簡易檢索 / 詳目顯示

研究生: 李智能
Zhi-Neng Li
論文名稱: 晶粒尺寸對鈦-10釩-2鐵-3鋁合金機械性質之影響
Effect of Grain Size on the Mechanical Properties of Ti-10V-2Fe-3Al Alloy
指導教授: 趙志燁
Chih-Yeh Chao
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程系所
Department of Mechanical Engineering
畢業學年度: 107
語文別: 中文
論文頁數: 53
中文關鍵詞: 鈦合金顯微結構高爾夫球頭界面差排機械性質
外文關鍵詞: Titanium alloy, Microstructure, Golf Head, Interfacial dislocation, Mechanical property
DOI URL: http://doi.org/10.6346/NPUST201900255
相關次數: 點閱:44下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統
  • 本文主要探討鈦-10釩-2鐵-3鋁合金,經800℃與700℃不同時間熱處理之顯微結構;同時,設計應用於高爾夫球頭打擊面之製程。研究結果如下。
    合金原料具(α+β)雙相組織,經800℃熱處理時,SEM觀察顯示:時間達16分鐘時,完全變態為β相組織;TEM分析則可觀察到: (β+α+ω) (β+α)  β相變態。於700℃熱處理時,SEM觀察顯示:時間達16分鐘時,從優組織結構消失。TEM分析則可觀察到:α相與β相界面存在差排組織;惟延長時間時,則界面差排消失。
    合金板材厚度3mm時,抗拉強度、降伏強度與延伸率,分別約為145ksi、132ksi、12%。於800℃熱處理時,其抗拉強度、降伏強度與延伸率,呈現下降趨勢,分別介於135~125ksi、65~75ksi、11~14%;且可觀察到雙降伏特徵;彎曲強度則介於301.4~316.5ksi。而,於700℃熱處理時,抗拉強度、降伏強度與延伸率,則分別介於135~130ksi、120~115ksi、14~16%,無觀察到雙降伏特徵;彎曲強度則介於292.4~304.0ksi。
    合金鈦錠,經800℃至700℃連續熱滾軋,且於500℃持溫後,合金抗拉強度、降伏強度與延伸率,分別約為210~215ksi、200~205ksi、6~8%;應用於高爾夫球頭時,於打擊面厚度為2.79~2.94mm厚度時,中心之特徵時間(CT)值,可達285~297μs,性質優於目前商用64鈦材質之高爾夫球頭。

    The main purposes of present manuscript are to analyze the microstructures of the Ti-10V-2Fe-3Al alloy heated at 800℃ or 700℃ for various times. And, the application on Golf-Head Club also performed. Some results are described as following:
    The microstructure of the raw alloy is a (α+β) duplex phase. When heated at 800℃, the microstructure would be full β phase with heating time being 16 min.. And, a (β+α+ω) (β+α)  βphase transition would be observed.Meanwhile, during heating at 700℃, the texture morphology and interfacial dislocation would be disappeared while heating time being 16 min..
    The UTS, YS and elongation of the raw alloy with 3.0mm thickness are 145ksi, 132ksi and 12%, respectively. Heated at 800℃, The UTS, YS and elongation of the alloy are in the range of 135~125ksi, 65~75ksi amd 11~14%, respectively. Additionally, double yielding would be found. And, the bending strength is in the range of 301.4~316.5ksi. When heated at 700℃, The UTS, YS and elongation of the alloy are in the range of 135~130ksi, 120~115ksi and 14~16%, respectively. Bending strength is between 292.4 and 304.0ksi.
    In addition, during continuous hat rolling at temperature between 800℃ and 700℃ and then heated at 500℃, the The UTS, YS and elongation of the present alloy would increase of 210~215ksi, 200~205ksi, and 6~8%, respectively.Compared with 64Ti alloy, the Golf Head producted by present alloy possess higher CT, of which being 285~297μs with the 2.79~2.94mm thickness of hitting face.

    摘要 I
    Abstract II
    誌謝 III
    目錄 IV
    表目錄 VI
    圖目錄 VII
    第1章 前言 1
    第2章 文獻回顧 3
    2.1高爾夫球頭介紹[1] 3
    2.2 USGA球頭規範[2] 4
    2.3 球頭材料發展[3] 5
    2.3.1 15~18世紀 5
    2.3.2西元1980~1990 6
    2.4 Ti–10V–2Fe–3Al 合金介紹[18] 7
    2.5 Ti–10V–2Fe–3Al 合金研究[4~11] 7
    第3章 實驗步驟 16
    3.1材料製備 16
    3.2熱處理 16
    3.3顯微結構觀察與分析 16
    3.3.1光學顯微鏡試片製作與觀察(OM) 16
    3.3.2 掃描式電子顯微鏡觀察(SEM) 16
    3.3.3晶粒尺寸 17
    3.3.4穿透式電子顯微鏡試片製作與觀察(TEM) 17
    3.5 機械性質試驗 17
    第4章 結果與討論 19
    4.1 顯微結構分析 19
    4.1.1 掃描式電子顯微鏡(SEM)分析 19
    4.1.2 穿透式電子顯微鏡(TEM)分析 19
    4.2 機械性質分析 20
    4.2.1 800℃熱處理 20
    4.2.2 700℃熱處理 21
    4.3 800℃熱處理顯微結構與機械性質之關係 21
    4.4 700℃熱處理顯微結構與機械性質之關係 22
    4.5 製程條件設計與結果 22
    第5章 結論 48
    參考文獻 50
    作者簡介 53

    [1] 劉侑誠,2017,鐵-15鉻-4鎳-3銅合金鑄件機械性質分析,碩士論文,國立屏東科技大學,機械工程研究所
    [2] The United States Golf Association and R&A Rules Limited 2012, pp.147-158
    [3] 許勝安,2014,高爾夫球頭材質探究,碩士論文,國立屏東科技大學,機械工程研究所
    [4] Juan Zhao, Jie Zhong, Fei Yan, Fang Chai, Matthew Dargusch, 2017, “Deformation behaviour and mechanisms during hot compression at supertransus temperatures in Ti-10V-2Fe-3Al,”Materials Science and Engineering,710,616-627.
    [5] G. Srinivasu, Y. Natraj, A. Bhattacharjee, T.K. Nandy, G.V.S. Nageswara Rao, 2013, “Tensile and fracture toughness of high strength β Titanium alloy, Ti–10V–2Fe–3Al, as a function of rolling and solution treatment temperatures,”Materials Science and Engineering,47,323-330.
    [6] Bo Wang, Ziquan Liu, Yuan Gao, Shangzhou Zhang, Xiaoyan Wang, 2007, “Microstructural evolution during aging of Ti-10V-2Fe-3Al titanium alloy,”Materials Science and Engineering,14,335-340.
    [7] Mansur Ahmed, David Wexler, Gilberto Casillas, Orest M. Ivasishin, Elena V. Pereloma, 2015, “The influence of β phase stability on deformation mode and compressive mechanical properties of Ti–10V–3Fe–3Al alloy,”Materials Science and Engineering,84,124-135.
    [8] Liming Lei, Xu Huang, Minmin Wang, Liqiang Wang, Jining Qin, Hongping Li, Shi Qiang Lu, 2011, “Effect of hot compressive deformation on the martensite transformation of Ti–10V–2Fe–3Al titanium alloy,”Materials Science and Engineering,530,591-601.
    [9] T.W. Duerig, J. Albrecht, D. Richter, P. Fischer, 1982, “Formation and reversion of stress induced martensite in Ti-10V-2Fe-3Al,”Materials Science and Engineering,30,2161-2172.
    [10] C. Li, X.Wu, J.H. Chen, S. van der Zwaagc, 2011, “Influence of α morphology and volume fraction on the stress-induced martensitic transformation in Ti–10V–2Fe–3Al,”Materials Science and Engineering,528,5854-5860.
    [11] Xinkai Ma, Fuguo Li, Jun Cao, Jinghui Li, Zhankun Sun, Guang Zhu, Shunshun Zhou, 2018, “Strain rate effects on tensile deformation behaviors of Ti-10V-2Fe-3Al alloy undergoing stress-induced martensitic transformation,”Materials Science and Engineering,710,1-9.
    [12] S. Ehtemam Haghighi, H.B. Lu, G.Y. Jian, G.H. Cao, D. Habibi, L.C. Zhang, 2015, “Effect of α″ martensite on the microstructure and mechanical properties of beta-type Ti–Fe–Ta alloys,”Materials Science and Engineering,76,47-54.
    [13] D. C. Winfieldt , Teong E. Tan, Optimization of the clubface shape of a golf driver to minimize dispersion of off-center shots, Memphis State University, 935 Hiawatha, Memphis, TN 38117, U.S.A. , 1994
    [14] Paul D. Deeley, PE, Konrad J.A Kundig, PhD, and Howard R. Spendelow, Jr. PhD, 1981
    [15] 劉國雄、林樹均、李勝隆等,2002,工程材料科學,全華圖書,pp.328-330
    [16] 劉國雄、林樹均、葉均蔚等,2006,工程材料科學,全華圖書,pp.329-337
    [17] ASM Handbook,Volume 1, 2005, pp.1303-1308
    [18] ASM Handbook,Volume 1, 2005, pp.1395-1404
    [19] K.H. Lo, C.H. Shek, and JK.L. Lai: Materials Science and Engineering , 2006,R65, pp.39-104
    [20] 徐川洋,2003,高爾夫球桿品質指標之評估與探討,碩士論文,國立屏東科技大學,機械工程研究所
    [21] 劉玉仁,周有禮,羅世忠,2000,高爾夫揮桿動作之運動學與動力學分析,體育學報29期,PP.179-188
    [22] 蘇桂美,2016,新型雙相鈦合金在高爾夫球頭之應用研究,碩士論文,國立屏東科技大學,機械工程研究所
    [23] 蔡智全,2018,鐵-22鎳-10鎢-9鉻合金性質分析,碩士論文,國立屏東科技大學,機械工程研究所
    [24] 簡良達,2014,Ti-6Al-4V顯微結構於高爾夫球頭打擊面CT之影響,碩士論文,國立屏東科技大學,機械工程研究所
    [25] 蕭安利,2009,不同加工量對鈦合金顯微結構的影響,碩士論文,國立屏東科技大學,機械工程研究所
    [26] 李坤南,2016,高特徵時間球道木桿之開發,碩士論文,國立屏東科技大學,機械工程研究所

    無法下載圖示 校外公開
    2024/07/28
    QR CODE