簡易檢索 / 詳目顯示

研究生: 劉洲境
Liu, Chou-Ching
論文名稱: 以電氧化法處理養豬廢水 : 操作條件測試
Treatment in swine wastewater by electrocchemical advanced oxidation : Tests of operating parameters
指導教授: 黃國林
Huang, Kuo-Lin
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程與科學系所
Department of Environmental Science and Engineering
畢業學年度: 107
語文別: 中文
論文頁數: 157
中文關鍵詞: 養豬廢水林可黴素摻硼鑽石電極電高級氧化氨氣分析儀氫氧自由基
外文關鍵詞: Swine wastewater, Lincomycin, Boron dopeddiamond(BDD) electrode, Electrochemical advanced oxidation, Ammonia Analyzer, Hydroxyl radical
DOI URL: http://doi.org/10.6346/NPUST201900335
相關次數: 點閱:17下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統
  • 養豬廢水中含有大量的有機與氨氮污染物,如果未進行有效處理,會造成環境污染。本研究探討養豬廢水電高級氧化處理的較佳操作條件(電流密度、陰陽極材料面積、陽極材料、陰陽極間距及放大試驗測試)並且使用氨氣分析儀分析水中及空氣中氨氮濃度變化。而林可黴素(lincomycin, LIN)為畜牧業常用的一種抗生素,是一種環境新興汙染物。因此,本研究亦依得到之較佳操作條件進行其在配製LIN溶液與添加LIN之養豬廢水中的降解實驗,探討其電氧化降解之效能及有機物去除效率。另外使用紫外-可見分光光度法(UV-Vis)及螢光激發/放射光譜進行分析,並利用液相層析質譜儀(LC-MS)及高效能液相層析儀(HPLC)分析鑑定其中間產物及提出電氧化降解解。
    研究結果顯示,較佳的操作條件為4 cm2摻硼鑽石(boron-doped diamond (BDD)) 陽極、4 cm2鈦板陰極、添加0.05 M NaCl、較大陰陽極間距、電流密度0.25 A/cm2及溫度25°C。電氧化降解養豬廢水實驗結果顯示,COD、TOC、BOD、氨氮及氯離子濃度會隨電解時間增加而降低,而大腸桿菌群可降至ND。各批次亞硝酸鹽氮濃度有些為ND、先升後降或升後未降,而硝酸鹽氮濃度大都先升後降。
    電降解養豬廢水時,水中氨氮濃度下降,空氣中氨濃度快速上升,而當水中氨氮濃度下降至低於 0.01 mg/L時,空氣中氨濃度也會隨之下降。在氫氧自由基濃度分析中,有添加0.05 M NaCl電解質者,螢光強度比未添加高出許多,但兩者皆能證明本電解程序可產生氫氧自由基。使用BDD電極,進行循環伏安法實驗,可發現LIN的氧化峰,但無還原峰出現,故LIN在BDD電極上的電化學反應特性為不可逆。LIN去除率隨電解時間增加而上升。養豬廢水及LIN配置溶液之UV-Vis分析結果顯示,吸收峰強度會隨電解時間增加而下降且最終消失。在螢光特性分析中,各養豬廢水皆會於區域I(類酪氨酸)/區域Ⅱ(類色氨酸)及區域Ⅳ(可溶性微生物副產物)出現螢光峰;LIN配置溶液於跨區域II (類色氨酸)/區域IV (可溶性微生物副產物)有一螢光峰,其強度皆會隨電解時間增加而變弱且最終消失。LIN經電降解生成的中間產物有質荷比(m/z) = 377、359及126化合物,另有(2,4,5,6-四羥基己-5-烯-3-基)吡咯烷-2-甲酰胺)、(E)-N(4,5-二氧代己-2-烯-3-基)-1-甲基-4-丙基吡咯啉-2-甲酰胺、單羥基化林可黴素、三羥基化林可黴素、N-去甲基林可黴素及2-丙基-N-甲基脯胺酸。

    關鍵字:養豬廢水、林可黴素、摻硼鑽石電極、電高級氧化、氨氣分析儀、氫氧自由基、紫外-可見分光光譜分析、螢光激發/放射光譜、液相層析質譜分析

    Swine wastewater contains considerable amounts of organic and ammonia nitrogen pollutants. It may cause environmental pollution, if not effectively treated. This study explores the suitable operating conditions (current density, anode and cathode material area, anode material, anode-anode distance, and equipment amplification) for the electrochemical treatment of swine wastewater. For comparison, an ammonia analyzer was used to simultaneously analyze the concentrations of ammonia nitrogen in water and air. Lincomycin (LIN), one of the most commonly used antibiotics in animal husbandry, is one of the emerging environmental pollutants. Therefore, we also conducted degradation experiments in the prepared solution and swine wastewater spiked with LIN operated at the suitable operating conditions. Liquid chromatography-mass spectrometry (LC-MS), high performance liquid chromatography (HPLC), and ion chromatography (IC) analyses were performed to identify the intermediates (products) and pathways of TC electro-degradation. Moreover, Ultraviolet-visible (UV-Vis) and fluores- cence excitation-emission matrix (EEM) tests were conducted to evaluate the electro-degradation characteristics of water matrices during operations.
    The results show that the suitable operating conditions were obtained using boron-doped diamond (BDD) anode (4 cm2) and Ti cathode (4 cm2),addition of sodium chloride = 0.05 M, current density = 0.25 A / cm2, and temperature = 25 °C. The results of electro-oxidation degradation of swine wastewater showed that the concentrations of COD, TOC, BOD, ammonia nitrogen, and chloride decreased with the increase of electrolysis time, while that of E. coli group decreased to ND. Moreover, the concentrations of nitrite nitrogen were lowered to ND, initially increased and then decreased or did not, while those of nitrate nitrogen mostly increased and then decreased in the tests.
    During electrolysis, the ammonia nitrogen concentration in water decreased while that in air increased rapidly; however, when the ammonia nitrogen concentration in water was lower than 0.01 mg/L, that in air also decreased. In the analysis of hydroxyl radical, the fluorescence intensity was much higher for the solution with 0.05 M NaCl addition than for that without adding the electrolyte, but hydroxyl radicals were indirectly identified in both solutions, suggesting that hydroxyl radicals were produced in the tested electrochemical advanced oxidation process. According to cyclic voltammetric analysis using the BDD electrode, an oxidation peak of LIN appeared without any corresponding reduction peak, revealing that its electrochemical behavior was totally irreversible and LIN could be directly electro-oxidized on the surface of BDD. The degradation efficiency of LIN increased with the increase of electrolysis time. The intensities of absorption peaks of prepared solution and swine wastewater spiked with LIN decreased with the increase of electrolysis time and eventually disappeared in UV-Vis analysis. In fluorescence analysis, swine wastewater showed fluorescence peaks in regions I (tyrosine-like)/region II (tryptophan-like) and IV (soluble microbial by-products), while the prepared LIN solution had a fluorescence peak with a wavelength range across regions II and IV. The intensities of these peaks decreased with the increase of electrolysis time and they disappeared finally. The LIN in prepared solution was electrochemically degraded to unknown intermediates with m/z =377, 359, and 126 and (2,4,5,6-tetrahydroxyhex-5-en-3-yl)pyrrolidine-2-carboxamide, (E)-N(4,5dioxohex-2-en-3-yl)-1-methyl-4-propylpyrrolodine-2-carboxamide, mono-hydroxylated lincomycin, tri-hydroxylated lincomycin, N-De-methyl-lincomycin, and 2-propyl-N-methylproline.
    Keyword :Swine wastewater, Lincomycin(LIN), Boron dopeddiamond(BDD) electrode, Electrochemical advanced oxidation, Ammonia Analyzer, Hydroxyl radical, Ultraviolet-visible (UV-Vis) analysis, Fluorescence excitation-emission matrix (EEM) spectrum, Liquid chromatography-mass spectrometry (LC-MS)

    摘要 I
    Abstract III
    謝誌 VI
    目錄 VII
    表目錄 XI
    圖目錄 XIV
    第一章 前言 1
    1.1. 研究緣由 1
    1.2. 研究目的 2
    第二章 文獻回顧 3
    2.1. 畜牧(養豬)廢水概述 3
    2.1.1. 養豬廢水常見之污染種類 3
    2.1.2. 我國畜牧業現況及污染 4
    2.1.3. 國外畜牧業現況及其污染 5
    2.1.4. 養豬糞尿再利用與衍生之問題 5
    2.2. 新興污染物概述 6
    2.2.1. 抗生素概述 7
    2.2.2. 林可黴素概述 8
    2.3. 電化學高級氧化法(EAOPs) 10
    2.3.1 氫氧自由基捕捉測試 12
    2.3.2 陽極材料及陰極電極 12
    2.3.3 電化學氧化氨之機制 14
    2.4. 螢光激發-放射光譜分析(Excitation-Emission Matrix, EEM) 16
    2.5. 螢光區域積分法(Fluorescence regional integration, FRI) 17
    2.6. 紫外光可見光分光光譜儀(UV-Visible) 18
    第三章 研究設備與方法 19
    3.1. 實驗材料與儀器設備 19
    3.1.1藥品與材料 19
    3.1.2儀器與設備 22
    3.2. 實驗流程圖 35
    3.3. 實驗方法 36
    3.3.1 養豬廢水之基本水質分析 36
    3.3.2 電高級氧化養豬廢水 38
    3.3.3 電降解LIN之試驗 40
    3.3.4 養豬廢水添加LIN之電降解試驗 40
    3.3.5 實驗結果計算 40
    第四章 結果與討論 45
    4.1. 氫氧自由基(•OH)之測試 45
    4.2. 養豬廢水基本水質分析與電氧化處理實驗條件 52
    4.2.1 養豬廢水原水之基本水質檢測結果 52
    4.2.2 各批次試驗經電氧化處理前後之水質數值變化 55
    4.3. 養豬廢水之電氧化降解實驗 61
    4.4. 水中及空氣中氨氮濃度實測結果 62
    4.4.1 靜置八小時之水中及空氣中氨氮濃度變化 62
    4.4.2 不同陽極材料對空氣中氨濃度變化 62
    4.4.3 不同陽極材料對水中氨氮濃度之處理結果 65
    4.4.4 不同陽極材料對亞硝酸鹽及硝酸鹽氮濃度變化 66
    4.4.5 不同陽極材料對化學需氧量(COD)濃度之處理結果 68
    4.5. 養豬廢水電解改變不同陽極材料之影響 69
    4.5.1 經電氧化處理後之化學需氧量(COD)與生化需氧量(BOD)濃度變化–不同陽極材料 70
    4.5.2 經電氧化處理後之TOC濃度變化–不同陽極材料 71
    4.5.3 經電氧化處理後之氨氮濃度變化–不同陽極材料 73
    4.5.4電氧化處理後亞硝酸鹽及硝酸鹽氮濃度變化–不同陽極材料 74
    4.5.5 不同陽極材料之電流效率及比能耗 76
    4.6. 陰陽極間距對電氧化處理養豬廢水之影響 77
    4.6.1不同陰陽極間距對電氧化處理後之化學需氧量(COD)與生化需氧量(BOD)濃度變化 77
    4.6.2 不同陰陽極間距對電氧化處理TOC之影響 79
    4.6.3 不同陰陽極間距對電氧化處理氨氮之影響 80
    4.6.4 不同陰陽極間距對亞硝酸鹽及硝酸鹽氮濃度變化 81
    4.6.5 不同陰陽極間距之電流效率及比能耗 83
    4.7. 陰極面積/廢水體積比及PH控制測試 83
    4.7.1不同陰極面積對電氧化處理後之化學需氧量(COD)與生化需氧量(BOD)濃度變化 84
    4.7.2 不同陰極面積對電氧化處理後之TOC濃度變化 86
    4.7.3 不同陰極面積對電氧化處理氨氮之影響 88
    4.7.4 不同陰極面積對亞硝酸鹽、硝酸鹽氮濃度及pH 90
    4.7.5 不同陰極面積之電流效率及比能耗 95
    4.8. 放大試驗與不同電流密度測試 96
    4.8.1放大試驗與不同電流密度對化學需氧量(COD)與生化需氧量(BOD)濃度變化 96
    4.8.2 放大試驗與不同電流密度對TOC濃度變化 98
    4.8.3 放大試驗與不同電流密度對氨氮濃度變化 99
    4.8.4放大試驗與不同電流密度對亞硝酸鹽氮及硝酸鹽氮濃度變化 100
    4.8.5 放大試驗與不同電流密度之電流效率及比能耗 102
    4.9. 放大試驗對電氧化處理養豬廢水之影響 102
    4.9.1放大試驗對電氧化處理後之化學需氧量(COD)與生化 需氧量(BOD)濃度變化影響 102
    4.9.2 放大試驗對電氧化處理後之TOC濃度變化影響 104
    4.9.3 放大試驗對電氧化處理後之氨氮濃度變化 105
    4.9.4放大試驗對電氧化處理後之亞硝酸鹽氮及硝酸鹽氮濃度變化 107
    4.9.5 放大試驗之電流效率及比能耗 108
    4.10. 林可黴素之電化學特性 109
    4.11. 林可黴素之電氧化降解實驗 110
    4.12. 不同電流密度對電氧化降解林可黴素實驗 114
    4.13. 添加林可黴素於養豬廢水電氧化降解實驗 117
    4.14. 養豬廢水電氧化降解之UV-Vis變化探討 119
    4.15. 螢光特性分析 122
    4.16. 林可黴素電氧化降解之中間產物探討 127
    4.17. 效能比較 139
    4.17.1 COD及氨氮之反應速率常數k值與去除率比較 139
    4.17.2比能耗及所需時間比較 140
    4.17.3 COD及氨氮之污染減量 141
    4.18. 操作及建置成本 142
    4.18.1 操作成本 142
    4.18.2 建置成本 143
    4.18.3 三段式廢水處理方式(以1000頭豬簡易估算) 144
    第五章 結論與建議 145
    5.1 結論 145
    5.2 建議 147
    參考文獻 148
    作者簡介 157

    翁震炘,2000,畜牧資源回收再利用之發展與未來,行政院農業委員會。
    周明顯,2002,排氣中揮發性有機物之生物洗滌處理法。
    蕭庭訓,2005,豬舍臭味改善方法之介紹,畜產試驗所,行政院農業委員會。
    周明顯、林錕松、鄭文熙,2009,禽畜牧場及堆肥場氨氣排放減量及臭味處理技術研發(NSC 97-EPA-W-110-001),行政院環保署。
    蔡宗烈、陳琦玲、郭鴻裕、周明顯、徐慶霖、林楨坤、張瓊霙、廖崇億、林建志、張筱瑜、蔡震達,2010,平鎮養猪廢水農地再利用試驗期末報告,桃園縣政府農業發展處。
    陳琦玲、郭鴻裕、周明顯、徐慶霖、張簡水紋、廖崇億、張筱瑜、蔡震達,2010,以槽車載運猪糞尿再利用試驗計畫(霧峰案)期末報告,行政院農委會農業試驗所農化組。
    王根樹,2012,新興汙染物,台灣大百科全書
    http://nrch.culture.tw/twpedia.aspx?id=100604
    王淑卿,2014,自由基與活性氧化物,科學Online
    http://highscope.ch.ntu.edu.tw/wordpress/?p=53230
    農委會,2012,臺灣畜牧業污染防治推動成果及未來展望,行政院農業委員會。
    北水處,2014,新興污染物是怎麼來的,台北自來水事業處。
    農委會,2014,德國畜牧業中抗生素使用之規範發展,行政院農業委員會。
    壹讀,2015,電化學水處理技術,建設工程教育網
    https://read01.com/jyQ7PB.html#.XNEuQxQzaM9
    行政院環境保護署,水污染防治費收費辦法,2016,https://oaout.epa.gov.tw/law/LawContent.aspx?id=FL040165&KeyWord=%E6%B0%B4%E6%B1%A1%E6%9F%93%E9%98%B2%E6%B2%BB%E8%B2%BB%E6%94%B6%E8%B2%BB%E8%BE%A6%E6%B3%95
    糧農組織,2016,統計數據庫,聯合國糧食及農業組織。
    魯皓平,2016,全球暖化的元兇,畜牧業比你想像的還嚴重,遠見雜誌。
    蘇盈瑞,2017,電化學降解水溶液中糖精之研究,國立屏東科技大學,環境工程與科學系,屏東。
    每日頭條,2017,養豬場廢水的危害有哪些,
    https://kknews.cc/zh-tw/agriculture/j6a3yzl.html
    幫趣,2017,林可黴素在治療豬病中的這些妙用,用對了就會顯奇效,
    http://bangqu.com/8392hH.html
    農委會,2018,107年5月養豬頭數調查結果與短期供應預估,行政院農業委員會。
    魏光辰,2018,電高級氧化法去除養豬廢水有機及氨氮汙染物之研究,碩士論文,國屏東科技大學、環境工程與科學系,屏東。
    每日頭條,2018a,8種電化學水處理方法,值得收藏,
    https://kknews.cc/zh-tw/news/z86pp2g.html
    每日頭條,2018b,養豬技術達人分享:林可黴素在豬場可以這樣用!
    https://kknews.cc/agriculture/825nbaq.html
    曾次元、李亮、趙心越、劉燕,電化學氧化法除氨氮的影響因素,復旦學報,445(3) (2006) 348-352。
    百度,2019,林可黴素,
    http://baike.baidu.com/item/林可黴素
    Andreozzi, R., Canterino, M., Giudice, R., Marotta, R., Pinto, G., Pollio, A., 2006,“Lincomycin solar photodegradation, algal toxicity and removal from wastewaters by means of ozonation,”Water Research,Vol.40, PP. 630-638.
    Ben, Y.,Fu, C., Hu, M., Liu, L., Wong, M., Zheng, C.,2019,“Human health risk assessment of antibiotic resistance associated with antibiotic residues in the environment: A review,”Environmental Research,Vol.169 , PP. 483-493.
    Bunce, N.J., Bejan, D., 2011,“Mechanism of electrochemical oxidation of ammonia,” Electrochimica Acta,Vol. 56, PP. 8085-8093.
    Chen, W., Westerhoff, P., Leenheer, J.A., Booksh, K., 2003,“Fluorescence Excitation-Emission matrix regional integration to quantify spectra for dissolved organic matter,”Environ.Sci.Technol,Vol.37 , PP. 5701-5710.
    Comninellis, Ch., Electrochim Acta, 39 (1994) 1857.
    Dharupaneedi, S.P.,Nataraj, S.K., Nadagouda, M., Reddy, K.R., Shukla, S.S., Aminabhavi, T.M., 2019,“Membrane-based separation of potential emerging pollutants,”Separation and Purification Technology,Vol.210, PP. 850-866.
    Dousa, M., Sikcz, Z., Halama, M., Lemr, K., 2006,“HPLC determination of lincomycin in premixes and feedstuffs with solid-phase extraction on HLB OASIS and LC–MS/MS confirmation,” Journal of Pharmaceutical and Biomedical Analysis ,Vol.40 , PP. 981-986.
    Duan, X., Lin, H., Zhou, C., Liu, W., Zhao, X., Chang, L., 2017,“Fabrication of a novel PbO2 electrode with a graphene nanosheet interlayer for electrochemical oxidation of 2-chlorophenol,”Electrochimica Acta,Vol.240 , PP. 424-436.
    Feng, Y., Yang, Y., Liu, J., Logan, B.E., 2016,“Electrochemical technologies for wastewater treatment and resource reclamation,”Environ. Sci.: Water Res. Technol., Issue 5
    Fernández-Castro, P., Vallejo, M., Román, M., Ortiz., 2015,“Insight on the fundamentals of advanced oxidation processes. Role and review of the determination methods of reactive oxygen species,” Biotechnol,Vol.90 , PP. 796-820.
    He, Y., Lin, H., Guo, Z., Zhang, W., Li, H., Huang,W., 2019,“Recent developments and advances in boron-doped diamond electrodes for electrochemical oxidation of organic pollutants,”Separation and Purification Technology, Vol.212, PP. 802-821.
    Hirakawa, T., Nosaka, Y., 2002,“Properties of O2•- and OH• Formed in TiO2 Aqueous Suspensions by Photocatalytic Reaction and the Influence of H2O2 and Some Ions, PP. 3247-3254.
    Kim, K.W., Kim, Y.J., Kim, I.T., Park, G., Lee, E.H., 2005, “The electrolytic decomposition mechanism of ammonia to nitrogen at an IrO2 anode,” Electrochemical Acta, Volume 50 lssue 22, Pages 4356-4364.
    Lapworth, D.J and Kinniburgh, D., 2009,“An R Script for Visualising and Analysing Fluorescence Excitation-Emission Matrices (EEM),”Computers and Geosciences,Vol.35, PP. 2160-2163.
    Lekagul, K., 2019,“Patterns of antibiotic use in global pig production: a systematic review,” Veterinary and Animal Science.
    Li, J.,Tong, Y., Guan, L., Wu, S., Li, D., 2019,“A turbidity compensation method for COD measurements by UV–Vis spectroscopy, Vol.186 , PP. 129-136.
    Li, J., Li, Y., Xie, S., Xiong, Z., Yao, B., 2019, “The electrochemical advanced oxidation processes coupling of oxidants for organic pollutants degradation: A mini-review,” Chinese Chemical Letters, Vol. 30, PP. 1353-1460.
    Martins, I., Carreira, F.C., Canaes, L.S., Rath, S., 2011, “Determination of parabens in shampoo using high performance liquid chromatography with amperometric detection on a boron-doped diamond electrode,” Talanta 85 (1), 1-7.
    Moreira, F.C., Boaventura, RAR., Brillas, E., Vilar, VJP, Appl. Catal., B, 202 (2017) 217.
    Muff., 2010, PhD Thesis, Applications of electrochemical oxidation for degradation of aqueous organic pollutants, Aalborg University, Denmark.
    Lin, S., Hu, Y., Xie, S., Wu, G., Hu, Z., Zhan, X., 2018,“Recovery of nutrients and volatile fatty acids from pig manure hydrolysate using two-stage bipolar membrane electrodialysis,” Chemical Engineering Journal,Vol. 334, PP. 134-142.
    Ohira, I.S.,Heima, M., Yamasaki, T., Tanaka, T., Koga, T., Toda, K., 2013,“Flow-based ammonia gas analyzer with an open channel scrubber for indoor environments,”Talanta,Vol.116 , PP. 527-534.
    Park, M., Snyder, S.A., 2018,“Sample handling and data processing for fluorescent excitation-emission matrix (EEM) of dissolved organic matter (DOM),Vol.193 , PP. 530-537.
    Pérez, G., Ibáñez, R., Urtiaga, A.M., Ortiz, I.,Chemical Engineering Journal 197 (2012) 475–482.
    Radjenovic, J., Sedlak, D.L., 2015, “Challenges and Opportunities for Electrochemical Processes as Next-Generation Technologies for the Treatment of Contaminated Water,” Environ. Sci. Technol 49 (19), pp 11292–11302.
    Ren, S., Lu, A., Guo, X., Zhang ,Q., Wang, Y., Guo, X., Wang, L., Zhang ,B., 2019, “Effects of co-composting of lincomycin mycelia dregs with furfural slag on lincomycin degradation, degradation products, antibiotic resistance genes and bacterial community,”Bioresource Technology, Vol.272 , PP. 83-91.
    Sander, R., 1999, “Compilation of Henry's Law Constants for Inorganic and Organic Species of Potential Importance in Environmental Chemistry, ”http://www.mpch mainz.mpg.de/~sander/res/henry.html.
    Siedlecka, E.M., Ofiarska, A., Borzyszkowska, A.F., Stepnowski, P., Pieczynska, A., 2018,“Cytostatic drug removal using electrochemical oxidation with BDD electrode: Degradation pathway and toxicity,”Water Research,Vol.144 , PP. 235-245.
    Siddharth, K., Chan, Y., Wang, L., Shau, W., Zhao, M., 2018,“Ammonia electro-oxidation reaction: Recent development in mechanistic understanding and electrocatalyst design,”Current Opinion in Electochemistry,Vol.9, PP. 151-157.
    Skoog, D.,Holler, F., Crocuh, S., West, D., 2014,“Fundamentals of Analytical Chemistry,9e, PP. 26-3,27-5.
    Soni, B.D., Patel, U.D., Agrawal, A., Ruparelia, J.P., 2017,“Application of BDD and DSA electrodes for the removal of RB 5 in batch and continuous operation,”Journal of Water Process Engineering, Vol.17, PP. 11-21.
    Song, Q., Li ,M., Wang, L., Ma, X., Liu, F., Liu, X.,2019,“Mechanism and optimization of electrochemical system for simultaneous removal of nitrate and ammonia,”Journal of Hazardous Materials,Vol.363 , PP. 119-126.
    Stypulkowska, K., Blazewicz, A., Brudzikowska, A., Warowna –Grzeskiewicz, M., Sarna, K., Fijalek, Z., 2015,“Development of high performance liquid chromatography methods with charged aerosol detection for the determination of lincomycin, spectinomycin and its impurities in pharmaceutical products,” Journal of Pharmaceutical and Biomedical Analysis, Vol.112 , PP. 8-14.
    Wang, M., Zhang, B., Wang, J., Cai, C., Xin,Y., Liu, H., 2018,“ Degradation of lincomycin in aqueous solution with hydrothermal treatment: Kinetics, pathway, and toxicity evaluation,”Chemical Engineering Journal,Vol.346, PP. 138-145.
    Wang, L.S.,Hu, H.Y., Wang, C., 2007,“Effect of ammonia nitrogen and dissolved organic matter fractions on the genotoxicity of wastewater effluent during chlorine disinfection,” Environmental Science and Technology,Vol.41, PP. 160-165.
    Wang, M., Zhang, B., Wang, J., Chen, C., Xin, Y., Liu, H., 2018,“Degradation of lincomycin in aqueous solution with hydrothermal treatment: Kinetics, pathway, and toxicity evaluation,” Chemical Engineering Journal, Vol. 343, PP. 138-145.
    Wei, R.,Ge ,F., Huang, S., Chen, M., Wang, R., 2011,“Occurrence of veterinary antibiotics in animal wastewater and surface water around farms in Jiangsu Province, China,”Chemosphere,Vol.82 , PP. 1408-1414.
    Yu, Z.M., Wang, J., Wei, Q.P., Meng L.C., Hao, S.M., Long, F., 2013, “Preparation, characterization and electrochemical properties of boron-doped diamond films on Nb substrates,” Trans. Nonferrous Met Soc. China Volume 23 Issue 5, Pages 1334-1341.
    Zhou, F., Zhu, H., Li, C., 2019,“A pretreatment method based on wavelet transform for quantitative analysis of UV–Vis spectroscopy, Vol.182 , PP. 786-792.

    無法下載圖示 校外公開
    2024/08/08
    QR CODE