簡易檢索 / 詳目顯示

研究生: 林宏諭
Lin, Hong-Wei
論文名稱: 地下水中污染物電化學降解之研究
Degradation of pollutants in groundwater using electrochemical advanced oxidation
指導教授: 黃國林
Huang, Kuo-Lin
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程與科學系所
Department of Environmental Science and Engineering
畢業學年度: 107
語文別: 中文
論文頁數: 172
中文關鍵詞: 地下水電化學氧化法摻硼鑽石電極苯類氯乙烯類總石油碳氫化何物敵避紫外-可見分光光普分析螢光激發/放射光譜液相層析質譜儀分析
外文關鍵詞: groundwater, Electrochemical oxidation, Boron-doped diamond electrode(BDD), Benzene, Vinyl chloride, Total petroleum hydrocarbon(TPH), N,N-diethyl-m-toluamide (DEET), Ultraviolet-visible(UV-Vis) analysis, Fluorescence excitation-emission matrix(EEM) spectrum, Liquid chromatography-mass spectrometry(LC-MS)
DOI URL: http://doi.org/10.6346/NPUST201900334
相關次數: 點閱:27下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統
  • 電化學高級氧化法(electrochemical advanced oxidation process)為一種高級氧化技術(advanced oxidation processes, AOPs),具有高效節能、操作簡單、環保及設備簡單,其中又以BDD (boron-doped diamond)做為陽極對於污染物之去除效率較高,相較於其它材料具有低成本與較高之污染物礦化效率等優點。本研究採用BDD電氧化受氯乙烯類及苯類污染之地下水樣本。藉由不同電化學參數(電流密度、時間、電極間距及電解質)來探討地下水中有機污染物降解之影響,找出較佳操作參數。敵避(N,N-diethyl-m-toluamide, DEET),屬於新興污染物的一種,主要用途為驅逐蚊蟲藥劑,因此常存於地下水中。通過試驗中得出最佳操作參數於污染之地下水中添加DEET及配製溶液進行降解試驗,探討其電化學降解效率及有機物去除效率。利用螢光激發/放射光譜(EEM)、紫外光/可見分光光度計(UV-visible)進行分析,藉由液相層析儀(LC-MS)及高效能液相層析儀(HPLC)分析中間產物以探討DEET降解途徑。
    研究結果顯示,以化學探針進行氫氧自由基捕捉之螢光分析結果可知添加硫酸鈉後的螢光強度相對較高。水樣經2、4小時電化學試驗後BTEX及氯乙烯類處理後濃度均符合地下水污染物管制標準第二類。另外水樣S03與D01試驗中,大部分烷類、苯類、烯類及其他化合物的降解效率均達100%。較高初始濃度總石油碳氫化合物(Total Petroleum Hydrocarbons, TPH)的降解效率明顯較高>90%對應的TOC去除效率介於50%~97%。使用自製與國外商用電極分別進行4小時的電化學試驗,總有機碳去除效率為95%,且苯類污染物濃度皆符合第二類地下水污染物管制標準限值,而氨氮、亞硝酸鹽氮及硝酸鹽氮的濃度均符合法規標準。
    電化學降解0.05 M 硫酸鈉溶液的DEET,可將DEET濃度降至ND,其TOC去除效率可達98%。將DEET添加至受污染之地下水中,其降解效率為92%~99.5%:TOC去除效率為91%~94%,氨氮均降至ND,而亞硝酸鹽氮及硝酸鹽氮的濃度均符合法規標準。縮短電極間距無助於提升降解效率,但可降低能耗。
    於UV-Vis進行全波長掃描DEET分析中,於圖譜中出現2個吸收峰(210 nm 及230 nm),而隨著電降解時間增加峰值皆有下降的趨勢,於240分鐘後接消失。依據螢光特性分析結果顯示,所配制含DEET的0.05M硫酸鈉溶液於電降解前在區域Ⅳ有一個波峰及有一個波峰介於Ⅰ、Ⅱ及Ⅳ之間(類酪氨酸&類色胺酸&可溶性微生物副產物),而隨著電降解時間增加螢光強度會隨時間下降,於240分鐘消失,此結果與UV分析結果近似。DEET(m/z = 191)經電降解產生質荷比(m/z) =257、255、243、239、227、225、223、222、221、209、206、207、197、195、193、192、181、179、177、169、163、150、135、116、90、89及46。

    Electrochemical advanced oxidation process (EAOP) is one of advanced oxidation process (AOPs), with the advantages of good energy efficiency, easy operation, and environmental friendliness. Among them, BDD (boron-doped diamond) is used as the anode to remove pollutants with high efficiency. Compared with other materials, it has the advantages of low cost and high mineralization efficiency of pollutants. In this study, a BDD (boron-doped diamond) electrode is used as the anode to remove pollutants from contaminated groundwater samples. Different electrochemical parameters (current density, time, electrode distance, and electrolyte) were tested to find suitable operating parameters for this EAOP process. N, N-diethyl-m-toluamide (DEET), a type of emerging pollutant, is mainly used to expel mosquitoes and is therefore often found in groundwater. Degradation tests were also carried out by spiking DEET in preparing solutions or contaminated groundwater samples to explore the electrochemical degradation efficiency of DEET. Liquid chromatography-mass spectrometry (LC-MS), high performance liquid chromatography (HPLC), and ion chromatography (IC) analyses were performed to identify the intermediates (products) and pathways of TC electro-degradation. Moreover, Ultraviolet-visible (UV-Vis) and fluorescence excitation-emission matrix (EEM) tests were conducted to evaluate the electro-degradation characteristics of water matrices during operations.
    The results show that the fluorescence intensity after adding sodium sulfate in the hydroxyl radical capture test using terephthalic acid as the chemical probe is relatively higher. The concentrations of BTEX and vinyl chloride in contaminated groundwater samples after 2- and 4-hour electrochemical oxidation met the requirements of the Category 2 of Groundwater Pollution Control Standards. In addition, in the water samples S03 and D01, most of alkanes, benzenes, alkenes and other compounds, reached the degradation efficiency of 100%, while that of total petroleum hydrocarbons (TPH) was over 90% at higher initial concentration and the TOC removal efficiencies ranged between 50% and 97%. For 4 h electrochemical degradation using a prepared or commercial electrode, the TOC removal efficiency was 95%, and the concentrations of benzene pollutants, ammonia nitrogen, nitrite nitrogen and nitrate nitrogen were all in compliance with the regulations.
    The concentrations of DEET in 0.05‒1.00 M Na2SO4 solutions after electrochemical degradation were reduced to ND, with TOC removal efficiencies of ~98%. The degradation efficiency of DEET in DEET-spiked different contaminated groundwater samples were 92%‒99.5 %, and those of TOC ranged from 91% to 94%; the concentration of ammonia nitrogen was lowered to ND, and those of nitrite nitrogen and nitrate nitrogen were below the limits of regulations. Shortening electrode distance did not increase TOC removal efficiency but decrease energy consumption.
    In the full-wavelength scanning analysis of UV-vis spectrum, two absorption peaks (210 nm and 230 nm) appeared for the DEET in 0.05 M Na2SO4 solution; moreover, the intensities of these peaks decreased with the increase of electro-degradation time and finally the peaks disappeared after 4 h electro-degradation. In fluorescence analysis, the DEET-spiked sodium sulfate solution had a fluorescence peak in region IV and another one across regions I, II, and IV; the fluorescence intensities of these two peaks decreased with electro-degradation time and lastly disappeared at 240 minutes. This result was similar to that of UV analysis. According to LC/MS analysis, The intermediates of DEET electro-degradation in prepared solution were m/z = 257, 255, 243, 239, 227, 225, 223, 222, 221, 209, 206, 207, 197, 195, 193, 192, 181, 179, 177, 169, 163, 150, 135, 116, 90, 89 and 46。

    目錄
    摘要…………………………………………………………………….…Ⅱ
    Abstract…………………………………………………………………Ⅲ
    謝誌………………………………………………………………….........Ⅴ
    目錄……………………………………………………………………..…VI
    表目錄………………………………………………………………………………………………….Ⅸ
    圖目錄…………………………………………………………………………………………………XII
    第一章 前言 1
    1.1 研究起緣 1
    1.2 研究目的 3
    第二章 文獻回顧 4
    2.1 我國地下水的現況與概述 4
    2.2 新興污染物 5
    2.2.1藥品與個人保健用品 6
    2.3 N,N-diethyl-m-toluamide (DEET) 7
    2.3.1 DEET(敵避) 7
    2.3.2 環境中的DEET濃度 8
    2.4 氫氧自由基捕捉 9
    2.5 電化學氧化法 10
    2.4.1 電極優缺點比較 10
    2.4.2 電化學氧化法與其它高級氧化法比較 13
    2.4.2.1 光催化法 13
    2.4.2.2 Fenton氧化法 14
    2.4.2.3 Photo-Fenton 氧化法 14
    2.4.2.4 臭氧氧化法 15
    2-6台灣近年來相似電化學現地整治之研究 17
    2-7 螢光激發-放射光譜分析(Excitation-Emission Matrix, EEM) 18
    2-8 螢光區域積分法(Fluorescence regional integration, FRI) 18
    2.9 紫外光可見光分光光譜儀(UV-Visible Spectrophotometer) 19
    第三章 研究設備與方法 21
    3.1實驗設備與方法 21
    3.1.1實驗藥品與材料 21
    3.1.2 儀器與設備 22
    3.1.2.1 高效率液相層析儀(HPLC) 23
    3.1.2.3 凱氏氮蒸餾器與氨氮離子分光光度計 27
    3.1.2.4紫外光/可見光分光光度計(UV-Visible Spectrophotometer) 28
    3.1.2.5 電化學分析儀 29
    3.1.2.6 螢光分光光譜儀(EEM) 31
    3.1.2.7.液相層析質譜儀(LC-MS) 32
    3.1.2.8感應耦合電漿發射光譜儀 33
    3.1.2.9 離子層析儀 34
    3.2實驗流程圖 35
    3.3 實驗方法 36
    3.3.1 污染之地下水及DEET之電高級氧化 36
    3.3.2 地下水基本水質分析 39
    3.3.3 實驗結果計算 41
    3.3.3.1 反應速率常數、氨氮及TOC去除效率 41
    3.3.3.2 DEET 濃度分析 42
    第四章 結果與討論 45
    4.1 氫氧自由基測試 45
    4.2 地下水現地水質檢測 51
    4-3 苯類與含氯乙烯類污染分析 55
    4-4、苯類與氯乙烯類污染物降解效率比較 69
    4-5、苯類、氯乙烯類及其他化合物分析 72
    4-6、總石油碳氫化合物比較 78
    4-7、各批次水樣總有機碳去除效率比較 80
    4-8、本土與國外生產之電極降解效率比較 87
    4-9、添加電解質對電氧化處理污染之地下水所造成的影響 89
    4-9.1 離子層析儀分析(IC) 89
    4-9.2添加電解質電氧化處理後之TOC濃度變化 89
    4-9.3 添加電解質對電氧化處理後之氨氮濃度與處理結果 91
    4-9.4 添加電解質對電氧化處理後之亞硝酸鹽氮及硝酸鹽濃度變化 92
    4-9.5 添加電解質對電氧化處理後之重金屬濃度變化 94
    4-10、電化學特性分析 99
    4-10-1、苯(Benzene)及三氯乙烯 99
    4-10-2、敵避電化學特性分析 100
    4-11、敵避之電氧化降解實驗 101
    4-11.1以不同電解質濃度對敵避電降解試驗 101
    4-11.2以不同電解質濃度對敵避電降解處理後之TOC濃度變化 102
    4-11.3以不同時間對敵避電降解試驗 104
    4-11.4以不同時間對敵避電降解試驗TOC濃度變化趨勢 105
    4-11.5 添加敵避於不同電解質濃度污染地下水中之敵避降解 106
    4-11.6 添加敵避於不同電解質濃度污染地下水中之TOC濃度變化 107
    4-11.7 添加敵避於污染地下水中處理後氨氮濃度變化與處理結果 108
    4-11.8 添加敵避於污染地下水中處理後亞硝酸鹽氮及硝酸鹽氮濃度 109
    4-12 以不同電極間距處理敵避添加地下水之電氧化試驗 110
    4-12.1 以不同電極間距處理敵避添加地下水之電氧化試驗之TOC濃度變化趨勢 112
    4-12.2 以不同電極間距處理敵避添加地下水之電氧化試驗之氨氮濃度變化趨勢 113
    4-12.3以不同電極間距處理敵避添加地下水之電氧化試驗之亞硝酸鹽氮及硝酸鹽氮濃度變化 114
    4-12.4以不同電極間距處理敵避添加地下水之電氧化試驗之重金屬濃度變化 115
    4-13 添加敵避於0.05M Na2SO4溶液基質中電氧化降解之UV-Vis變化探討 118
    4-14 螢光特性分析 119
    4-15 敵避電氧化降解之中間產物探討 120
    第五章、結論與建議 141
    5.1、結論 141
    5-2、建議 143

    馬英石,1999,超音波程序應用於鄰氯酚以及腐植酸處理之研究,碩士論文,國立交通大學,環境工程研究所,新竹。
    呂冠霖、司洪濤,2003,高濃度COD廢水處理技術評析,經濟部工業局高濃度COD廢水處理技術講習會,財團法人台灣產業服務基金會,台北。
    司洪濤、呂冠霖、黃香玫,2003,「氧化技術在高濃度COD廢水處理之應用」,經濟部工業局高濃度COD廢水處理技術講習會,財團法人台灣產業服務基金會,台北。
    吳斐竣 環境資訊中心,2005, https://e-info.org.tw/node/3426。
    章日行,2006,以電化學法復育模廠規模之重金屬污染土壤及快速分析土壤。
    廖憶華,2006,以光學頻譜分析定性及定量廢水水質特性之研究,碩士論文,國立中央大學,環境工程研究所,桃園。
    袁菁、陳昌億、蔡嘉仁,2011,「雙金屬氧化電極之製備與效能評估-以SnO2/Ti、MnO2/Ti、PbO2-Co/Ti為例」,中華民國環境工程學會2011土壤與地下水研討會,台南,計畫編號:98-2221-E-390-007。
    王根樹,2012,飲用水水源與水質中新興汙染物對人體健康風險評估之研究計畫(3/4),行政院環境保護署,國立台灣大學環境衛生研究所,台北,計畫編號:EPA-101-U1J1-02-101。
    林明賢,2012,產業放流水溶解性有機質光學特性,碩士論文,國立屏東科技大學,環境工程與科學系,屏東。
    吳采芳,2012,超音波結合芬頓程序處理廢水中難分解有機物:以化工廠廢水為例,碩士論文,國立交通大學,環境工程研究所,新竹。
    美國環保署(USEPA),2012,製藥及個人保健產品(PPCPs)。

    陳碧慧,2014,電化學氧化降解DEET(敵避)之研究,國立屏東科技大學環境工程與科學研究所,屏東。
    行政院環保署,2014,行政院環境保護署環署水字第 1030005842號令修正發。
    衛福部疾病管制署,2015,https://group.dailyview.tw/article/detai/418。
    陳宇軒,2015,過氯酸溶液中Ce (IV)電再生之研究,碩士論文,國立屏東科技大學,環境工程與科學,屏東。
    科學online 高瞻自然科學教學資源平台,2014, http://highscope.ch.ntu.edu.tw/wordpress/?p=53230。
    吳庭年,徐明逸,2016,以循環模式電解氧化處理地下水三氯乙烯之
    可行性研究,崑山科技大學,環境工程研究所,台南。
    林祺偉,2017,水中阿斯巴甜電化學降解之研究,碩士論文,國立屏東科技大學,環境工程與科學系,屏東。
    簡維政,2018,廢水處理單元理論與實務-Fenton化學氧化法,經濟部工業局,http://ebooks.lib.ntu.edu.tw/1_file/moeaidb/013483/b7_07.pdf。
    行政院環保署 ,2019,行政院環保署土壤及地下水汙染整治基金管理會。
    Antonopoulou, M., Giannakas, A., Deligiannakis, Y., Konstantinou, I., 2013 “Kinetic and mechanistic investigation of photocatalytic degradation of the N,N-diethyl-m-toluamide. ” Chemica Engineering journal. Vol.231. pp. 314-325.

    Amor, C., Rodriguez-Chueca, J., Fernandes, J, L., Dominguez, J., R., Lucas, M., S., Peres, J., 2019 “ Winery wastewater treatment by sulphate radical based-advanced oxidation processes (SR-AOP):Thermally vs UV-assisted persulphate activation.” Process Safety and Environmental Protection. Vol. 122. pp. 91-101.

    Atsdr, 2002 “DEET (N,N-diethyl-m-touluamide) Chemical Technical Summary for Public safety Professionals”, Agency for Toxic Substances and Disease Registry, Available at : www.atsdr.cdc.gov, Accessed 6 December 2004.
    Arinaitwe, K., Muir, D.C.G., Kiremire, B.T., Fellin, P., Li, H., 2018 “Prevalence and sources of polychlorinated biphenyls in the atmospheric environment of lake Victoria, East Africa.” Chemosphere, Vol. 193, pp. 343-350.

    Barbosa, M.O., Moreira, N.F.F., Ribeiro, A.R., Pereira, M.F.R., Silva, A.M.T., 2016 “Occurrence and removal of organic micropollutants: an overview of the watch list of EU Decision 2015/495” Water Res., Vol. 94, pp. 257-279.

    Benitez, F.J., Acero, J,L., Real, F.J., Roldan, G., Rodriguze, E., 2013 “ Photolysis of model emerging contaminants in ultra-pure water:kinetics, by-products formation and degradation pathways” Water Research. Vol.47. pp. 870-880.

    Boomsma, J,C., Parthasarathy, M., 1990 “ Human use and exposure to insect repellents containing DEET.” Study submitted to the US,Environmental Protection Agency in response to data call-in on DEET.

    Bound, J.P., Voulvoulis, N., 2005 “Household disposal of pharmaceuticals as a pathway for apuatic contamination in the United Kingdom” Environ. Health perspect, Vol. 113, pp. 1705-1711.

    Calza, P., Medana, C., Raso, E., Giancotti, V., Minero, C., 2011 “N,N-diethyl-m-toluamide transformation in river water” Science of The Total Environment, Vol. 409, pp.3894-3901.

    Calza, P., Medana, C., Sarro, M., Baiocchi, C., Minero, C., 2013 “ Photolytic degradation of N,N-diethyl-m-toluamide in ice and water:implications in its environmental fate” Journal of photochemistry and Photobiology A:Chemistry, Vol. 271, pp.99-104.

    Cardarelli, F., Materials Handbook: A Concise Desktop Reference (2nd ed.), Springer-Verlag London Limited, London, United Kingdom (2008).

    Cheng, C., Wu, J., You, L., Tang, J., Chai, Y., Liu, B., Khan, M.F.S., 2018, “Novel insights into variation of dissolved organic matter during textile wastewater treatment by fluorescence excitation emission matrix,” Chemical Engineering Journal, Vol. 335, pp. 13-21.

    Chen, L., Lei, C., Li, Zhongjian., Yang, Bin., Zhang, X., Lin, L., 2018 “Electrochemical activation of sulfate by BDD anode in basic medium for efficient removal of organic pollutants” Chemosphere, Vol. 210, pp. 516-523.

    Chen, W., Westerhoff, P., Leenheer, J. A., Booksh, K., 2003, “Fluorescence Excitation-Emission matrix regional integration to quantify spectra for dissolved organic matter” Environ, Sci, Technol., Vol. 37, pp. 5701-5710.

    Chiang, L.-C., Chang, J.-E., and Wen, T.-C., 1995, “Indirect oxidation
    effect in electrochemical oxidation treatment of landfill leachate, ”
    Water Research, Vol. 29, No. 2, pp. 671-678.

    Comninellis, C., Kapalka, A., Malato, S., Parsons, A., Poulios, I.,
    Mantzavavinos, D., Chem, J., Technol. Biotechnol., 2008, pp769-776.

    Comninellis, Ch., 1994,“Electrocatalysis in the electrochemical
    conversion/combustion of organic pollutants for waste water
    treatment,”Electrochim Acta Vol.39. pp.1505-1511.

    Costanzo, S.D., Watkinson, A.J., Muby, E.J., Kolpin, D.W., Sandstrom, M.W., 2007 “Is there a risk associated with the insect repellent Deet(N,N-diethyl-m-toluamide)commonly found in aquatic environments?” Science of The Total Environment, Vol. 384, pp. 214-220.

    Coble, P.G., 1996, “Characterization of marine and terrestrial DOM in seawater using excitation emission matrix spectroscopy,” Marine Chemistry, Vol. 51, pp. 325-346.

    Durmusoglu, E., Taspinar, F., Karademir, A., 2010, “Health risk assessment of BTEX emissions in the landfill environment,” Journal of Hazardous Materials, Vol. 176, pp. 870-877.

    Ellis, J.B., 2006 “Pharmaceutical and personal care products (PPCPs) in urban receiving waters” Environmental Pollution, Vol. 144 pp. 184-189.

    Fernandez-Castro,P., Vallejo, M., Fresnedo San Roman and Inmaculada Ortiz, 2015 “Insight on the fundamentals of advanced oxidation processes. Role and review of the determination methods of reactive oxygen species” Journal of Technol Biotechnol, pp. 796-820.

    Foti, G., Gandini, D., Comninellis, C., Perret, A., Haenni, W., 1999,“Oxidation of Organics by Intermediates of Water Discharge on IrO2 and Synthetic Diamond Anodes,”Electrochem. Solid-state Lett, Vol. 2. pp. 228-230.

    García-Espinoza, J.D., Mijaylova-Nacheva, P. and Avilés-Flores, M. (2017). Electrochemical Carbamazepine Degradation: Effect of the Generated Active Chlorine, Transformation Pathways and Toxicity. Chemosphere.

    Garcia-Gomez, C., Drogui, P., Zaviska, F., Seyhi, B., Gortares-Moroyoqui, P., Buelna, G., Neira-Saenz, C., Estrada-alvarado, M., Ulloa-Mercado, RG., 2014,“Experimental design methodology applied to electrochemical oxidation of carbamazepine using Ti/PbO2 and Ti/BDD electrodes” Journal of Electroanalytical Chemistry, pp.1-10.

    Glassmeyer, S.T., Furlong, E.T., Kolpin, D.W., Cahill, J.D., Zaugg., S.D., Werner, S.L., Meyer, M.T., Kryak, D.D., 2005 “Transport of chemical and microbial compounds from known wastewater discharges: potential for use as indicators of human fecal contamination.” Environ.Sci.Technol, Vol. 39. Pp. 5157-5169.

    Guo, L., Lu, M., Li, Q., Zhang, J., Zong, Y., She, Z., 2014, “Three-dimensional fluorescence excitation-emission matrix (EEM) spectroscopy with regional integration analysis for assessing waste sludge hydrolysis treated with multi-enzyme and thermophilic bacteria,” Bioresource Technology, Vol.171, pp. 22-28.

    Han, D., Currell, M.J., 2017, “Persistent organic pollutants in China`s surface water systems,” Science of the Total Environment, Vol. 580, pp. 602-625.

    Hua, B., Yang, J., Liu, F., Zhu, G., Deng B., Mao, J., 2018, “Characterization of dissovlved organic matter/nitrogen by fluorescence excitation-emission matrix spectroscopy and X-ray photoelectron spectroscopy for watershed management,” Chemosphere, Vol. 201, pp.708-715.

    Jasmann, J.R., Gedalanga, P.B., Borch, T., Mahendra, S. and Blotevogel, J., 2017 “Synergistic Treatment of Mixed 1,4-Dioxane and Chlorinated Solvent Contaminations by Coupling Electrochemical Oxidation with Aerobic Biodegradation” Environmental Science & Technology 51: 12619-12629.

    Kim, S.D., Cho, J., Kim, I.S., Vanderford, B.J, Snyder, S.A., 2007 “Occurrence and removal of pharmaceuticals and endocrine disruptors in South Korean surface, drinking, and waste waters.” Water Res, Vol. 41. pp. 1013-1021.

    Korbahti, B.K. and Demirbuken, P., 2017, “Electrochemical Oxidation of Resorcinol in Aqueous Medium Using Boron-Doped Diamond Anode: Reaction Kinetics and Process Optimization with Response Surface Methodology” Front Chem 5: 75.

    Leal, W.S., 2014 “The enigmatic reception of Deet-the gold standard of insect repellents.” Current Opinion in lnsect Science, Vol. 6, pp. 93-98.

    Medana, C., Calza, P., Bello Dal, F., Raso, E., Minero, C., Baiocchi, C., 2011 “ Multiple unknown degradants generated from the insect repellent DEET by photoinduced processes on TiO2” J. Mass Spectrom, Vol,46 pp. 24-40.

    Madsen, H. T., Søgaard, E. G., and Muff, J., 2014, "Study of degradation intermediates formed during electrochemical oxidation of pesticide residue 2,6-dichlorobenzamide (BAM) at boron doped diamond (BDD) and platinum–iridium anodes," Chemosphere, Vol. 109, No. Supplement C, pp. 84-91.
    Mena, E., Rey, A., Contreras, S., Beltran F. J., 2015, “Visible light photocatalytic ozonation of DEET in the presence of different forms of WO3” Catalysis Today, Vol.252, pp.100-106.

    Morched, Hamza., Ridha, Abdelhedi., Enric, Brillas., Ignasi, Sires., 2009,“Comparative electrochemical degradation of the triphenylmethane dye Methyl Violet with boron-doped diamond and Pt anodes” Journal of Electroanalytical Chemistry, pp.41-50.

    Murugananthan, M., Yoshihara, S., Rakuma, T., Uehara, N., Shirakashi, T., 2007,“Electrochemical degradation of 17-estradiol (E2) at boron-dopeddiamond (Si/BDD) thin film electrode” ScienceDirect, pp.3242-3249.

    Mrkva, M., 1975, “Automatic U.V.-Control System for Relative Evalation of Organic Water Pollution,” Water Research, Vol. 9, pp. 587-589.

    N. Petrucci, S. Sardini Pediatr. Emerg. Care, 16 (2000), pp. 341-342

    Okuda, T., Kobayashi, Y., Nagao, R., Yamashita, N., Tanaka, H., Fujii, S., Konishi, C., Houwa, I., 2008 “Removal efficiency of 66 pharmaceuticals during wastewater treatment process in Japan.” Water Sci. Technol. Vol.57. pp. 65-71.

    Oturan, M.A., Oturan, N., Lathitte, C., and Trevin, S., 2001, “Production of hydroxyl radicals by electrochemically assisted Fenton`s reagent: Application to the mineralization of an organic micropollutant, pentachlorophenol,” Journal of Electroanalytical Chemistry, Vol. 507, pp. 96-102.

    Oturan, N., Wu, J., Zhang, H., Sharma, V.K., Oturan, M.A., 2013, “Electrocatalytic destruction of the antibiotic tetracycline in aqueous medium by electrochemical advanced oxidation processe: effect of electrode materials,’ Appl. Catal. B Environ. 140-141, pp.92-97.

    Ormad, M.P., Mosteo, R., lbarz, C., Ovelleiro, L., 2006 “Muitivarate approach to the photo-Fenton process applied to the degradation of winery wastewaters.” Environmental, Vol. 66. pp.58-63.
    Orescanin, V., Kollar, R., Nad, K., Mikelic, I., L., Gustek., S.,F., 2013, “Treatment of winery wastewater by electrochemical methods and advanced oxidation processes.” Journal of Environmental Science and Health, Vol.48. pp. 1543-1547.

    Palama, E., Daghio, M., Franzetti, A., Petrangeli Papini, M. and Aulenta, F., 2017 “The Bioelectric Well: A Novel Approach for in Situ Treatment of Hydrocarbon-Contaminated Groundwater” Microbial biotechnology.

    Panizza, M., Cerisola, G., Zinger, D.V., Advances in Chemistry Research, vol. 2, Nova Science, New York, United States (2006), pp. 1-38.

    Radić, S., Crnojević, H., Vujčić, V., Gajski, G., Gerić, M., Cvetković, Ž., Petra, C., Garaj-Vrhovac, V. and Oreščanin, V., 2016 “Toxicological and Chemical Assessment of Arsenic-Contaminated Groundwater after Electrochemical and Advanced Oxidation Treatments” Science of The Total Environment 543: 147-154.

    Richardson, B., Lam, P.K.S., Martin, M., 2005 “Emerging chemicals of concern: Pharmaceuticals and personal care products (PPCPs) in Asia, with particular reference to Southern China” Marine pollution Bulletin, Vol. 50 pp. 913-920.

    Ridruejo, C., Centellas, F., Cabot, P.L., Sirés, I. and Brillas, E. (2018). Electrochemical Fenton-Based Treatment of Tetracaine in Synthetic and Urban Wastewater Using Active and Non-Active Anodes. Water Research 128: 71-81.

    Rivera-Cancel, G., Bocioaga, D., Hay, A.G., 2007 “ Bacterial degradation of N,N-diethyl-m-toluamide(DEET):cloning and heterologous expression of DEET hydrolase.” Environ. Microbiol, Vol. 73. pp. 3105-3108.

    Saad, M., E ., K., Rabaaoui, N., Elaloui, E., Moussaoui, Y., 2016, “ Mineralization of p-methylphenol in aqueous medium by anodic oxidation with a boron-doped diamond electrode.” Separation and purification Technology, Vol. 171. Pp. 157-163.

    Santos, C., Lucas, M.S., Dias, A.A., Bezerra, R. M.F., Peres, J,A., Sampaio, A., 2014 “Winery wastewater treatment by combination of Cryptococcus laurentii and Fenton`s reagent.” Chemosphere, Vol.117. pp. 53-58.

    Silva, T.A., Pereira, G.F., Fatibello-Filho, O., Eguiluz, K.I.B., Salazar Banda, G.R., 2016“Electroamalytical sensing of indigo carmine dye in water samples using a cathodically pretreated boron-doped diamond electrode,” J. Electroanal. Chem. 769, pp. 28-34.

    Song, W.H., Cooper, E.J., Peake, B.M., Mezyk., S,P., Mezyk, M,G., Nickelsen, K,E., Shea, O., 2009 “ Free-radical-induced oxidative and reductive degradation of N,N′-diethyl-m-toluamide (DEET): kinetic studies and degradation pathway” Water Research. Vol. 43 pp. 635-642.

    Skoog, Douglas, A., West Donald, M., Holler F, James., Crouch,Stanley, R., 2014 “Skoog and West’s Fundamentals of Rnalytical Chemistry,ge” pp. 26-3, 27-5.

    Sophia, A.C., Lima, E.C., 2018 “Removal of emerging contaminants form the environment by adsorption, ” Ecotoxicology and Environmental Safety, Vol . 150, pp. 1-17.

    Sorensen,J.P.R., Lapworth, D.J., Nkhuwa,D.C.W., Stuart, M.E., Gooddy, D.C., Bell, R.A., Chirwa,M., Kabika, J., Liemisa, M.,Chibesa, M., Pedley,S., 2015 “Emerging con taminants in urban groundwater sources in Africa” Journal Water Research, Vol.72, pp. 51-63.

    Sudha, D., Sivakumar, P., 2015 “ Reveiew on the photocatalytic activity of various composite catalysts.” Chemical Engineering and processing: Process intensification.Vol.97. pp.112-133.
    Tay, K,S., Rahman, Abd, N., Bin Abas, 2009 “ Degradation of DEET by ozonation in aqueous solution” Chemosphere, Vol. 76 pp. 1296-1302.

    Tröster, I., Fryda, M., Herrmann, D., Schäfer, L., Hänni, W., Perret, A., Blaschke, M., Kraft, A., and Stadelmann, M., 2002, "Electrochemical advanced oxidation process for water treatment using DiaChem® electrodes," Diamond and Related Materials, Vol. 11, No. 3, pp. 640-645.

    Tran, N.H., Hu, J.Y., Ong, S.L., 2013 “Simultaneous determination of PPCPs, EDCs and artificial sweeteners in environmental water samples using a single-step SPE coupled with HPLC–MS/MS and isotope dilution.” Talanta. Vol.113. pp.82-92.

    Usmani, K.A., Rose, R. L., Goldstein, J.A., Taylor, W.G., Brimfield, A.A., Hodgson, E., 2002 “In vitro human metabolism and interactions of repellent N,N-diethyl-m-toluamide.” Drug Metad. Vol. 30. pp. 289-294.

    Xiong, J-Q., Kurade, M.B., Hun jeon, B., 2018 “Gan Microalgae Remove Pharmaceutical Cintaminants from Water? ” Trends in Biotechnology, Vol. 36 pp. 30-44.

    Yapeng, He., Weimin, Huang., Rongling, Chen., Wenli, Zhang., Haibo, Lin., Hongdong, Li.,2015, “Anodic oxidation of aspirin on PbO2, BDD and porous Ti/BDD electrodes: Mechanism, kinetics and utilization rate” Separation and Purification Technology, Vol. 156, Part 2, pp. 124-131.

    Zhang, H,C., Lemley, A,T., 2006 “ Reaction mechanism and kinetic modeling of DEET degradation by flow-through anodic Fenton treatment (FAFT)” Environ, Sci. Technol. Vol. 40 pp.4488-4494.

    Zheng, Y., Su, W., Chen, S., Wu, X., and Chen, X., 2011, “Ti/SnO2–Sb2O5–RuO2/α-PbO2/β-PbO2 electrodes for pollutants degradation”Chemical Engineering Journal, Vol. 174, No. 1, pp. 304-309.

    Zhu, B., Ryan, D.K., 2016, “Characterizing the interaction between uranyl ion and fulvic acid using regional integration analysis(RIA) and fluorescence quenching,” Journal of Environmental Radioactivity, Vol. 153, pp. 97-103.

    無法下載圖示 校外公開
    2024/08/08
    QR CODE