簡易檢索 / 詳目顯示

研究生: 蔡智翔
Tsai, Chih-Hsiang
論文名稱: 飼糧中添加發酵大豆粕取代魚粉對紅羽土雞生長性能、腸道性 狀以及血液生化值之影響
Effects of fermented soybean meal replacing fish meal in diet on growth performance, intestinal properties and serum biochemical parameters of red-feathered Taiwan country chickens
指導教授: 余祺
Yu-Chi
學位類別: 碩士
Master
系所名稱: 農學院 - 動物科學與畜產系所
Department of Animal Science
畢業學年度: 107
語文別: 中文
論文頁數: 81
中文關鍵詞: 血液生化值發酵大豆粕生長性能腸道性狀紅羽土雞
外文關鍵詞: Intestinal microbial, Serum biochemical parameters
DOI URL: http://doi.org/10.6346/NPUST201900154
相關次數: 點閱:43下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統
  • 現今禽畜飼糧中,魚粉與大豆粕為常用之蛋白質來源,以供應動物生長所需。近幾年由於漁業資源的缺乏導致魚粉價格上漲,為了降低飼料成本而使用價格較低廉之大豆粕取代魚粉。大豆粕含有多種抗營養因子(anti-nutritional factors, ANFs),如胰蛋白酶抑制因子及凝集素等,會降低動物對飼糧中營養物之消化、吸收及利用,進而影響動物之生長與健康。大豆粕經微生物發酵後,可降低其抗營養因子之含量,並且提升大豆粕之營養分利用率。本試驗旨在探討,飼糧中添加發酵大豆粕(fermented soybean meal, FSBM)取代魚粉於紅羽土雞生長性能、腸道性狀及血液生化值之影響。試驗使用240隻1日齡紅羽土雞隨機分配至4個處理組,分別為A:控制組(基礎飼糧);B:3%魚粉(fish meal, FM);C:5%FSBM餵飼28天;D:5%FSBM餵飼84天之處理組。本試驗所使用之發酵大豆粕是以嗜酸乳桿菌(Lactobacillus acidophilus)進行發酵。試驗全期採任飼任飲,每週雞隻個別秤重並記錄採食量,實驗開始後分別在第4、8及12週進行犧牲採樣並分析生長性能、營養消化率、血液生化值、腸道菌相、腸道性狀。實驗結果顯示, C組於生長性能方面有改善紅羽土雞之體重、體增重、採食量及飼料轉換率之趨勢,且生長性能達到與魚粉組無顯著差異。由臟器重量結果顯示,飼糧添加發酵大豆粕可改善雞隻肝臟重量及母雞後期胸腺之重量。於營養消化率結果顯示飼糧中添加發酵大豆粕可顯著改善雞隻中期灰分消化率,及雞隻後期粗蛋白質消化率。餵飼發酵大豆粕組於血液生化值方面則可顯著增加前期之白蛋白含量、降低後期雞隻球蛋白含量及增加白球蛋白比;另可顯著降低前期公雞之三酸甘油脂及中期母雞之總膽固醇;免疫球蛋白方面,則可顯著提高免疫球蛋白IgA、IgG及IgM含量。由腸道菌相結果顯示,飼糧中添加發酵大豆粕顯著提高前及中期空腸乳酸桿菌含量,且後期之大腸桿菌數量顯著下降。於腸道型態方面,飼糧中添加發酵大豆粕可增加空腸及迴腸之絨毛高度,並降低腺窩深度,同時提高絨毛高度與腺窩深度之比值。綜合上述生長性能、腸道性狀及血液生化值結果評估,飼糧中添加發酵大豆粕可增加蛋白質消化率;提升血清中白蛋白含量,降低球蛋白、三酸甘油脂及總膽固醇之含量;增加腸道中乳酸菌含量並降低大腸桿菌含量以改善腸道健康。而於生長性能,對比控制組有改善之趨勢,且與魚粉組無顯著差異,因此發酵大豆粕可替代魚粉作為主要蛋白質來源並降低經濟成本。

    The objective of this study was to investigate the effects of fermented soybean meal (FSBM) replacing fish meal in diet on growth performance, intestinal properties, intestinal microflora and serum biochemical parameters of red-feathered Taiwan country chickens. Two hundred and forty day-old red-feathered Taiwan country chickens (120 male and 120 female) were randomly allocated into four treatments for a 84-day feeding trial, which included a starter period (1 to 28 d), growing period (29 to 56 d) and finishing period (57 to 84 d). Each treatment had 4 replicates with 15 birds per pen. The four dietary treatments including A (Corn-SBM basal diet), B (3% fish meal), C (5 % FSBM for 28 days) and group D (5% FSBM for 84 days). Soybean meals were fermented by Lactobacillus acidophilus. The chicks were allowed free access to water and experimental diets. Chicken from each group were sacrificed at the age of 28, 56 and 84 days respectively; growth performance, intestinal morphology, intestinal microflora, and blood biochemistry were analyzed. The results of growth performance showed that the order of the final weight was group C > B > A > D and there was no significant difference among treatments. Body weight gain, feed intake and feed conversion ratio had no significant difference among group B and C. Comparison with A group, liver weight of chicken and thymus weight of female chicken was improved when FSBM were supplemented in diets. For nutrients digestibility, ash digestibility of male chicken in group D had significantly increased than group A in growing period, and group C significantly increased digestibility of crude protein than group A in finishing period. For blood biochemistry, compared to group A, group D had significantly decreased triglyceride of male chicken in starter period, total cholesterol of female chicken in growing period and globulin in finishing period; increased albumin in starter period and increased albumin/globulin ratio of female chickens in finishing period; group C had significantly increased Immunoglobulin A level at 84 days. For intestinal microbial, group D had significantly increased lactobacilli counts in jejunum than control group of female chickens at 28 and 56 days, and significantly decreased Coliforms in jejunum. For intestinal morphology, group C and D had higher villus height in ileum than control group of female chickens at 28 days. Compared to A group, group D had significantly decreased crypt depth in jejunum of male chickens at 56 days. At 84 days, group C had significantly decreased crypt depth in jejunum compared with group B and increased villus height in ileum than group A in male chickens. In summary, dietary FSBM supplementation improved crude protein and ash digestibility, increased albumin/globulin ratio, decreased triglyceride and total cholesterol concentration, also increased lactobacilli and decreased Coliforms content. In terms of growth performance, the effect of FSBM is similar to that of fish meal, therefore FSBM has the potential to replace fish meal as a protein source candidate.

    目錄
    摘要 I
    Abstract III
    圖表目錄 VII
    壹、 前言 1
    貳、 文獻探討 2
    一、 大豆介紹 2
    (一) 簡介 2
    (二) 大豆成分 2
    (三) 大豆主要用途 3
    (四) 用於飼料之大豆種類 4
    二、大豆中的抗營養物質 7
    三、去除抗營養因子之方法 11
    四、益生菌介紹 13
    (一)定義 13
    (二)特性 13
    (三)種類 14
    (四)作用機制 15
    五、乳酸菌介紹 16
    (一)特性 16
    (二)對家禽之影響 16
    參、材料方法 18
    肆、結果與討論 29
    一、發酵大豆粕對生長性能之影響 29
    (一)體重與體增重 29
    (二)採食量及飼料轉換率 29
    (三)營養消化率 35
    (四)臟器重量與臟器重量百分比 38
    二、發酵大豆粕對血液生化值之影響 46
    三、發酵大豆粕對免疫球蛋白之影響 55
    四、發酵大豆粕對腸道菌相之影響 59
    五、發酵大豆粕對腸道型態之影響 64
    伍、結論 68
    陸、參考文獻 69
    柒、作者簡介 80

    艾曉杰。2004。家禽日糧抗營養因子的危害及對策。中國家禽。26(1):5-8
    余碧。 2010。益生菌於畜產業之應用。農政與農情。213:34–37。
    余碧。2010。畜牧要覽飼料篇,第311-316頁。睿焴出版社。屏東縣。
    吳若瑀。2017。全球飼料大豆蛋白市場概述。財團法人農業科技研究院產業發展中心。
    林志勳。2010。畜牧要覽飼料篇,第407- 444頁。睿焴出版社。屏東縣。
    林禎祥。2017。大豆型態介紹。桃園區農業專訊-第100期,P15 –18。
    施柏齡、林義福、徐阿里。2003。台灣種母土雞產蛋期有效磷需要量之研究。畜產研究。36(3):193~201。
    張哲茂。2018。大豆的介紹-黃豆。品質月刊54卷2期,P34 – 37。
    許麗惠、祈瑞雪、王長康、王全溪、謝麗曲、林麗花、陳慶達。2013。發酵豆粕對黃羽肉雞生長性能、血清生化指標、腸道黏膜免疫功能及微生物菌群的影響。動物營養學報。25(4):840-848
    劉海燕,邱玉朗,魏炳棟、陳群、秦貴信。2012。發酵酶解豆粕對仔豬生長性能、日糧營養物質消化率和血液指標的影響。吉林農業 大學學報。34(6):655-660。
    鄭長義、黃自毅。2015。畜水產飼料新科技與加值型產品之生產。睿煜出版社。屏東縣。
    Ao, X., T. X. Zhou, H. J. Kim, S. M. Hong and I. H. Kim. 2011. Influence of fermented red ginseng extract on broilers and laying hens. Asian-Aust. J. Anim. Sci. 24:993-1000.
    Banaszkiewicz T. 2011. Nutritional Value of Soybean Meal. ISBN:a978-953-307-536-5, InTech
    Bar-Shira, E., D. Sklan, and A. Friedman. 2003. Establishment of immune competence in the avian GALT during the immediate post-hatch period. Dev. Comp. Immunol. 27:147–157.
    Begley, M., Gahan, C. G., & Hill, C. 2005. The interaction between bacteria and bile. FEMS Microbiology Review, 29, 625–651.
    Chiang G, Lu W, Piao X, Hu J, Gong L, Thacker P. 2010. Effects of feeding solid-state fermented rapeseed meal on performance, nutrient digestibility, intestinal ecology and intestinal morphology of broiler chickens. Asian-Aust. J Anim Sci 2010; 23:263 - 71
    Cho IJ, Lee NK, Hahm YT. 2009. Characterization of Lactobacillus spp. isolated from the feces of breast-feeding piglets. J Biosci Bioeng;108(3):194e8.
    Christensen HR, Frokiaer H, Pestka JJ. 2002. Lactobacilli differentially modulate expression of cytokines and maturation surface markers in murine dendritic cells.J Immunol;168:171-8.
    Collado M. C., E. Isolauri, S. Salminen and Y. Sanz .2009. The Impact of Probiotic on Gut Health. Current Drug Metabolism, , 10, 68-78.
    Conway, P. L. 1996. Selection criteria for probiotic micro-organisms. Asia Pacific J. Clin. Nutr. 5(1), 10-14.
    D’Mello, F.J.P., 1991. Antigenic proteins. In: D’Mello, F.J.P., Duffus, C.M., Duffus, J.H. ŽEds.., Toxic Substances in Crop Plants. The Royal Society of Chemistry, Thomas Graham House, Science park, Cambridge CB4 4WF, Cambridge, pp. 108–125.
    Dawson, D. :P., J. L. Morrill, P. G. Reddy, and H. C. Minocha. 1988. Soy protein concentrate and heated soy flours as proteins sources in milk replacer for preruminant calves. J. Dairy Sci. 71:1301-1309.
    Delzenne, N.M., Roberfroid, M.R., 1994. Physiological effects of non-digestible oligosaccharides. Lebensm.-Wiss. U Technol 27, 1–6.
    Di Pietro, C. M., & Liener, I. E. 1989. Heat inactivation of the Kunitz and Bowman-Birk soybean protease inhibitors. Journal of Agricultural and Food Chemistry, 37, 39-44.
    Dowarah R, Verma AK, Agarwal N.2017. The use of Lactobacillus as an alternative of antibiotic growth promoters in pigs: A review. Anim Nutr ;3:1–6.
    Egounlety, M. and O. C. Aworh. 2003. Effect of soaking, dehulling, cooking and fermentation with Rhizopus oligosporus on the oligosaccharides, trypsin inhibitor, phytic acid and tannins of soybean (Glycine max Merr.), cowpea (Vigna unguiculata L. Walp) and ground bean (Macrotyloma geocarpa Harms). J. Food Eng. 56:249-254.
    FAO (Food and Agriculture Organization of the United Nations), 2014. The State of World Fisheries and Aquaculture (SOFIA). FAO, Fisheries and Aquaculture Department, Rome.
    Feng, J., X. Liu, Z. R. Xu, Y. Y. Liu, and Y. P. Lu. 2007a. Effects of Aspergillus oryzae 3.042 fermented soybean meal on growth performance and plasma biochemical parameters in broilers. Anim. Feed Sci. Technol. 134:235–242.
    Feng, J., X. Liu, Z. R. Xu, Y. Z. Wang, and J. X. Liu. 2007b. Effects of fermented soybean meal on digestive enzyme activities and intestinal morphology in broilers. Poult. Sci. 86:1149–1154.
    Fijan, 2014. Microorganisms with claimed probiotic properties: an overview of recent literature Rev. Int. J. Environ. Res. Public Health, 11, pp. 4745-4767
    Frias, J., Y. S. Song, C. Martínez-Villaluenga, E. G. De Mejia, and C. Vidal-Valverde. 2007. Immunoreactivity and amino acid content of fermented soybean products. J. Agric. Food Chem. 56:99-105.
    Fuller, R. 1989. Probiotic in man and animals. J. Appl. Bacteriol. 36:131-139
    Gallaher, D. and B. O. Shneeman, 1986. Nutritional and metabolic response to plant inhibitors of digestive enzyme. In: Nutritional and toxicological significance of enzyme inhibitors in foods. Friedman M(Ed) plenum press. New York. U.S.A pp.167-185
    Gatlin III, D.M., Barrows, F.T., Brown, P., Dabrowski, K., Gaylord, T.G., Hardy, R.W., Herman, E., Hu, G., Krogdahl, S., Nelson, R., Overturf, K., Rust, M., Sealey, W.,Skonberg, D., Souza, E.J., Stone, D., Wilson, R., Wurtele, E., 2007. Expanding the utilization of sustainable plant products in aquafeeds: a review. Aquacult. Res. 38, 551–579.
    Giannenas, I., E. Tsalie, E. Triantafillou, S. Hessenberger, K. Teichmann, and M. Mohnl. 2014. Assessment of probiotics supplementation via feed or water on the growth performance, intestinal morphology and microflora of chickens after experimental infection with Eimeria acervulina, Eimeria maxima and Eimeria tenella. Avian Pathol. 43:209-216.
    Goldstein, I. J. and R. D. Portez, 1986. Isolation, physiochemical characterization and carbohydrate-binding specificity of lectins. In: The Lectins Properties, functions and applications in biology and medicine. Liener, I.E. Sharon, N. Goldstein I.J.(Eds). Academic Press, New York, U.S.A pp. 35-247
    Gorbach, S. L., 1986. Function of the normal human microflora. Scand. J. Infect. Dis. 49:17–30.
    Harzallah D, Belhadj H. 2013. Lactic acid bacteria as probiotics: characteristics, selection criteria and role in immunomodulation of human GI mucosal barrier. Lactic Acid Bacteria–R & D for Food, Health Livest Purp 197-217
    Heckert, R. A., I. Estevez, E. Russek-Cohen and R. Pettit-Riley. 2002. Effects of density and perch availability on the immune status of broilers. Poult. Sci. 81:451-457
    Hewitt D and Ford JE. 1982. Influence of Tannins on the Nutritional Quality of Food Grains. Proceedings of the Nutrition Society, 41: 7 – 17.
    Hong, K.J., Lee, C.H., Kim, S.W., 2004. Aspergillus oryzae GB-107 fermentation improves nutritional quality of food soybeans and feed soybean meals. J. Med. Food 7, 430–436.
    Hotz, C. and R. S. Gibson. 2007. Traditional food-processing and preparation practices to enhancing the bioavailability of micronutrients in plant-based diets. J. Nutr. 137:1097-1100.
    Hrckova, M., M. Rusnakova, J. Zemanovic. 2002. Enzymatic hydrolysis of defatted soy flour by three different proteases and their effect on the functional properties of resulting protein hydrolysates Czech Journal of Food Sci. 20: 7-14
    Ilyas, A., M. Hirabayashi, T. Matsui, H. Yano, T. Kikushima, M. Takebe and K. Hayakawam. 1995. The note on the removal of phytic acid in soybean meal using aspergillus usamii. Asian Aust. J. Anim. Sci., 8: 135-138.
    Jin, L. Z., Y. W. Ho, N. Abdullah, and S. Jalaludin, 1998. Growth performance, intestinal microbial populations, and serum cholesterol of broilers fed diets containing Lactobacillus cultures. Poultry Sci. 77:1259–1265

    Kelly, D. & King, T.P. 2001. Luminal bacteria regulation of gut function and immunity, in: PIVA, A., BACH KNUDSEN, K.E. & LINDBERG, J.E. (Eds) Manipulation of Gut Environment in Pigs, pp. 113—131 (Nottingham, Nottingham University Press).
    Khan, N. 1994. Phosphorus- The essential element. In Feed Mix Special Issue on Phosphates. Shiny International Ltd. Hong Kong. pp. 4~7.
    Kim, N., J.L. Yang and Y.S. Song. 1999. Physiological functions of chongkukjang. Food Ind. Nutr., 4: 40-46
    Kim, S. K., T. H. Kim, S. K. Lee, K. H. Chang, S. J. Cho, K. W. Lee, and B. K. An. 2016. The use of fermented soybean meals during early phase affects subsequent growth and physiological response in broiler chicks. Asian Australas. J. Anim. Sci. 29:1287–1293.
    KS Liu .2012. Soybeans: Chemistry, Technology, and Utilization
    Kunitz, M 1945. Crystallization of a trypsin inhibitor from soybeans. Science. 101:668-669
    Lalles, J. P., H. Salmon, N. P. M. Bakker, and G. H. Tolman. 1993. Effects of dietary antigens on health, performance and immune system of calves and piglets. Pages 253–270 in Recent Advances of Research in Antinutritional Factors in Legume Seeds. A. F. B. van der Poel, J. Huisman, and H. S. Saini, ed. Wageningen Pers, the Netherlands
    Lee, B. K., J. Y. Kim, J. S. Kim, S. J. You, B. K. An, E. J. Kim, and C. W. Kang. 2009. Nutritional value of soybean meal from various geographic origin and effect of their dietary supplementation on performance of broilers. J. Anim. Sci. Technol. 51:217-224.
    Lee, H. J., 1998. Health functional peptides from soybean foods. Korea Soybean Digest., 15: 16-22
    Li, C. Y., J. J. Lu, C. P. Wu, and T. F. Lien. 2014. Effects of probiotics and bremelain fermented soybean meal replacing fish meal on growth performance, nutrient retention and carcass traits of broilers. Livest. Sci. 163:94–101.
    Liener, I. E. 1994. Implications of antinutritional components in soybean foods. Critical Reviews in Food Science and Nutrition, 34-31.
    Liener, I .E. 2000. Non-Nutritive Factors and Bioactive Compounds in Soy. Soy in Animal nutrition Symposium ( August 4-5 Chicago, IL), (Ed. J.K. Drackley), Fed. An. Sci. Societies, Savoy, ISBN 10: 1884706010, IL,USA.
    Liener,I.E.2000. Non-Nutritive Factors and Bioactive Compounds in Soy. Soy in Animal nutrition Symposium ( August 4-5 Chicago, IL), (Ed. J.K. Drackley), Fed. An. Sci. Societies, Savoy, ISBN 10: 1884706010, IL,USA
    Lilly, D.M. & Stillwell, R.H. 1965. Probiotics: Growth promoting factors produced by microorganisms. Science 147, 747-748.
    Lin, W., Hwang, C., Chen, L., & Tsen, H. 2006. Viable counts, characteristic evaluation for commercial lactic acid bacteria products. Food Microbiology, 23, 74–81
    Liu K.S. 1997. Chemistry and Nutritional Value of Soybean Components. In: Soybean: Chemistry, Technology, and Utilization. New York: Chapman & Hall;p25-113.
    Liu, K.S., Orthoefer, F., and Thompson, K. 1995. The case for food-grade soybean varieties. INFORM. 6(5):593-599.
    Loc Carrillo, C., R. J. Atterbury, A. El-Shibiny, P. L. Connerton, E. Dillon, A. Scott, and I. F. Connerton. 2005. Bacteriophage therapy to reduce Campylobacter jejuni colonization of broiler chickens. Appl. Environ. Microbiol. 71:6554–6563.
    MacFarlane, G. T., & Cummings, J. H. 2002. Probiotics, infection and immunity. Current Opinion in Infectious Diseases, 15, 501–506.
    Maga, J.A. 1982. Phytate, Its chemistry, occurrence, food interactions, nutritional significance and methods of analysis, J. Agric Food Chem. 30:1-9
    Mangell P, Nejdfors P, Wang M, Ahrné S, Weström B, Thorlacius H, and Jeppsson B. 2001. Lactobacillus plantarum 299v inhibits Escherichia coli-induced intestinal permeability. Dig Dis Sci. 47(3):511-6.
    Manwaring, H. R., Bligh, H. F. J., and Yadav, R. 2016. The challenges and opportunities associated with biofortification of pearl millet (Pennisetum glaucum) with elevated levels of grain iron and zinc. Front. Plant Sci. 7:1944. doi: 10.3389/fpls.2016.01944
    Marco M. L, S. Pavan and M. Kleerebezem. 2006. Towards understanding molecular modes of probiotic action . Curr Opin Biotechnol. 17:204–210.
    Mathivanan, R., P. Selvaraj, and K. Nanjappan. 2006. Feeding of fermented soybean meal on broiler performance. Int. J. Poult. Sci. 5:868-872.
    McCony S, Gilliland SE. 2007. Isolation and characterization of lactobacillus species having potential for use as probiotic cultures for dogs. J Food Sci;72:94e7.
    Miller, B. G., T. J. Newby, C. R. Stokes, and F. J. Boame. 1984a. Influence of diet on post-weaning malabsorption and diarrhea in the pig. Res. Vet. Sci. 36:137–145.
    Miller, B. G., T. J. Newby, C. R. Stokes, D. J. Hampson, P. J. Brown, and F. J. Boame. 1984b. The importance of dietary antigen in the cause of postweaning diarrhea in pigs. Am. J. Vet. Res. 45:1730–1737.
    Mott, G. E., R. W. Moore, H. E. Redmond, and R. Reiser. 1973. Lowering of serum cholesterol by intestinal bacteria in cholesterol-fed piglets. Lipids 8:428-431.
    Mukherjee, R., R. Chakraborty, and A. Dutta. 2016. Role of fermentation in improving nutritional quality of soybean meal – a review. Asian Australas. J. Anim. Sci. 29:1523–1529.
    Murphy, P.A. and Resurrection, AP. 1984. Varietal and environmental differences in soybean glycinin and beta-conglycinin concentration. J. Agric. Food Chern. 32:911.
    Nachamkin I, Yang XH, Stern NJ. 1993. Role of Campylobacter jejuni flagella as colonization factors for three-day-old chicks: analysis with flagellar mutants[J]. Applied and Environmental Microbiology, 59(5): 1269-1273
    National Research Council. 1994. Nutrient Requirements of Poultry. Ninth revised Edition, National Academy Press, Washington, D. C.
    Ng S.C., A.L. Hart, M.A. Kamm, A.J. Stagg, and S.C. Knight. 2009. Mechanisms of Action of Probiotics: Recent Advances Inflamm Bowel Dis.15:300 –310.
    O’Dell BL, de Bowland AR, Koirtyohann SR.1972. Distribution of phytate and nutritionally important elements among the morphological components of cereal grains. J Agric. Food Chem.;20:718–23.
    Ohland C. L. and W. K. MacNaughton .2010. Probiotic bacteria and intestinal epithelial barrier function.Am.J. Physiol. Gastrointest. Liver Physiol. 298: G807–G819.
    Parker, R. B. 1974. Probiotic, the other half of the antibiotic story. Anim. Nutr. Health. 29:4-8.
    Peterbauer, T., Mucha, J., Mach, L., and Richter, A. 2002. Chain elongation of raffinose in pea seeds. J. Biol. Chem., 277, 194±200.
    Pettersson, D., & Åman, P. 1989. Enzyme supplementation of a poultry diet containing wheat and rye. British Journal of Nutrition, 62-139.
    Pinto, G. A. S., S. G. F. Leite, S. C. Terzi, and C. Couri. 2001. Selection of tannase-producing Aspergillus niger strains. Braz. J. Microbiol. 32:24-26.
    Pusztai, A. and Bardocz, S. 1996. Biological effects of plant lectins on the gastrointestinal tract: metabolic consequences and applications. Trends Glycosci. Glycotechnol. 8: 149– 165.
    Pusztai, A., 1989. Biological effects of dietary lectins. In: Recent advances of research in antinutritional factors in legume seeds: Animal nutrition, feed technology and analytical methods. Wageningen (Netherlands), Pudoc, pp: 17-29.
    Qi, R.F., Song, Z.W. and Chi, C.W. 2005. Structural features and molecular evolution of Bowman–Birk protease inhibitors and their potential application. Acta Biochim. Biophys. Sin. (Shanghai),37,283–292.
    Quinteiro-Filho W, Brisbin J, Hodgins D, Sharif S .2015. Lactobacillus and Lactobacillus cell-free culture supernatants modulate chicken macrophage activities. Res Vet Sci 103:170–175.
    Ravindran,V., Cabahug G., Ravindran,G., Selle P.H., & Bryden, W.L. 2000.Response of broiler chickens to microbial phytase supplementation as influenced by dietary phytic acid and non-phytate phosphorus levels. II. Effects on apparent metabolizable energy, nutrient digestibility and nutrient retention. British Poultry Science, Vol.41, pp.193-200, ISSN 0007-1668
    Roudebush P. Flatulence: Causes and Management Options. Compendium 2001; 23(12):1075-82.
    Sacks FM, Lichtenstein A, Van Horn L, Harris W, Kris-Etherton P, Winston M. 2006. "Soy Protein, Isoflavones, and Cardiovascular Health. An American Heart Association Science Advisory for Professionals from the Nutrition Committee". Circulation;113(7):1034–1044.
    Saintcyr MJ, Haddad N, Taminiau B, Poezevara T, Quesne S, Amelot M, Daube G, Chemaly M, Dousset X, Guyardnicodème M. 2017. Use of the potential probiotic strain Lactobacillus salivarius SMXD51 to control Campylobacter jejuni in broilers. Int J Food Microbiol 247:9–17.
    Salgado P., Freire, J.P.B., Mourato, M., Cabral, F., Toullec, R., & Lalles, J.P.2002. Comparative effects of different legume protein sources on weaned piglets: nutrient digestibility , intestinal morphology and digestive enzymes. Livestock Production Science, Vol.74, pp.191-202, ISSN 0301-6626.
    Sebastian, S., Touchburn, S.P., & Chavez E.R.1998.Implications of phytic acid and supplemental microbial phytase in poultry nutrition : a review. World Poultry Science Journal, Vol.54,pp.27-47, ISSN 0043-9339
    Siriwardhana, N.; Kalupahana, N.S.; Cekanova, M.; Lemieux, M.; Greer, B.; Moustaid-Moussa, N.2013. Modulation of adipose tissue inflammation by bioactive food compounds. J. Nutr. Biochem., 24, 613–623.
    Smith, J.W., Hamilton, P.B., 1970. Aflatoxicosis in the broiler chicken. Poult. Sci. 49, 207–215.
    Steenfeldt, S., & Pettersson, D. 2001. Improvements in nutrient digestibility and performance of broiler chickens fed a wheat-and-rye based diet supplemented with enzymes. Journal of Animal Feed Science, 10-143.
    Takahashi N,Kitazawa H,Shimosato T,Iwabuchi N,Xiao JZ,Iwatsuki K,Kokubo S,Saito T. 2006. An immunostimulatory DNA sequence from a probiotic strain of Bifidobacterium longum inhibits IgE production in vitro.FEMS Immunol Med Microbiol,46(3),461-469.
    Tanabe, Y., & Wilcox, F. H. 1960. Effects of Age, Sex and Line on Serum Alkaline Phosphatase of the Chicken. Experimental Biology and Medicine, 103(1), 68–70. doi:10.3181/00379727-103-25415
    Thanh, V.H. and Shibasaki, K. 1976. Major proteins of soybean seeds. A straightforward fraction and their characterization. J. Agric. Food Chern. 24(6): 1117-1121.
    Tortuero, F., A. Brenes, and J. Rioperez. 1975. The influence of intestinal (cecal) flora on serum and egg yolk cholesterol levels in laying hens. Poultry Sci. 54:1935-1938.
    Vagadia, B.H.; Vanga, S.K.; Raghavan, V. 2017. Inactivation methods of soybean trypsin inhibitor—A review. Trends Food Sci. Technol, 64, 115–125.
    Van Eys, J. E.,A. Offner, and A. Bach. 2004. Manual of Quality Analyses for Soybean Products in the Feed Industry, American Soybean Association United Soybean Board, USA.
    Vasconcelos I. M., I. C. F. Brasil, J. T. A. Oliveira, C. C. Campello, F. M. M. Maia, M. V. M. Campello, D. F. Farias and A. F. U. Carvalho 2009. Combination of Chemical Analyses and Animal Feeding Trials as Reliable Procedures to Assess the Safety of Heat Processed Soybean Seeds. J. Agric. Food Chem. 57: 4668–4673 DOI: 10.1021/jf803903h Abstract
    Versalovic J. 2007. Probiotics: intestinal gatekeeping, immunomodulation, and hepatic injury. Hepatology. 46(3):841-50
    Vesterlund, S., Paltta, J., Karp, M., & Ouwehand, A. C. 2005. Adhesion of bacteria to resected human colonic tissue: Quantitative analysis of bacterial adhesion and viability. Microbiological Research, 156, 238–244.
    Wang, L.C., Wen, C. and Z.Y. Jiang .2012.Evaluation of the partial replacement of high-protein feedstuff with fermented soybean meal in broiler diets. Journal of Applied Poultry Research 21, 849–855.
    Xu, F. Z., L. M. Li, H. J. Liu, K. Zhan, K. Qian, D. Wu, and X. L. Ding. 2012. Effects of fermented soybean meal on performance, serum biochemical parameters and intestinal morphology of laying hens. J. Anim. Vet. Adv., 11 (5):649-654.
    Yan, L., J. P. Wang, I. H. Kim. 2012. Effects of different fermented soy protein and apparent ileal digestible lysine levels on weaning pigs fed fermented soy protein-amended diets. J. Anim. Sci. 83:403-410.
    Yang, Y. X., Y. G. Kim, J. D. Lohakare, J. H. Yun, J. K. Lee, M. S. Kwon, J. K. Park, J. Y. Choi, and B. J. Chae. 2007. Comparative efficacy of different soy protein sources on growth performance, nutrient digestibility, and intestinal morphology in weaned pigs. Asian Australas. J. Anim. Sci. 20:775-783.
    Yin, Y., A.A. Fatufe, and F. Blachier. 2011. Soyabean meal and its extensive use in livestock feeding and nutrition. In: El-Shemy, H. (ed.). Soybean and nutrition. InTech Europe. p. 369-384.
    Yuan L, Chang J, Yin Q, Lu M, Di Y, Wang P, Wang Z, Wang E, Lu F. Fermented soybean meal improves the growth performance, nutrient digestibility, and microbial flora in piglets. Anim Nutr.2017;3:19-24.

    無法下載圖示 校外公開
    2024/07/17
    QR CODE