 75: 163-170.
    Figueiredo, E. O., M. V. N. d'Oliveira, E. M. Braz, D. A. Paoa, and P. M. Fearnside (2016) LIDAR-based estimation of bole biomass for precision management of an Amazonian forest: Comparisons of ground-based and remotely sensed estimates. Remote Sensing of Environment 187: 281-293.
    Fleck, S., I. Mölder, M. Jacob, T. Gebauer, H. F. Jungkunst, and C. Leuschner (2011) Comparison of conventional eight-point crown projections with LIDAR-based virtual crown projections in a temperate old-growth forest. Annals of Forest Science 68(7): 1173-1185.
    Holm, S., R. Nelson, and G. Ståhl (2017) Hybrid three-phase estimators for large-area forest inventory using ground plots, airborne lidar, and space lidar. Remote Sensing of Environment 197: 58-97.
    Hosoi, F. Y. Nakai, and K. Omasa (2013) 3-D voxel-based solid modeling of a broad-leaved tree for accurate volume estimation using portable scanning lidar. ISPRS Journal of Photogrammetry and Remote Sensing 82: 41-48.
    Hosoi, F., and K. Omasa (2006) Voxel-based 3D modeling of individual trees for estimating leaf area density using high-resolution portable scanning lidar. IEEE Transactions on Geoscience and Remote Sensing. 44: 3610-3618.
    Huang, H., Z. Li, P. Gong, X. Cheng, N. Clinton, C. Cao, W. Ni, and L. Wang (2011) Automated methods for measuring DBH and tree heights with a commercial scanning lidar. Photogrammetric Engineering & Remote Sensing 77: 219-227.
    Kangas, A. and M. Maltamo (Eds.), 2006, ForestInventory- Methodology and applications,Published by Springer, Dordrecht, TheNetherlands, 362p.
    Kankare, V., M. Holopainen, M. Vastaranta, E. Puttonen, X. Yu, J. Hyyppä, M. Vaaja, H. Hyyppä, and P. Alho (2013) Individual tree biomass estimation using terrestrial laser scanning. ISPRS Journal of Photogrammetry and Remote Sensing 75: 64-75.
    Kint, V., S. Hein, M. Campioli, and B. Muys (2010) Modelling self-pruning and branch attributes for young Quercus robur L. and Fagus sylvatica L. trees. Forest Ecology and Management 260(11): 2023-2034.
    Krůček, M., J. Trochta, M. Cibulka, and K. Král (2019) Beyond the cones: How crown shape plasticity alters aboveground competition for space and light—Evidence from terrestrial laser scanning. Agricultural and Forest Meteorology 264(15): 188-199.
    Laurin, G. V., N. Puletti, Q. Chen, P Corona, D. Papale, and R. Valentini (2016) Above ground biomass and tree species richness estimation with airborne lidar in tropical Ghana forests. International Journal of Applied Earth Observation and Geoinformation 52: 371-379.
    Liang X., J. Hyyppä, H. Kaartinen, M. Lehtomäki, J. Pyörälä, N. Pfeifer, M. Holopainen, G. Brolly, P. Francesco, J. Hackenberg, H. Huang, H Jo, M. Katoh, L. Liu, M. Mokroš, J. Morel, K. Olofsson, J. Poveda-Lopez, J. Trochta, D. Wang, J. Wang, Z. Xi, B. Yang, G. Zheng, V. Kankare, V. Luoma, X. Yu, L. Chen, M. Vastaranta, N. Saarinen, and Y. Wang (2018) International benchmarking of terrestrial laser scanning approaches for forest inventories. ISPRS Journal of Photogrammetry and Remote Sensing 144: 137-179.
    Liang, X., V. Kankare, J. Hyyppä, Y. Wang, A. Kukko, H. Haggrén, X. Yu, H. Kaartinen, A. Jaakkola, F. Guan, M. Holopainen, and M. Vastaranta (2016) Terrestrial laser scanning in forest inventories. ISPRS Journal of Photogrammetry and Remote Sensing 115: 63-77.
    Liu, J., X. Liang, J. Hyyppä, X. Yu, M. Lehtomäki, J. Pyörälä, L. Zhu, Y. Wang, and R. Chen (2017) Automated matching of multiple terrestrial laser scans for stem mapping without the use of artificial references. International Journal of Applied Earth Observation and Geoinformation 56: 13-23.
    Lovell, J. L., D. L. B. Jupp, G. J. Newnham, and D. S. Culvenor (2011) Measuring tree stem diameters using intensity profiles from ground-based scanning lidar from a fixed viewpoint. ISPRS Journal of Photogrammetry and Remote Sensing 66(1): 46-55.
    Metz, D.D., P. Schall, D. Scheffer, E. D. Schulze, and C. Ammer (2013) Crown modeling by terrestrial laser scanning as an approach to assess the effect of aboveground intra- and interspecific competition on tree growth. Forest Ecology and Management 310(15): 275-288.
    Moorthy, I., J. R. Miller, J. A. J. Berni, P. Zarco-Tejada, B. Hu, and J. Chen (2010) Field characterization of olive (Olea europaea L.) tree crown architecture using terrertrial laser scanning data. Agricultural and Forest Meteorology 151(2): 204-214.
    Nowak, D. J., S. Hirabayashi, A. Bodine, E. Greenfield (2014) Tree and forest effects on air quality and human health in the United States. Environmental Pollution 193: 119-129.
    Omasa, K., Y. Urano, H. Oguma, and Y. Fujinuma (2002) Mapping of tree position of Larix leptolepis woods and estimation of diameter at breast height (DBH) and biomass of the trees using range data measured by a portable scanning lidar. Journal of Remote Sensing Society of Japan 22: 550-557.
    Otero, V., R. V. D. Kerchove, B. Satyanarayana, C. Martínez-Espinosa, M. A. B. Fisol, M. R. B. Ibrahim, I. Sulong, H. Mohd-Lokman, R. Lucas, and F. Dahdouh-Guebas (2018) Managing mangrove forests from the sky: Forest inventory using field data and Unmanned Aerial Vehicle (UAV) imagery in the Matang Mangrove Forest Reserve, peninsular Malaysia. Forest Ecology and Management 411(1): 35-45.
    Polo, J. R. R. , R. Sanz, J. Llorens, J. Arno’a, A. Escola’, A. Escolà, M. Ribes-Dasi, J. Masip, F. Camp, F. Gràcia, F. Solanelles, T. Pallejà, L. Val, S. Planas, E. Gil, and J. Palacín (2009) A tractor-mounted scanning LIDAR for the non-destructive measurement of vegetative volume and surface area of tree-row plantations: a comparison with conventional destructive measurements. Biosystems Engineering 102(2): 128-134.
    Pueschel P. (2013) The influence of scanner parameters on the extraction of tree metrics from FARO Photon 120 terrestrial laser scans. ISPRS Journal of Photogrammetry and Remote Sensing 78: 58-68.
    Pueschel, P., G. Newnham, G. Rock, T. Udelhoven, W. Werner, and J. Hill (2013) The influence of scan mode and circle fitting on tree stem detection, stem diameter and volume extraction from terrestrial laser scans. ISPRS Journal of Photogrammetry and Remote Sensing 77: 44-56.
    Reshetyuk, Y. (2009) Self-calibration and Direct Georeferencing in Terrestrial Laser Scanning (Dissertation). Royal Institute of Technology, Stockholm, Sweden.
    Saarinen, N., V. Kankare, M. Vastaranta, V. Luoma, J. Pyörälä, T. Tanhuanpää, X. Liang, H. Kaartinen, A. Kukko, A. Jaakkola, X. Yu, M. Holopainen, and J. Hyyppä (2017) Feasibility of Terrestrial laser scanning for collecting stem volume information from single trees. ISPRS Journal of Photogrammetry and Remote Sensing 123: 140-158.
    Sanz, R., J. R. Rosell, J. Llorens, E. Gil, and S. Planas (2013) Relationship between tree row LIDAR-volume and leaf area density for fruit orchards and vineyards obtained with a LIDAR 3D Dynamic Measurement System. Agricultural and Forest Meteorology 171-172: 153-162.
    Stovall, A. E. L., A. G. Vorster, R. S. Anderson, P. H. Evangelista, and H. H. Shugart (2017) Non-destructive aboveground biomass estimation of coniferous trees using terrestrial LiDAR. Remote Sensing of Environment 200: 31-42.
    Telling, J., A. Lyda, P. Hartzell, and C. Glennie (2017) Review of Earth science research using terrestrial laser scanning. Earth-Science Reviews 169: 35-68.
    Van Drunen, S. G., J. L. McCune, and B. C. Husband (2018) Distribution and environmental correlates of fungal infection and host tree health in the endangered American chestnut in Canada. Forest Ecology and Management 427(1): 60-69.
    Wang Y., M. Lehtomäki, X. Liang, J. Pyörälä, A. Kukko, A. Jaakkola, J. Liu, Z. Feng, R. Chen, and J. Hyyppä (2019) Is field-measured tree height as reliable as believed – A comparison study of tree height estimates from field measurement, airborne laser scanning and terrestrial laser scanning in a boreal forest. ISPRS Journal of Photogrammetry and Remote Sensing 147: 132-145.
    Wei, C. H., C. T. Chen, J. C. Chen, and S. T. Wu (2014) Using Ground-based LiDAR Data to Measure Standing Trees in a Red Cypress Plantation. Taiwan Journal of Forest Science 29(3): 169-178.
    Wei, C. H., S. T. Wu, J. C. Chen, and C. T. Chen (2011) Application of 3d laser scanning data in structural forest management decision. Forest Management Decision. 32nd Asian Conference on Remote Sensing. Taipei, Taiwan.
    Wilkes, P., A. Lau, M. Disney, K. Calders, A. Burt, J. G. Tanago, H. Bartholomeus, B. Brede, and M. Herold (2017) Data acquisition considerations for Terrestrial Laser Scanning of forest plots. Remote Sensing of Environment 196: 140-153.
    Xu, X., H. Yang, and I. Neumann (2017) Deformation monitoring of typical composite structures based on terrestrial laser scanning technology. Composite Structures.
    You, W., L. Lin, L. Wu, Z. Ji, J. Yu, J. Zhu, Y. Fan, and D. He (2017) Geographical information system-based forest fire risk assessment integrating national forest inventory data and analysis of its spatiotemporal variability. Ecological Indicators 77: 176-184.
    Zai, D., J. Li, Y. Guo, M. Cheng, P. Huang, X. Cao, and C. Wang (2017) Pairwise registration of TLS point clouds using covariance descriptors and a non-cooperative game. ISPRS Journal of Photogrammetry and Remote Sensing 134: 15-29.

    下載圖示
    QR CODE