簡易檢索 / 詳目顯示

研究生: 王宥筑
Wang, Yu-Chu
論文名稱: 以益生菌Lactobacillus plantarum 7-42發酵含黃豆粉及農畜副產物的混合原料取代白蝦飼料中魚粉之可行性
Feasibility of substituting Lactobacillus plantarum 7-42-fermented mixture containing animal by-products for fish meal in diet of white shrimp, Litopenaeus vannamei
指導教授: 劉俊宏
Liu, Chun-Hung
學位類別: 碩士
Master
系所名稱: 農學院 - 水產養殖系所
Department of Aquaculture
畢業學年度: 107
語文別: 中文
論文頁數: 72
中文關鍵詞: 白蝦胚芽乳酸桿菌 7-42發酵混合原料農畜副產物成長
外文關鍵詞: Shrimp, Lactobacillus plantarum 7-42, fermented mixture, agricultural by-product, growth
DOI URL: http://doi.org/10.6346/NPUST201900349
相關次數: 點閱:29下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統
  • 本研究目的為評估以胚芽乳酸桿菌7-42發酵混合農畜副產物取代白蝦飼料中魚粉之可行性。實驗用魚粉取代原料包括未發酵混合原料及發酵混合原料。未發酵混合原料含胚芽乳酸桿菌7-42發酵黃豆粉75%、雞肉粉10%、血粉10%、蝦殼粉2.5%及魷魚皮2.5%;發酵混合原料之製備是先將黃豆粉75%、雞肉粉10%、血粉10%、蝦殼粉2.5%及魷魚皮2.5%混合均勻後,再以胚芽乳酸桿菌7-42進行發酵72小時。實驗飼料包括全魚粉基礎飼料 (對照組),以未發酵混合原料取代飼料中魚粉60%、80%、100%組 (MAP60、MAP80、MAP100)及以胚芽乳酸桿菌7-42發酵之混合原料取代飼料中魚粉60%、80%、100% 組 (FMAP60、FMAP80、FMAP100),共計七組。實驗於室內海水循環系統中進行,每組三重複,每重複各30尾白蝦,實驗期間每日投餵兩次飼料至飽食,共進行56天。.
    結果顯示MAP100組的存活率顯著低於對照組。成長方面以胚芽乳酸桿菌7-42發酵之混合原料取代飼料中魚粉60%組 (FMAP60)優於對照組,而以胚芽乳酸桿菌7-42發酵之混合原料取代飼料中魚粉80%、100%組 (FMAP80、FMAP100)則與對照組無顯著差異;反之未醱酵混合原料取代飼料中魚粉60%、80%、100%組 (MAP60、MAP80、MAP100)成長均低於對照組。體組成方面水分、粗脂質及灰分在各組間無顯著差異;而FMAP80組粗蛋白最高,MAP100組則是粗蛋白最低。攻毒感染實驗顯示,經病原菌 Vibrio alginolyticus感染後,各組間之死亡率無顯著差異。綜合以上結果可知,發酵混合原料可完全取代白蝦飼料中魚粉。

    This study aimed to assess the effect of replacing fish meal with agricultural by-product mixture fermentated by Lactobacillus plantarum 7-42 in the diet of white shrimp. The fish meal replacement by fermented and unfermented mixtures was carried in experimental diets was carried out. Unfermented mixture was consisted of Lac. plantarum 7-42-fermented soybean meal (FSBM) 75%, poultry meal 10%, blood meal 10%, shrimp shell meal 2.5% and squid skin 2.5%; fermented mixture with above mixture was and fermented by Lac. plantarum 7-42. Seven diets including fish meal-basal diet (control), and fish meal replaced by unfermented mixture at 60%, 80% and 100%, respectively (designed as MAP60, MAP80 and MAP100) or fermented mixture at 60%, 80% and 100%, respectively (designed as FMAP60, FMAP80 and FMAP10). Severn groups in triplicates were carried out in this study. Each replicate was consisted of 30 fish. Shrimp were fed to apparent satiation twice daily for 56 d in an indoor seawater circulation system. Shrimp in the groups MAP100 had significantly reduced survival as compared to that of shrimp in the control.Shrimp in group FMAP60 had the better growth performance as compared to that of shrimp in control, while the growth performance of shrimp fed the diets containing fish meal replaced by fermented mixtures at the levels of 80% and 100% were not significantly different to the control. However, shrimp in the groups MAP60, MAP80 and MAP100 had significantly reduced growth performance as compared to that of shrimp in the control. No significant difference in the moisture, crude lipid, and crude ash contents of whole-body shrimp. Whereas, shrimp fed the diets of FMAP80 had an increased crude protein content in whole-body, while crude protein content in shrimp fed the MAP100 was decreased. The results of challenged test with potential pathogen, Vibrio alginolyticus showed that the survivals of shrimp among the control and treatments were not significant different. Therefore, it is suggested that the fermented mixture prepared in this study is a potential replacement for fish meal in shrimp diets.

    目錄
    摘要 I
    Abstract III
    表目錄 X
    圖目錄 XI
    第一章、前言 1
    第二章、文獻回顧 3
    2.1南美白對蝦簡介 3
    2.1.1南美白對蝦原產地、習性及分類位階 3
    2.2水產飼料產業所面臨之問題 4
    2.3動物性蛋白 4
    2.3.1雞肉粉 4
    2.3.2魷魚皮 5
    2.3.3血粉 6
    2.3.4蝦殼粉 6
    2.4植物性蛋白 7
    2.4.1黃豆粉 7
    2.4.2黃豆粉作為水產飼料原料的隱憂 7
    2.4.3黃豆粉抗營養因子 8
    2.4.4黃豆粉抗營養因子之消除及改善 10
    2.4.4.1生物學法 10
    2.4.4.1.1微生物法 10
    2.4.4.1.2萌發處理 10
    2.4.4.1.3植物育種 10
    2.5益生菌 11
    2.5.1益生菌之定義 11
    2.5.2益生菌於水產養殖之應用及功用 11
    2.5.3乳酸菌介紹及功用 12
    2.6發酵黃豆粉 13
    第三章 材料與方法 15
    3.1實驗設計 15
    3.2實驗菌種及培養 15
    3.3實驗用飼料原料配製 16
    3.4原料一般成分分析 16
    3.4.1粗蛋白分析 16
    3.4.2粗脂質分析 17
    3.4.3灰分分析 18
    3.5水解胺基酸組成分析 18
    3.5.1樣品酸水解 (Acid hydrolysis) 18
    3.5.2樣本甲酸水解 18
    3.5.3 OPA (o-phtaladehyde)衍生劑之配製 19
    3.5.4標準品配置 19
    3.5.5移動相配製 19
    3.5.5.1移動相A (Mobile phase A) 19
    3.5.5.2移動相B (Mobile phase B) 20
    3.5.6高效能液相層析儀系統 20
    3.5.7分析條件 20
    3.6雞肉粉、魷魚皮、發酵混合物、實驗飼料之脂肪酸組成分析 21
    3.6.1甲基甲脂化 21
    3.6.2分析原理 21
    3.6.3分析條件 22
    3.7混合原料取代白蝦飼料中魚粉之可行性分析 22
    3.8成長試驗 22
    3.8.1實驗動物 22
    3.8.2實驗用水 23
    3.8.3成長實驗 23
    3.9水質檢測 23
    3.9.1酸鹼度 23
    3.9.2溶氧 24
    3.9.3溫度 24
    3.9.4氨-氮分析 (NH3-N) 24
    3.9.4.1分析原理 24
    3.9.4.2藥品配置 24
    3.9.4.3標準曲線配置 24
    3.9.5亞硝酸分析 (NO2-N) 25
    3.9.5.1分析原理 25
    3.9.5.2藥品配置 25
    3.9.5.3標準曲線配置 25
    3.10抗病力實驗 26
    3.10.1實驗動物 26
    3.10.2病原菌Vibrio alginolyticus培養及注射 26
    3.11蝦體組成分析 26
    3.12統計分析 26
    第四章、結果 28
    4.1原料營養分析 28
    4.2飼料的營養組成分析 29
    4.3成長表現 30
    4.4白蝦體組成分析 31
    4.5攻擊實驗 32
    第五章、討論 33
    第六章、結論 37
    參考文獻 50


    表目錄
    表1、實驗飼料之配方。 38
    表2、實驗用原料之一般成分分析。 39
    表3、實驗用原料之水解胺基酸組成。 40
    表4、實驗用原料之脂肪酸組成分析。 41
    表5、實驗飼料之一般成分分析。 42
    表6、實驗飼料之脂肪酸分析。 43
    表7、實驗期間各組水質參數。 44
    表8、攝食不同實驗飼料後之白蝦的存活率、飼料效益、總末重。 45
    表9、攝食不同實驗飼料後之白蝦體組成分析。 46


    圖目錄
    圖1、利用不同菌株發酵含血粉之黃豆粉,再以SDS-PAGE分析發酵後蛋白質被水解的情況。 47
    圖2、水解胺基酸之層析圖譜。 48
    圖3、白蝦攝食不同飼料後,以溶藻弧菌進行感染實驗,觀察96小時後各組之累積死亡情形。 49

    江麗芬. 2012. 飼料蛋白質種類對吳郭魚成長及設時候血液游離胺基酸變化的影響. 國立高雄海洋科技大學水產食品科學所碩士論文.
    林明男、丁雲源、曾寶順、劉熾揚. 1989. 塭種蝦培育研究-白蝦第三子代之育成. 台灣水產學會刊,17: 125-132.
    貴萬真.2014. 使用含豆粉及蚯蚓粉的醱酵混合原料取代白蝦飼料中之魚粉可行性.國立屏東科技大學水產養殖系碩士論文.
    陳弘成. 1999. 白蝦養殖與管理方式. 養魚世界第3期. 273: 66-68.
    劉擎華. 2006. 水產動物對胺基酸利用之特性. 蕭錫延主編. 比較動物營養研討會論文集. 靜宜大學食品營養學系. 53-75.
    游上輝. 2009. 乾燥混合型益生菌發酵飼料對白肉雞生長性狀及骨骼性狀之影響. 國立嘉義大學動物科學系碩士論文.
    漁業統計年報. 2016. 行政院農業委員會漁業署.
    Biswas, A. K., H. Kaku, S. C. Ji, M. Seoka, and K. Takii. 2007. Use of soybean meal and phytase for partial replacement of fish meal in the diet of red sea bream, Pagrus major. Aquaculture, 267: 284-291.
    Biswas, A., H. Araki, T. Sakata, T. Nakamori, and K. Takii. 2019. Optimum fish meal replacement by soy protein concentrate from soymilk and phytase supplementation in diet of red sea bream, Pagrus major. Aquaculture, 506: 51-59.
    Bureau, D. P., A. M. Harris, C. Y. Cho, 1998, The effects of purified alcohol extracts from soy products on feed intake and growth of Chinook salmon (Oncorhynchus tshawytscha) and rainbow trout (Oncorhynchus mykiss). Aquaculture, 161: 27-43.
    Burrells, C., P. D. Williams, P. J., Southgate, and V. O. Crampton. 1999. Immunological, physiological and pathological responses of rainbow trout (Oncorhynchus mykiss) to increasing dietary concentrations of soybean proteins. Veterinary Immunology and Immunopathology, 72: 277-288
    Buttle, L., A. Burrells, J. Good, P. Williams, P. Southgate, C. Burrells. 2001, The binding of soybean agglutinin (SBA) to the intestinal epithelium of Atlantic salmon, Salmo salar and Rainbow trout, Oncorhynchus mykiss, fed high levels of soybean meal. Vet. Immunol. Immunopathol., 80: 237-244.
    Cabrera-Orozco, A., C. Jiménez-Martínez, and G. Dávila-Ortiz. 2013. Soybean: Non-nutritional factors and their biological functionality, Soybean: Bio-Active Compounds, 387-410.
    Chen, Q. S. , H. Zhang, Y. B. Zheng, A. S. Shan, Z. P. Bi. 2003. Effects of enzymatically hydrolyzed blood cells on growth performance and intestinal characteristics of newly weaned piglets. Livestock Science, 157: 514-519.
    Chikwati, E. M., F. F. Venold, M. H. Penn, J. Rohloff, S. Refstie, A. Guttvik, M. Hillestad, and A. Krogdahl. 2012. Interaction of soyasaponins with plant ingredients in diets for Atlantic salmon, Salmo salar L. British Journal of Nutrition, 107:1570-1590.
    Chotikachinda, R., C. Tantikitti, S. Benjakul, T. Rustad, E. Kumarnsit. 2013. Production of protein hydrolysates from skipjack tuna (Katsuwonus pelamis) viscera as feeding attractants for Asian seabass (Lates calcarifer). Aquaculture, 19: 773-784.
    Colin, H., F. Guarner, G. Reid, G. R. Gibson, D. J. Merenstein, B. Pot, L. Morelli, R. B. Canani, H. J. Flint, S. Salminen, P. C. Calder, and M. E. Sanders. 2014. Expert consensus document: The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nature reviews Gastroenterology and hepatology, 11: 506.
    NRC. Nutrient Requirements of Swine.
    Day, O., & H. Gonzalez. 2000. Soybean protein concentrate as a protein source for turbot Scophthalmus maximus L. Aquaculture Nutrition, 6: 221-228.
    Embaby, H. E. S. 2010. Effect of heat treatments on certain antinutrients and in vitro protein digestibility of peanut and sesame seeds. Food science and technology research, 17: 31-38.
    FAO. 2017. Fisheries and aquaculture. Fish Stat Plus – Universal software for fishery and aquaculture statistical time series.
    Fox, J.M., Lawrence, A.L., Patnaik, S., Forster, I., Ju,Z.Y., & Dominy, W.(2010). Methionine requirements estimated for white shrimp. Global Aquaculture Advocate March/April,29-30.
    Feng, J., X. Liu, , Z. R. Xu, , Y. P. Lu, & Y. Y. Liu. 2007. Effect of fermented soybean meal on intestinal morphology and digestive enzyme activities in weaned piglets. Digestive diseases and sciences, 52: 1845-1850.
    Francis , G. , H.P. Makkar, K. Becker. 2001. Antinutritional factors present in plant-derived alternate fish feed ingredients and their effects in fish. Aquaculture, 199: 197-227.
    Francis, G., H. P. Makkar, and K. Becker. 2001 Antinutritional factors present in plant-derived alternate fish feed ingredients and their effects in fish. Aquaculture, 199: 197-227.
    Francis, G., Z. Kerem, H. P. Makkar, and K. Becker. 2002. The biological action of saponins in animal systems: a review. British journal of Nutrition, 88: 587-605.
    Gatlin, D. M., F. T. Barrows, P. Brown, K. Dabrowski, T. G. Gaylord, R. W. Hardy, E. Herman, G.S. Hu, A. Krogdahl, R. Nelson, K. Overturf, M. Rust, W. Sealey, D. Skonberg, E. J. Souza, D. Stone, R. Wilson, E. Wurtele. 2007. Expanding the utilization of sustainable plant products in aquafeeds: a review. Aquaculture research, 38: 551-579.
    Gaylord, T. G., and S. D. Rawles. 2005. The modification of poultry by‐product meal for use in hybrid striped bass Morone chrysops× M. saxatilis diets. Journal of the World Aquaculture Society, 36: 363-374.
    Goedeken, F. K.T. J. Klopfenstein, R. A. Stock, R. A. Britton, M.H. Sindt. 1990. Protein value of feather meal for ruminants as affected by blood additions. Journal of animal science, 68:2936-2944.
    Goytortúa-Bores, E., R. Civera-Cerecedo, S. Rocha-Meza, and A. Green-Yee, 2006. Partial replacement of red crab (Pleuroncodes planipes) meal for fish meal in practical diets for the white shrimp Litopenaeus vannamei. Effects on growth and in vivo digestibility. Aquaculture, 256: 414-422.
    Hansen, A. C., G. Rosenlund, Ø. Karlsen, R. E. Olsen, and G. I. Hemre. 2013. Marine ash‐products influence growth and feed utilization when Atlantic cod Gadus morhua L. are fed plant‐based diets. Journal of Applied Ichthyology, 29: 532-540.
    Hardy, R. W. 2006. Worldwide fish meal production outlook and the use of alternative protein meals for aquaculture. Avances en Nutrición Acuícola VIII, VIII Simposium Internacional de Nutrición Acuícola México, 15-17.
    HERNÁNDEZ‐CORTÉS, P. A. T. R. I. C. I. A., J. R. WHITAKER, and F. L. GARCÍA‐CARREÑO. 1997. Purification and characterization of chymotrypsin from Penaeus vannamei (Crustacea: Decapoda). Journal of Food Biochemistry, 21: 497-514.
    Hung, A., T. Y., T. M. Su, C. W. Liao, & J. J. Lu. 2008. Effect of probiotic combination fermented soybean meal on growth performance, lipid metabolism and immunological response of growing-finishing pigs. Asian Journal of Animal & Veterinary Advances, 3: 431-436.
    Iwashita, Y., T. Yamamoto, H. Furuita, T. Sugita, and N. Suzuki. 2008. Influence of certain soybean antinutritional factors supplemented to a casein-based semipurified diet on intestinal and liver morphology in fingerling rainbow trout Oncorhynchus mykiss. Fisheries Science, 74: 1075-1082.
    Joe, F. 2007. Physical and Life Sciences. Texas A&M Corpus Christi, CS 251.
    Kalinowski, C. T., M. S. Izquierdo, D. Schuchardt, and L. E. Robaina. 2007. Dietary supplementation time with shrimp shell meal on red porgy (Pagrus pagrus) skin colour and carotenoid concentration. Aquaculture, 272: 451-457.
    Kanazawa, A., S. I. Teshima, and M. Sakamoto. 1985. Effects of dietary lipids, fatty acids, and phospholipids on growth and survival of prawn (Penaeus japonicus) larvae. Aquaculture, 50: 39-49.
    Kaushik, S. J. 1990. Use of alternative protein sources for the intensive rearing of carnivorous fish. Mediterranean aquaculture, 125-138.
    Kaushik, S. J., J. P. Cravedi, J. P. Lalles, J. Sumpter, B. Fauconneau, & M. Laroche. 1995. Partial or total replacement of fish meal by soybean protein on growth, protein utilization, potential estrogenic or antigenic effects, cholesterolemia and flesh quality in rainbow trout, Oncorhynchus mykiss. Aquaculture, 133: 257-274.
    Knudsen, D., F. Jutfelt, H. Sundh, K. Sundell, W. Koppe, and H. Frøkiær. 2008. Dietary soya saponins increase gut permeability and play a key role in the onset of soyabean-induced enteritis in Atlantic salmon (Salmo salar L.). British Journal of Nutrition, 100: 120-129.
    Knudsen, D., P. Urán, A. Arnous, W. Koppe, and H. Frøkiær. 2007. Saponin-containing subfractions of soybean molasses induce enteritis in the distal intestine of Atlantic salmon. Journal of agricultural and food chemistry, 55: 2261-2267.
    Krogdahl, Å., A. M. Bakke‐McKellep, G. Baeverfjord. 2003. Effects of graded levels of standard soybean meal on intestinal structure, mucosal enzyme activities, and pancreatic response in Atlantic salmon (Salmo salar L.). Aquaculture Nutrition, 9: 361-371.
    Kwon, I. H., M. H.Kim, C. H.Yun, J. Y. Go, C. H. Lee, H. J. Lee, W. Phipek, & J. K. Ha. 2011. Effects of fermented soybean meal on immune response of weaned calves with experimentally induced lipopolysaccharide challenge. Asian-Australasian Journal of Animal Science, 24: 957-964.
    Lajolo, F. M., and M. I. Genovese. 2002. Nutritional significance of lectins and enzyme inhibitors from legumes. Journal of agricultural and food chemistry, 50: 6592-6598.
    Lim, S. J. & K. J. Lee. 2009. Partial replacement of fish meal by cottonseed meal and soybean meal with iron and phytase supplementation for parrot fish Oplegnathus fasciatus. Aquaculture, 290: 283-289.
    Ma, Z., M. M. Hassan, Allais, L. T. He, L. Sophie, A. Ellis, & J. G. Qin. 2019. Comparison of partial replacement of fishmeal with soybean meal and Enzo Meal on growth performance of Asian seabass Lates calcarifer. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 216: 29-37.
    Nagarajan, M., S. T. Benjakul, P. Prodpran, and Nuthong P. 2013. Film forming ability of gelatins from splendid squid (Loligo formosana) skin bleached with hydrogen peroxide. Food chemistry, 138: 1101-1108.
    Nagarajan, M., S. Benjakul, T. Prodpran, P. Songtipya. 2013. Effects of bleaching on characteristics and gelling property of gelatin from splendid squid (Loligo formosana) skin. Food Hydrocolloids, 32: 447-452.
    Navarrete, D. T., F. L. García-Carreño, and J. H. Córdova-Murueta. 2011. Comparison of digestive proteinases in three penaeids. Aquaculture, 317: 99-106.
    Nunes, A. J., M. V. Sá, F. F. Andriola-Neto, D. Lemos. 2006. Behavioral response to selected feed attractants and stimulants in Pacific white shrimp, Litopenaeus vannamei. Aquaculture, 260: 244-254.
    Ponce-Palafox, J., C. A. Martinez-Palacios, & L. G. Ross. 1997. The effects of salinity and temperature on the growth and survival rates of juvenile white shrimp, Penaeus vannamei. Aquaculture, 157: 107-115.
    Rahimnejad, S., X. Yuan, L. Wang, K. Lu, K. Song, and C. Zhang. 2018. Chitooligosaccharide supplementation in low-fish meal diets for Pacific white shrimp (Litopenaeus vannamei): Effects on growth, innate immunity, gut histology, and immune-related genes expression. Fish and shellfish immunology, 80: 405-415.
    Rasid, R., J. H. Brown, J. Pratoomyot, O. Monroig, and A. P. Shinn. 2017. Growth performance, nutrient utilisation and body composition of Macrobrachium rosenbergii fed graded levels of phytic acid. Aquaculture, 479: 850-856.
    Rawles, S. D., M. Riche, T. G. Gaylord, J. Webb, D. W. Freeman, and M. Davis. 2006. Evaluation of poultry by-product meal in commercial diets for hybrid striped bass (Morone chrysops× M. saxatilis) in recirculated tank production. Aquaculture, 259: 377-389.
    Riche, M. 2015. Nitrogen utilization from diets with refined and blended poultry by-products as partial fishmeal replacements in diets for low-salinity cultured Florida pompano, Trachinotus carolinus. Aquaculture, 435: 458-466.
    Salminen, S., and H. Van Loveren. 2012. Probiotics and prebiotics: health claim substantiation. Microbial ecology in health and disease, 23, 18568.
    Shao, J., B. Wang, M. Liu, K. Jiang, L. Wang, and M. Wang. 2019. Replacement of fishmeal by fermented soybean meal could enhance the growth performance but not significantly influence the intestinal microbiota of white shrimp (Litopenaeus vannamei). Aquaculture, 504: 354-360.
    Siddhuraju, P., K. Becker. 2005. Nutritional and antinutritional composition, in vitro amino acid availability, starch digestibility and predicted glycemic index of differentially processed mucuna beans (Mucuna pruriens var. utilis): an under-utilised legume. Food Chem, 91: 275-286.
    Siu, S. 2018. Examination of Probiotics Labeling: Analyzing the Accuracy of Labeling on Probiotic Products (Doctoral dissertation).
    Storebakken, T., S. Refstie, B. Ruyter. 2000. Soy products as fat and protein sources in fish feeds for intensive aquaculture. Soy in animal nutrition, 127-170.
    Svobodová, Z., J. Máchová, J. Drastichová, L. Groch, V. Lusková, G. Poleszczuk, J. Velíšek, & H. Kroupová. 2005. Haematological and biochemical profiles of carp blood following nitrite exposure at different concentrations of chloride. Aquaculture Research, 36: 1177-1184.
    Tacon, A. G., & M. Metian. 2008. Global overview on the use of fish meal and fish oil in industrially compounded aquafeeds: Trends and future prospects. Aquaculture, 285:146-158.
    Thompson, K. R., L. S. Metts, L. A. Muzinic, S. Dasgupta, C. D. Webster, Y. J. Brady. 2007. Use of turkey meal as a replacement for menhaden fish meal in practical diets for sunshine bass grown in cages. North American Journal of Aquaculture, 69: 351-359.
    Tibbetts, S. M., R. E. Olsen, and S. P. Lall. 2011. Effects of partial or total replacement of fish meal with freeze‐dried krill (Euphausia superba) on growth and nutrient utilization of juvenile Atlantic cod (Gadus morhua) and Atlantic halibut (Hippoglossus hippoglossus) fed the same practical diets. Aquaculture Nutrition, 17: 287-303.
    Tiwari, B. K., and N. Singh. 2012. Pulse chemistry and technology. Royal Society of Chemistry.
    Toldra, M., A. Elias, D. Parés, E. Saguer, and C. Carretero. 2004. Functional properties of a spray-dried porcine red blood cell fraction treated by high hydrostatic pressure. Food Chemistry, 88: 461-468.
    Watanabe, T. 2002. Strategies for further development of aquatic feeds. Fisheries, 68: 242-252.
    Wyban J., W. A. Walsh, D. M. Godin. 1995. Temperature effects on growth, feeding rate and feed conversion of the Pacific white shrimp (Penaeus vannamei). Aquaculture, 138: 267-279.
    Xie, S. W., Y. J. Liu, S. Zeng, J. Niu, and L. X. Tian. 2016. Partial replacement of fish-meal by soy protein concentrate and soybean meal based protein blend for juvenile Pacific white shrimp (Litopenaeus vannamei). Aquaculture, 464: 296-302.
    Yu, Y., and A. R. Director. 2004. Replacement of fishmeal with poultry byproduct meal and meat and bone meal in shrimp, tilapia and trout diets. In Proceedings of the VII international symposium on aquaculture nutrition, Hermosillo, Mexico p. 16-19.
    Zheng, Y. B., H. Zhang, D. B. Wang, P. F. Gao, A. S. Shan. 2014. Strain development and optimized fermentation conditions for blood meal using Aspergillus niger and Aspergillus oryzae. Journal of Microbiological Methods, 101: 70-80.

    下載圖示
    QR CODE