簡易檢索 / 詳目顯示

研究生: 蕭宗汶
Hsiao, Tsung-Wen
論文名稱: 低壓脈衝電場處理對青花芽菜生長之影響
Effect of low-voltage pulsed electric field treatment on the sprouting of broccoli seeds
指導教授: 吳明昌
Wu, Ming-Chang
黃至君
Huang, Chih-Chun Jean
學位類別: 碩士
Master
系所名稱: 農學院 - 食品科學系所
Department of Food Science
畢業學年度: 107
語文別: 中文
論文頁數: 58
中文關鍵詞: 次級代謝物電脈衝非熱處理萌芽
外文關鍵詞: secondary metabolites, pulsed electric field, non-heat treatment, germination
DOI URL: http://doi.org/10.6346/NPUST201900319
相關次數: 點閱:24下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統
  • 十字花科中的青花菜相較於其他十字花科蔬菜有更多的營養素,且青花芽菜所含有的抗氧化物質比青花菜還多。脈衝電場(PEF)處理為利用可調節電壓之新興技術,為非熱處理且對植物組織具電穿孔之特性,可應用於食品加工領域。近年來許多研究發現通過電流刺激導致種皮的細胞產生電位差,能使水分更快進入細胞內。植物長時間生長在惡劣環境之下,會產生次級代謝物或加快生長速度以抵抗環境逆境。因為目前以脈衝電場刺激青花芽菜相關文獻較少,所以本研究選擇用低壓脈衝電場(1KV/cm)處理0.5、1、2…30分鐘以製造惡劣環境,對青花種子與芽菜進行測試,研究對芽菜生長狀況(包括萌芽率、水分含量、增重率、生長倍數)及抗氧化活性(DPPH、ABTS自由基清除能力)與抗氧化物質(包括總酚、類黃酮、硫配醣體、葉綠素與類胡蘿蔔素)含量的影響,並觀察掃描式電子顯微鏡(SEM)的結果來評估PEF處理效率。結果顯示,PEF處理的種子達萌芽率90%所需時間為48-60小時,相較於未處理種子所需72小時,表示PEF處理能提高萌芽率及縮短萌芽時間;在影響芽菜的生長狀況中,以在第3天處理0.5分鐘的組別有顯著上升;在抗化能力及抗氧化物含量的整體影響則是在第0天及第3天處理0.5分鐘的組別有顯著上升。與控制組相比,在種子或是萌芽時以PEF處理後會使青花芽菜生長狀況及抗氧化特性上升,但若在發芽後每天處理(播種後第4、5及6天),則無顯著差異。此外,SEM之觀察顯示,若以PEF處理30分鐘,子葉表皮細胞則有電穿孔的跡象。期許未來能將PEF方法應用於縮短種子萌芽時間、刺激作物生長及提高其抗氧化物質含量。

    Broccoli, a member of the Brassicaceae family, contains more nutrients than the others of the same family, while its sprouts contain more antioxidants than the broccoli itself. The pulsed electric field (PEF) treatment is a new and non-thermal technique that utilizes adaptable voltage and has a characteristic causing electroporation in plant tissues, which can be used in food processing fields. Recent studies have shown that it is possible to create potential differences between the cells of the seed coats through current stimulation, which allows for quicker submersion of moisture into the cells. When a plant is exposed to a harsh environment, it would secrete secondary metabolites or increase its growth pace to tackle it. Since there are few cases of broccoli seeds treated by PEF, the objectives of this study were to apply a lower voltage of the PEF (1KV/cm) on the broccoli seeds and sprouts for 0.5 ,1 , 2 to 30 minutes in order to cause a stress and to study the effects on their growth status (the germination rate, the moisture content, the weight gain rate and the multiple growth), as well as antioxidant activities (DPPH and ABTS radical scavenging abilities) and the contents of antioxidants (total phenols, flavonoids, glucosinolates, chlorophylls and carotenoids). The results obtained from the scanning electron microscope (SEM) were also studied to evaluate the efficiency of PEF treatment. The result shows that the PEF-treated seeds take 48 to 60 hours to reach a germination rate of 90%, while the untreated seeds would take 72 hours. This shows that the PEF can increase the germination rate hence reducing the germination time. Regarding the effects on sprouting status, the group that was processed by the PEF on day three for 0.5 minutes shows significantly higher values than the others. As for the overall effects on the antioxidant activities and the contents of antioxidants, the PEF-treated for 0.5 minutes on day zero and day three shows a significant increase, compared to the others. When compared to the control group, processing with the PEF on the seeds or the germination stage can boost the sprout growth and the antioxidant capabilities; however, treating daily after germination (on day fourth, fifth and sixth after seeding) shows insignificant differences. Moreover, the SEM examination shows signs of electroporation in the cotyledon epidermal cells when treated by the PEF for 30 minutes. The PEF treatment in hopes can be used in the future to reduce the germination time of seeds as well as to stimulate the crop growth while increasing the contents of antioxidant substances.

    摘要 I
    ABSTRACT III
    謝誌 V
    目錄 1
    表目錄 5
    縮寫 6
    第1章 前言 7
    第2章 文獻回顧 8
    2.1 植物從休眠到萌芽 8
    2.1.1 植物休眠階段 8
    2.1.2 植物萌芽階段 8
    2.2 脈衝電場簡介 9
    2.2.1 背景敘述 9
    2.2.2 原理 9
    2.2.3 應用 9
    2.3 十字花科簡介 10
    2.3.1 青花菜 10
    2.3.2 青花菜與青花芽菜之營養 10
    2.4 芽菜簡介 14
    2.4.1 芽菜定義 14
    2.4.2 青花芽菜 14
    2.5 植物生長之代謝產物 16
    2.5.1 初級代謝物 16
    2.5.2 次級代謝物 16
    2.5.3 代謝物對植物體之效果 16
    2.5.4 如何影響植物中的代謝物 16
    2.6 硫配醣體 18
    2.6.1 硫配醣體之簡介 18
    2.6.2 硫配醣體之種類 18
    2.6.3 硫配醣體之效果 18
    2.6.4 硫配醣體水解產物之效果 18
    2.6.4.1 抗癌活性 18
    2.6.4.2 抗氧化能力 19
    2.6.4.3 抑菌活性 19
    第3章 材料與方法 23
    3.1 實驗原料及材料 23
    3.2 實驗用藥品 23
    3.1 實驗用儀器 24
    3.2 實驗設計 25
    3.3 實驗方法 26
    3.3.1 青花芽菜之種植 26
    3.3.2 脈衝電場之參數與架設 26
    3.3.3 種植環境條件 26
    3.3.4 青花芽菜組別條件 26
    3.4 青花芽菜之生長測試 28
    3.4.1 萌芽率 28
    3.4.2 青花芽菜之淨重 28
    3.4.3 青花芽菜之成長倍數 28
    3.4.4 青花芽菜之水分含量 28
    3.5 樣品備製 29
    3.5.1 青花芽菜冷凍乾燥 29
    3.5.2 甲醇萃取物之備製 29
    3.5.3 丙酮萃取物之備製 29
    3.6 抗氧化成分分析 30
    3.6.1 總酚含量分析 30
    3.6.2 總類黃酮含量分析 30
    3.6.3 葉綠素含量分析 30
    3.6.4 類胡蘿蔔素含量分析 30
    3.6.5 總硫配醣體含量分析 31
    3.7 抗氧化能力分析 31
    3.7.1 DPPH自由基清除能力之測定 31
    3.7.2 ABTS自由基清除能力之測定 31
    3.8 以掃描式電子顯微鏡(SEM)觀測其細胞受損 32
    3.9 統計分析其數據 32
    第4章 結果與討論 33
    4.1脈衝電場對青花芽菜及種子影響 33
    4.2 脈衝電場對青花芽菜生長影響 36
    4.2.1 不同電脈衝參數對青花菜種子萌芽之影響 36
    4.2.2 不同PEF參數對青花芽菜增重率之影響 38
    4.2.3 不同PEF參數對青花芽菜水分含量之影響 38
    4.2.4 不同PEF參數對青花芽菜生長倍數之影響 38
    4.3 脈衝電場對青花芽菜代謝物影響 39
    4.3.1 不同PEF參數對青花芽菜中抗氧化物含量之影響 39
    4.3.1.1 對總酚含量影響 39
    4.3.1.2 對類黃酮含量影響 39
    4.3.1.3 對葉綠素含量影響 39
    4.3.1.4 對類胡蘿蔔素含量影響 40
    4.3.1.5 對總硫配醣體含量影響 40
    4.3.2 不同PEF參數對青花芽菜中抗氧化能力之影響 41
    4.3.2.1 清除DPPH自由基之能力 41
    4.3.2.2 清除ABTS自由基之能力 41
    第5章 結論 52
    參考文獻 53
    作者介紹 58

    Aghajanzadeh, T., Hawkesford, M. J., & De Kok, L. J. (2014). The significance of glucosinolates for sulfur storage in Brassicaceae seedlings. Frontiers in plant science, 5, 704.

    Aguilo-Aguayo, I., Suarez, M., Plaza, L., Hossain, M. B., Brunton, N., Lyng, J. G., & Rai, D. K. (2015). Optimization of pulsed electric field pre-treatments to enhance health-promoting glucosinolates in broccoli flowers and stalk. J Sci Food Agric, 95(9), 1868-1875.
    .
    Ahuja, I., Rohloff, J., & Bones, A. M. (2011). Defence mechanisms of Brassicaceae: implications for plant-insect interactions and potential for integrated pest management. In Sustainable Agriculture Volume, 2, 623-670.

    Aires, A., Mota, V., Saavedra, M., Rosa, E., & Bennett, R. (2009). The antimicrobial effects of glucosinolates and their respective enzymatic hydrolysis products on bacteria isolated from the human intestinal tract. Applied Microbiology, 106(6), 2086-2095.

    Diederichsen, A., & McVetty, P. B. (2011). Botany and plant breeding. Canola, 29-56.

    Dinkova-Kostova, A. T., &Kostov,R.V.(2012).Glucosinolates and isothiocyanates in health and disease. Trends Mol Med, 18(6), 337-347

    Figueiredo, A. C., Barroso, J. G., Pedro, L. G., & Scheffer, J. J. (2008). Factors affecting secondary metabolite production in plants: volatile components and essential oils. Flavour and Fragrance journal, 23(4), 213-226.

    Griffiths, D., Birch, A., & Hillman, J. (1998). Antinutritional compounds in the brasi analysis, biosynthesis, chemistry and dietary effects. Horticultural Science and Biotechnology, 73(1), 1-18.

    Griffiths,D.W.,Birch,A.N. E., & Hillman, J. R. (2015). Antinutritional compounds in theBrasiAnalysis, biosynthesis, chemistry and dietary effects. Horticultural Science and Biotechnology, 73(1), 1-18.

    Halkier,B.A.,&Gershenzon,J. (2006). Biology and biochemistry of glucosinolates. Plant Biology, 57, 303-333.

    Hanelt, P. (1997). Lesser known or forgotten cruciferous vegetables and their history. International Symposium Brassica 97, Xth Crucifer Genetics Workshop 459, 39-46.

    Hayes, J. D., Kelleher, M. O., & Eggleston, I. M. (2008). The cancer chemopreventive actions of phytochemicals derived from glucosinolates. nutrition, 47(2), 73-88.

    Ito, M., Ohta, T., & Hori, M. (2012). Plasma agriculture. Journal of the Korean Physical Society, 60(6), 937-943.

    Jeyamkondan, S., Jayas, D., & Holley, R. (1999). Pulsed electric field processing of foods: a review. food protection, 62(9), 1088-1096.

    Kabera, J. N., Semana, E., Mussa, A. R., & He, X. (2014). Plant secondary metabolites: biosynthesis, classification, function and pharmacological properties. J Pharm Pharmacol, 2, 377-392.

    Khamsen, N.,Onwimol, D., Teerakawanich, N., Dechanupaprittha, S., Kanokbannakorn, W., Hongesombut, K., & Srisonphan, S. (2016). Rice (Oryza sativa L.) Seed Sterilization and Germination Enhancement via Atmospheric Hybrid Nonthermal Discharge Plasma. ACS Appl Mater Interfaces, 8(30), 19268-19275.

    Klisura, T., Parić, A., Subašić, M., & Karalija, E. (2018). Air pollution tolerance index of plantago major in steelworks area of zenica, bosnia and herzegovina. Genetics & Applications, 1(1), 59-64.

    Konyalιoğlu, S., Sağlam, H., & Kιvçak, B. (2005). α-tocopherol, flavonoid, and phenol contents and antioxidant activity of Ficus carica. leaves. Pharmaceutical biology, 43(8), 683-686.

    Marton, M., Mandoki, Z., Csapo-Kiss, Z., & Csapo, J. (2010). The role of sprouts in human nutrition. A review. Acta Univ. Sapientiae, 3, 81-117.

    Pichersky, E., & Gang, D. R. (2000). Genetics and biochemistry of secondary metabolites in plants: an evolutionary perspective. Trends in Plant Science, 5(10), 439-445.

    Plumb, G. W., Lambert, N., Chambers, S. J., Wanigatunga, S., Heaney, R. K., Plumb, J. A., Williamson, G. (1996). Are whole extracts and purified glucosinolates from cruciferous vegetables antioxidants? Free radical research, 25(1), 75-86.

    Sanchez-Moreno, C., Larrauri, J. A., & Saura-Calixto, F. (1998). A procedure to measure the antiradical efficiency of polyphenols. Food and Agriculture, 76(2), 270-276.

    Santos-Sánchez, N., Flores-Parra, A., Valadez-Blanco, R., Fernández-Rojas, B., Martínez-Vásquez, J., & Salas-Coronado, R. (2014). Polyphenolic content, free radical-scavenging activity and isolation of tiliroside from Heliocarpus terebinthinaceus (Tiliaceae) seeds. Biological Sciences, 14(5), 376-380.

    SEYİS, F., & ÇATAL, E. A. M. İ. (2014). Development of Edible Oil Quality in Kale (Brassica oleracea var. acephala), a Traditional Vegetable at the Black Sea Region. Congress, 233.

    Smith, B., & Kirkegaard, J. (2002). In vitro inhibition of soil microorganisms by 2‐phenylethyl isothiocyanate. Plant pathology, 51(5), 585-593.

    Tarkka, M., & Hampp, R. (2008). Secondary metabolites of soil streptomycetes in biotic interactions. Secondary metabolites in soil ecology, 107-126.

    Traka, M., & Mithen, R. (2008). Glucosinolates, isothiocyanates and human health. Phytochemistry Reviews, 8(1), 269-282.

    van den Berg, R., Haenen, G. R. M. M., van den Berg, H., & Bast, A. (1999). Applicability of an improved Trolox equivalent antioxidant capacity (TEAC) assay for evaluation of antioxidant capacity measurements of mixtures. Food Chemistry, 66(4), 511-517.

    Vasanthi, H. R., Mukherjee, S., & Das, D. K. (2009). Potential Health Benefits of Broccoli- A Chemico-Biological Overview. Mini-Reviews in Medicinal Chemistry, 9(6), 749-759.

    Verkerk, R., Schreiner, M., Krumbein, A., Ciska, E., Holst, B., Rowland, I., Dekker, M. (2009). Glucosinolates in Brassica vegetables: The influence of the food supply chain on intake, bioavailability and human health. Molecular nutrition & food research, 53, 219-265.

    Wink, M. (2010). Introduction: biochemistry, physiology and ecological functions of secondary metabolites. Annual plant reviews volume 40: Biochemistry of plant secondary metabolism, 1-19.

    Zhang, Q., Barbosa-Cánovas, G. V., & Swanson, B. G. (1995). Engineering aspects of pulsed electric field pasteurization. Journal of Food Engineering, 25(2), 261-281.

    無法下載圖示 校外公開
    2024/08/05
    QR CODE