簡易檢索 / 詳目顯示

研究生: 徐志綱
Chih-Kang Hsu
論文名稱: 灌溉水溶解有機質(DOM)與土壤鹼萃有機質(AEOM)光學特徵、重金屬與放射性核種探討
Investigation the optical characteristics, heavy metals and radioactive nucleus of dissolved organic matter (DOM) in irrigation water and alkaline extracted organic matter (AEOM) from farm soil
指導教授: 陳庭堅
Ting-Chien Chen
謝連德
Liente Hsieh
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程與科學系所
Department of Environmental Science and Engineering
畢業學年度: 107
語文別: 中文
論文頁數: 139
中文關鍵詞: 放射性核種重金屬粒徑濕篩分離四重溪溫泉光學指標
外文關鍵詞: Radioactive nuclear species, heavy metals, particle size wet sieve separation, Hot spring, Optical indicators
DOI URL: http://doi.org/10.6346/NPUST201900374
相關次數: 點閱:22下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統
  • 放射性核種與重金屬的污染在社會中逐漸受到重視,當核種的活性與重金屬的濃度過量時,會藉由土壤或水轉移至食用作物與水體,進而危害食品安全與生活品質。研究結果顯示屏東縣車城鄉,井水各金屬濃度皆高於溫泉水,且分子量越小時差異更加明顯。土壤金屬濃度隨著粒徑的越小則濃度越高。考慮分子量與粒徑之間的質量、體積比時,液體金屬濃度大部分集中在小分子量,土壤HS萃取液金屬濃度大部分集中在大分子量,HS萃取液螢光強度大部分集中在大分子量,與其他國家及世界金屬平均濃度比較,與世界均值相當。土壤輻射核種活度大部分集中在大粒徑,隨著粒徑的降低,40K增高、232Th 和226Ra隨之降低,與文獻有相同趨勢。HS萃取液FI螢光指標主要來源為陸地源與微生物源之間。BIX主要來源為生物或微生物新產生出的DOM,HIX顯示低腐殖化DOM屬於低至中度原生動植物來源螢光物種以類黃酸螢光強度為最高。利用螢光光譜儀、紫外光/可見光分光光度計迅速檢測出光譜特性與金屬、輻射核種之間相關性。

    The pollution of radioactive nucleus and heavy metals is concern worldwide. When the nuclear species activity and the concentration of heavy metals are excessive, it will be transferred to food crops and water bodies, thereby jeopardizing food safety and quality of life. The results shown that the metal concentration of the water in the rural wells of Dongxian County was higher than that of hot spring water. The difference in low molecular weight had more noticeable. The soil metal concentration increased with the decreased the particle size. Considering the mass and volume ratio between the molecular weight and the particle size, the concentration of the liquid metals were mostly concentrated in the low molecular weight. The concentration of metals in the soil extracted humic substances (HS) were mostly concentrated in the high molecular weight. The fluorescence intensity was mostly concentrated in the high molecular weight. The average concentration of metals were comparable to other countries worldwide. Most of the soil radiation nucleus activity is concentrated in large particle sizes. As the soil particle size decreased, 40K increased, 232Th and 226Ra decreased, which is the same trend as the literature. The indicator of FI demonstrated the source of the HS was between terrestrial and microbial source. The main source of BIX indicator was the new DOM produced by microorganisms. Indicator of HIX shown that DOM was low humification DOM. Fluorescent data shown that the species of fulvic acid had the highest fluorescence intensity. The correlation between spectral characteristics and metals and radiation species was quickly detected by a fluorescence and UV/Vis spectrometer.

    摘要 I
    ABSTRACT II
    謝誌 IV
    目錄 V
    表目錄 VIII
    圖目錄 XI
    第一章前言 1
    1.1研究緣起 1
    1.2研究目的 1
    第二章文獻回顧 3
    2.1四重溪流域 3
    2.2溶解性有機質 3
    2.3膠體性質 4
    2.4微量金屬來源 5
    2.5腐植質 7
    2.6分配係數 7
    第三章材料與方法 9
    3.1水體與土壤來源 9
    3.2 實驗藥品與器材 10
    3.2.1實驗藥品與器材 10
    3.2.2實驗儀器設備 10
    3.3實驗流程 12
    3.4實驗方法 14
    3.4.1 液相基本性質測定 14
    3.4.2 液相COD(Chemical oxygen demand,COD) 14
    3.4.3 液相總有機碳測定(溶解性有機碳,DOC) 14
    3.4.4 固相基本性質測定 14
    3.4.5 固相有機質(OM) 14
    3.4.4 固相總有機碳(TOC) 15
    3.4.5 物理性分離 15
    3.4.6 NaOH萃取 16
    3.4.7 土壤濕篩法 18
    3.4.8 王水消化法 19
    3.4.9 金屬濃度測定 20
    3.4.10輻射核種活性測定 20
    3.5溶解性有機質分析 22
    3.5.1紫外線/可見光分光光度計 22
    3.5.2螢光光譜儀分析 22
    3.5.3螢光指標(Fluorescence Index, FIX) 23
    3.5.4生物性指標(Biological Index, BIX) 24
    3.5.5腐植化指標(Humification Index, HIX) 24
    3.6數據分析 24
    3.6.1 R軟體 24
    第四章 結果與討論 25
    4.1基本性質分析 25
    4.1.1水樣基本性質分析 25
    4.1.2土壤基本性質 27
    4.2 水樣有機質與土壤有機質萃取溶液 29
    4.2.1井水、溫泉水DOC濃度與有機碳質量分率 29
    4.2.2井水灌溉土萃取溶液DOC濃度與有機碳質量分率 30
    4.2.3溫泉水灌溉土萃取溶液DOC濃度與有機碳質量分率 30
    4.2.4學校土萃取溶液DOC濃度與有機碳質量分率 31
    4.2.5污染土萃取溶液DOC濃度與有機碳質量分率 31
    4.3金屬濃度分析 36
    4.3.1井水與溫泉水全量金屬濃度分析 36
    4.3.2井水、溫泉水灌溉土全量金屬濃度分析 41
    4.3.3學校、污染土全量金屬濃度分析 46
    4.3.4實驗土壤與其他地區金屬濃度比較 52
    4.3.5土壤NaOH萃取液不同分子量之Fe回收率 55
    4.3.6土壤NaOH萃取液不同分子量之Cu回收率 59
    4.3.7土壤NaOH萃取液不同分子量之Zn回收率 63
    4.3.8土壤NaOH萃取液不同分子量之Mn回收率 67
    4.3.9土壤NaOH萃取液不同分子量之Cr回收率 71
    4.3.10土壤NaOH萃取液不同分子量之Ni回收率 75
    4.3.11土壤NaOH萃取液不同分子量之Pb回收率 79
    4.4UV/VIS指標 83
    4.4.1井水與溫泉水之UV/Vis指標 84
    4.4.2井水灌溉土萃取溶液之UV/Vis指標 86
    4.4.3溫泉水灌溉土萃取溶液之UV/Vis指標 86
    4.4.4學校土萃取溶液之UV/Vis指標 87
    4.4.5污染土萃取溶液之UV/Vis指標 87
    4.5螢光光學之指標 93
    4.5.1井水、溫泉水之螢光指標 94
    4.5.2井水灌溉土萃取液之螢光指標 95
    4.5.3溫泉水灌溉土萃取液之螢光指標 95
    4.5.4學校土萃取液之螢光指標 95
    4.5.5污染土萃取液之螢光指標 96
    4.5.6井水、溫泉水之螢光強度 101
    4.5.7井水灌溉土萃取液之螢光強度 102
    4.5.8溫泉水灌溉土萃取液之螢光強度 102
    4.5.9學校土萃取液之螢光強度 107
    4.5.10污染土萃取液之螢光強度 107
    4.6輻射核種 112
    4.6.1井水、溫泉水之輻射核種活度分析 112
    4.6.2井水、溫泉水灌溉土之輻射核種活度分析 116
    4.6.3學校、污染土之輻射核種活度分析 120
    4.7全量金屬與輻射核種之相關性 124
    井水與溫泉水之相關性 124
    井水、溫泉水灌溉土之相關性 124
    學校、汙染土之相關性 124
    第五章 結論 130
    5.1結論與建議 130
    5.2建議 131
    參考文獻 133
    作者簡介 139

    表目錄
    表3- 1螢光波峰範圍 (Chen et al., 2003) 23

    表4- 1水樣基本性質(n=3) 26
    表4- 2學校土與污染土基本性質(n=3) 28
    表4- 3井水與溫泉灌溉土基本性質(n=3) 28
    表4- 4液體DOC濃度與有機碳質量分率(n=3) 29
    表4- 5 HS井水灌溉土萃取溶液DOC濃度與有機碳質量分率(n=3) 32
    表4- 6 HS溫泉水灌溉土萃取溶液DOC濃度與有機碳質量分率(n=3) 33
    表4- 7學校土萃取溶液DOC濃度與有機碳質量分率(n=3) 34
    表4- 8污染土萃取溶液DOC濃度與有機碳質量分率(n=3) 35
    表4- 9井水與溫泉水不同分子量之金屬回收率(n=3) 39
    表4- 10井水與溫泉水不同分子量之金屬單位碳吸附量(n=3) 39
    表4- 11井水、溫泉灌溉土全量金屬(一) (n=3) 43
    表4- 12井水、溫泉灌溉土土壤金屬(二) (n=3) 43
    表4- 13井水、溫泉灌溉土土壤金屬(三) (n=3) 44
    表4- 14學校、污染土土壤金屬(一) (n=3) 49
    表4- 15學校、污染土土壤金屬(二) (n=3) 49
    表4- 16學校、污染土土壤金屬(三) (n=3) 50
    表4- 17實驗土壤與各地區土壤金屬濃度比較表 54
    表4- 18井水、溫泉灌溉土NaOH萃取液不同分子量之Fe回收率(n=3) 55
    表4- 19井水、溫泉灌溉土NaOH萃取液不同分子量 56
    表4- 20學校、污染土NaOH萃取液不同分子量Fe之回收率(n=3) 57
    表4- 21學校、污染土NaOH萃取液不同分子量之 58
    表4- 22井水、溫泉灌溉土NaOH萃取液不同分子量Cu之回收率(n=3) 59
    表4- 23井水、溫泉灌溉土NaOH萃取液不同分子量之Cu單位碳吸附量(n=3) 60
    表4- 24學校、污染土NaOH萃取液不同分子量之Cu回收率(n=3) 61
    表4- 25學校、污染土NaOH萃取液不同分子量之Cu單位碳吸附量(n=3) 62
    表4- 26井水、溫泉灌溉土NaOH萃取液不同分子量之Zn回收率(n=3) 63
    表4- 27井水、溫泉灌溉土NaOH萃取液不同分子量之Zn單位碳吸附量(n=3) 64
    表4- 28學校、污染土NaOH萃取液不同分子量之Zn回收率(n=3) 65
    表4- 29學校、污染土NaOH萃取液不同分子量之Zn單位碳吸附量(n=3) 66
    表4- 30井水、溫泉灌溉土NaOH萃取液不同分子量之Mn回收率(n=3) 67
    表4- 31井水、溫泉灌溉土NaOH萃取液不同分子量之Mn單位碳吸附量(n=3) 68
    表4- 32學校、污染土NaOH萃取液不同分子量之Mn回收率(n=3) 69
    表4- 33學校、污染土NaOH萃取液不同分子量之Mn單位碳吸附量(n=3) 70
    表4- 34井水、溫泉灌溉土NaOH萃取液不同分子量之Cr回收率(n=3) 71
    表4- 35井水、溫泉灌溉土NaOH萃取液不同分子量之Cr單位碳吸附量(n=3) 72
    表4- 36學校、污染土NaOH萃取液不同分子量之Cr回收率(n=3) 73
    表4- 37學校、污染土NaOH萃取液不同分子量之Cr單位碳吸附量(n=3) 74
    表4- 38井水、溫泉灌溉土NaOH萃取液不同分子量之Ni回收率(n=3) 75
    表4- 39井水、溫泉灌溉土NaOH萃取液不同分子量之Ni單位碳吸附量(n=3) 76
    表4- 40學校、污染土NaOH萃取液不同分子量之Ni回收率(n=3) 77
    表4- 41學校、污染土NaOH萃取液不同分子量之Ni單位碳吸附量(n=3) 78
    表4- 42井水、溫泉灌溉土NaOH萃取液不同分子量之Pb回收率(n=3) 79
    表4- 43井水、溫泉灌溉土NaOH萃取液不同分子量之Pb單位碳吸附量(n=3) 80
    表4- 44學校、污染土NaOH萃取液不同分子量之Pb回收率(n=3) 81
    表4- 45學校、污染土NaOH萃取液不同分子量之Pb單位碳吸附量(n=3) 82
    表4- 46井水、溫泉水之UV/Vis指標(n=3) 85
    表4- 47井水灌溉土萃取溶液之UV/Vis指標(n=3) 89
    表4- 48溫泉水灌溉土萃取溶液之UV/Vis指標(n=3) 90
    表4- 49學校土壤萃取溶液之UV/Vis指標(n=3) 91
    表4- 50污染土壤萃取溶液之UV/Vis指標(n=3) 92
    表4- 51 BIX數值對應之DOM特性 (Huguet et al., 2009) 93
    表4- 52 HIX數值對應之DOM特性(Huguet et al., 2009) 94
    表4- 53液體螢光指標(n=3) 94
    表4- 54 HS井水灌溉土螢光指標(n=3) 97
    表4- 55 HS溫泉灌溉土螢光指標(n=3) 98
    表4- 56 HS學校土螢光指標(n=3) 99
    表4- 57 HS污染土螢光指標(n=3) 100
    表4- 58液體標準化螢光強度(n=3) 101
    表4- 59 HS井水灌溉土標準化螢光強度 (n=3) 103
    表4- 60 HS溫泉水灌溉土標準化螢光強度(n=3) 105
    表4- 61 HS學校土標準化螢光強度(n=3) 108
    表4- 62 HS污染土標準化螢光強度(n=3) 110
    表4- 63井水、溫泉水之輻射核種(n=3) 114
    表4- 64井水、溫泉灌溉土壤之輻射核種(n=3) 118
    表4- 65學校、污染土壤之輻射核種(n=3) 122
    表4- 66井水全量金屬與輻射核種之相關性 125
    表4- 67溫泉水全量金屬與輻射核種之相關性 125
    表4- 68井水灌溉土全量金屬與輻射核種之相關性 126
    表4- 69溫泉灌溉土全量金屬與輻射核種之相關性 127
    表4- 70學校土全量金屬與輻射核種之相關性 128
    表4- 71污染土全量金屬與輻射核種之相關性 129

    圖目錄
    圖3- 1樣品採取點 22
    圖3- 2高純鍺γ核種能譜偵檢器 24
    圖3- 3輻射核種樣品放置瓶左五(4.5 cm偵測皿)、右一(12 cm馬林杯) 25
    圖3- 4 由上到下分別為鉛屏蔽、30 L液態氮桶、磅秤 25
    圖3- 5實驗流程圖 26
    圖3- 6交流式分離示意圖 29
    圖3- 7土壤濕篩法示意圖 31
    圖3- 8高純鍺γ核種能譜偵檢器結構簡圖 33
    圖3- 9高純鍺γ核種能譜偵檢器結構詳圖 34
    圖3- 10偵測皿放置純鍺偵檢器圖示 34

    圖4- 1液相全量金屬百分比 53
    圖4- 2井水與溫泉灌溉土K、Na、Ca、Mg百分比 57
    圖4- 3井水與溫泉灌溉土Fe、Zn、Mn、Ni百分比 58
    圖4- 4井水與溫泉灌溉土Cu、Pb、Cr百分比 58
    圖4- 5學校與污染土K、Na、Ca、Mg百分比 63
    圖4- 6學校與污染土Fe、Zn、Mn、Ni百分比 64
    圖4- 7學校與污染土Cu、Pb、Cr百分比 64
    圖4- 8井水、溫泉灌溉土NaOH萃取Fe金屬百分比 69
    圖4- 9學校、污染土NaOH萃取Fe金屬百分比 71
    圖4- 10井水、溫泉灌溉土NaOH萃取Cu金屬百分比 73
    圖4- 11學校、污染土NaOH萃取Cu金屬百分比 75
    圖4- 12井水、溫泉灌溉土NaOH萃取Zn金屬百分比 77
    圖4- 13學校、污染土NaOH萃取Zn金屬百分比 79
    圖4- 14井水、溫泉灌溉土NaOH萃取Mn金屬百分比 81
    圖4- 15學校、污染土NaOH萃取Mn金屬百分比 83
    圖4- 16井水、溫泉灌溉土NaOH萃取Cr金屬百分比 85
    圖4- 17學校、污染土NaOH萃取Cr金屬百分比 87
    圖4- 18井水、溫泉灌溉土NaOH萃取Ni金屬百分比 89
    圖4- 19學校、污染土NaOH萃取Ni金屬百分比 91
    圖4- 20井水、溫泉灌溉土NaOH萃取Pb金屬百分比 93
    圖4- 21學校、污染土NaOH萃取Pb金屬百分比 95
    圖4- 22井水、溫泉水螢光強度百分比 114
    圖4- 23井水灌溉土螢光強度百分比 117
    圖4- 24溫泉灌溉土螢光強度百分比 119
    圖4- 25學校土螢光強度百分比 122
    圖4- 26污染土螢光強度百分比 124
    圖4- 27井水輻射核種圖譜 126
    圖4- 28溫泉水輻射核種圖譜 126
    圖4- 29井水輻射核種百分比 127
    圖4- 30溫泉水輻射核種百分比 128
    圖4- 31溫泉水灌溉土輻射核種圖譜 130
    圖4- 32井水灌溉土輻射核種圖譜 130
    圖4- 33井水灌溉土輻射核種百分比 132
    圖4- 34溫泉灌溉土輻射核種百分比 132
    圖4- 35污染土輻射核種圖譜 134
    圖4- 36學校土輻射核種圖譜 134
    圖4- 37學校土輻射核種百分比 135
    圖4- 38污染土輻射核種百分比 136

    王一雄, 1997, "土壤環境污染與農藥," 明文書局, 初版, No.

    王詩銘,2004,南海北部有機碳化學之研究,碩士論文,國立中山大學,海洋地質及化學研究所,高雄。

    行政院農業委員會農業試驗所,2013,土壤電導度測定方法,TARI S101.1B。

    行政院環境保護署環境檢測所,2000,水中導電度測定方法-導電度計法,NIEA W203.51B。

    行政院環境保護署環境檢測所,2001,水中總有機碳檢測方法-燃燒/紅外線測定法,NIEA W530.51C。

    行政院環境保護署環境檢測所,2009,土壤酸鹼值(pH 值)測定方法-電極法,NIEA W530.51C。

    行政院環境保護署環境檢測所,2019,土壤中重金屬檢測方法-王水消化法,NIEA S321.65B。

    行政院環境保護署,2011,土壤及地下水污染整治法第六條第二項。

    行政院環境保護署,2003,台灣地區不同土綱土壤中重金屬-總量檢測分析。

    李丁來,2007,淨水程序中溶解性有機物之去除:生物濾床及污泥毯澄清池之操作評估,碩士論文,國立交通大學環境工程研究所,新竹。

    周明玄,2011,鴛鴦湖湖水溶解性有機碳之來源探討,碩士論文,國立台灣大學,生態學與演化生物學研究所,台北。

    放射性元素簡介,2011,http://www.teacher.aedocenter.com/mywebB/nbook-7/vs-14.htm。

    張義賢, 1997, "重金属对大麦 (Hordeum vulgare)," 环境科学学报, Vol. 17, No. 2,

    楊昌英 and 邹雪, 1998, "微量元素钒铬生理生化功能对比," 微量元素与健康研究, Vol. 15, No. 1, pp. 76-77.

    經濟部水利署,2010,https://www.wra.gov.tw/。

    經濟部水利署第七河川局,2018,https://www.wra07.gov.tw/。

    葉庭伃,液體導電度測定,2012。

    Crow, Principles and Applications of Electrochemistry,1994.

    陳尊賢,臺灣問題土壤與重金屬污染診斷,2009。

    李仲祥,2016,生物程序影響腐植質光學特性以及結合金屬特性研究,國立屏東科技大學,環境工程與科學系,屏東。

    Ademola, A. K., Olaoye, M. A., Abodunrin, P. O. J. J. o. R. R., and Sciences, A., 2015, "Radiological safety assessment and determination of heavy metals in soil samples from some waste dumpsites in Lagos and Ogun state, south-western, Nigeria," Vol. 8, No. 1, pp. 148-153.
    Anderson, P. and Christensen, T. H., 1988, "Distribution coefficients of Cd, Co, Ni, and Zn in soils," Journal of soil science, Vol. 39, No. 1, pp. 15-22.
    Battin, T. J., 1998, "Dissolved organic matter and its optical properties in a blackwater tributary of the upper Orinoco river, Venezuela," Organic Geochemistry, Vol. 28, No. 9, pp. 561-569.
    Birdwell, J. E. and Engel, A. S., 2010, "Characterization of dissolved organic matter in cave and spring waters using UV–Vis absorbance and fluorescence spectroscopy," Organic Geochemistry, Vol. 41, No. 3, pp. 270-280.
    Birdwell, J. E. and Engel, A. S. J. O. G., 2010, "Characterization of dissolved organic matter in cave and spring waters using UV–Vis absorbance and fluorescence spectroscopy," Vol. 41, No. 3, pp. 270-280.
    Buffle, J. J. E. p., 1992, "The use of filtration and ultrafiltration for size fractionation of aquatic particles, colloids, and macromolecules," No. pp. 171-230.
    Burdige, D. J., Kline, S. W., and Chen, W., 2004, "Fluorescent dissolved organic matter in marine sediment pore waters," Marine Chemistry, Vol. 89, No. 1, pp. 289-311.
    Cai, Y. and Guo, L., 2009, "Abundance and variation of colloidal organic phosphorus in riverine, estuarine, and coastal waters in the northern Gulf of Mexico," Limnology and Oceanography, Vol. 54, No. 4, pp. 1393-1402.
    Camobreco, V. J., Richards, B. K., Steenhuis, T. S., Peverly, J. H., and McBride, M. B., 1996, "Movement of heavy metals through undisturbed and homogenized soil columns," Soil Science, Vol. 161, No. 11, pp. 740-750.
    Chen, W., Westerhoff, P., Leenheer, J. A., and Booksh, K., 2003, "Fluorescence excitation-emission matrix regional integration to quantify spectra for dissolved organic matter," Environmental science & technology, Vol. 37, No. 24, pp. 5701-5710.
    Chin, Y.-P., Aiken, G., and O'Loughlin, E., 1994, "Molecular weight, polydispersity, and spectroscopic properties of aquatic humic substances," Environmental Science & Technology, Vol. 28, No. 11, pp. 1853-1858.
    Choubey, V. M., Bist, K., Saini, N., Ramola, R. J. A. r., and isotopes, 1999, "Relation between soil-gas radon variation and different lithotectonic units, Garhwal Himalaya, India," Vol. 51, No. 5, pp. 587-592.
    Coale, K. H. and Bruland, K. W., 1988, "Copper complexation in the Northeast Pacific," Limnology and Oceanography, Vol. 33, No. 5, pp. 1084-1101.
    Croué, J.-P., Benedetti, M., Violleau, D., and Leenheer, J., 2003, "Characterization and copper binding of humic and nonhumic organic matter isolated from the South Platte River: Evidence for the presence of nitrogenous binding site," Environmental science & technology, Vol. 37, No. 2, pp. 328-336.
    Edzwald, J. K., Tobiason, J. E. J. W. S., and Technology, 1999, "Enhanced coagulation: US requirements and a broader view," Vol. 40, No. 9, pp. 63-70.
    El-Taher, A., Madkour, H. J. A. R., and Isotopes, 2011, "Distribution and environmental impacts of metals and natural radionuclides in marine sediments in-front of different wadies mouth along the Egyptian Red Sea Coast," Vol. 69, No. 2, pp. 550-558.
    Frimmel, H. and Frank, W., 1998, "Neoproterozoic tectono-thermal evolution of the Gariep Belt and its basement, Namibia and South Africa," Precambrian Research, Vol. 90, No. 1, pp. 1-28.
    Haitzer, M., Aiken, G. R., and Ryan, J. N., 2003, "Binding of mercury (II) to aquatic humic substances: Influence of pH and source of humic substances," Environmental science & technology, Vol. 37, No. 11, pp. 2436-2441.
    Haitzer, M., Höss, S., Traunspurger, W., and Steinberg, C., 1998, "Effects of dissolved organic matter (DOM) on the bioconcentration of organic chemicals in aquatic organisms—a review—," Chemosphere, Vol. 37, No. 7, pp. 1335-1362.
    He, X., Xi, B., Wei, Z., Guo, X., Li, M., An, D., and Liu, H., 2011, "Spectroscopic characterization of water extractable organic matter during composting of municipal solid waste," Chemosphere, Vol. 82, No. 4, pp. 541-548.
    Helms, J. R., Stubbins, A., Ritchie, J. D., Minor, E. C., Kieber, D. J., and Mopper, K., 2008, "Absorption spectral slopes and slope ratios as indicators of molecular weight, source, and photobleaching of chromophoric dissolved organic matter," Limnology and Oceanography, Vol. 53, No. 3, p. 955.
    Helms, J. R., Stubbins, A., Ritchie, J. D., Minor, E. C., Kieber, D. J., Mopper, K. J. L., and Oceanography, 2008, "Absorption spectral slopes and slope ratios as indicators of molecular weight, source, and photobleaching of chromophoric dissolved organic matter," Vol. 53, No. 3, pp. 955-969.
    Huguet, A., Vacher, L., Relexans, S., Saubusse, S., Froidefond, J.-M., and Parlanti, E., 2009, "Properties of fluorescent dissolved organic matter in the Gironde Estuary," Organic Geochemistry, Vol. 40, No. 6, pp. 706-719.
    Hunter, K. A. and Leonard, M. W. J. G. e. C. A., 1988, "Colloid stability and aggregation in estuaries: 1. Aggregation kinetics of riverine dissolved iron after mixing with seawater," Vol. 52, No. 5, pp. 1123-1130.
    Hur, J. and Kim, G., 2009, "Comparison of the heterogeneity within bulk sediment humic substances from a stream and reservoir via selected operational descriptors," Chemosphere, Vol. 75, No. 4, pp. 483-490.
    Hur, J., Lee, D.-H., and Shin, H.-S., 2009, "Comparison of the structural, spectroscopic and phenanthrene binding characteristics of humic acids from soils and lake sediments," Organic Geochemistry, Vol. 40, No. 10, pp. 1091-1099.
    Kalbitz, K., Solinger, S., Park, J.-H., Michalzik, B., and Matzner, E., 2000, "Controls on the dynamics of dissolved organic matter in soils: a review," Soil science, Vol. 165, No. 4, pp. 277-304.
    Labanowski, J., Sebastia, J., Foy, E., Jongmans, T., Lamy, I., and van Oort, F. J. E. P., 2007, "Fate of metal-associated POM in a soil under arable land use contaminated by metallurgical fallout in northern France," Vol. 149, No. 1, pp. 59-69.
    Lapworth, D. J. and Kinniburgh, D., 2009, "An R script for visualising and analysing fluorescence excitation–emission matrices (EEMs)," Computers and Geosciences, Vol. 35, No. 10, pp. 2160-2163.
    Lead, J., Hamilton-Taylor, J., Davison, W., and Harper, M. J. G. e. C. A., 1999, "Trace metal sorption by natural particles and coarse colloids," Vol. 63, No. 11-12, pp. 1661-1670.
    Leenheer, J. A., Dotson, A., and Westerhoff, P. J. A. o. E. S., 2007, "DISSOLVED ORGANIC NITROGEN FRACTIONATION," No.
    Leenheer, J. A. J. A. o. E. S., 2009, "Systematic approaches to comprehensive analyses of natural organic matter," Vol. 3, No. pp. 1-130.
    Ma, H., Allen, H. E., and Yin, Y., 2001, "Characterization of isolated fractions of dissolved organic matter from natural waters and a wastewater effluent," Water research, Vol. 35, No. 4, pp. 985-996.
    Mayer, L. M. J. G. e. C. A., 1982, "Aggregation of colloidal iron during estuarine mixing: Kinetics, mechanism, and seasonality," Vol. 46, No. 12, pp. 2527-2535.
    McKnight, D. M., Boyer, E. W., Westerhoff, P. K., Doran, P. T., Kulbe, T., and Andersen, D. T., 2001, "Spectrofluorometric characterization of dissolved organic matter for indication of precursor organic material and aromaticity," Limnology and Oceanography, Vol. 46, No. 1, pp. 38-48.
    Muchuweti, M., Birkett, J., Chinyanga, E., Zvauya, R., Scrimshaw, M. D., Lester, J. J. A., Ecosystems, and Environment, 2006, "Heavy metal content of vegetables irrigated with mixtures of wastewater and sewage sludge in Zimbabwe: implications for human health," Vol. 112, No. 1, pp. 41-48.
    Opezalonso, M., Benedito, J., Miranda, M., Castillo, C., Hernández, J., and Shore, R., 2000, "The effect of pig farming on copper and zinc accumulation in cattle in Galicia (North-Western Spain)," The Veterinary Journal, Vol. 160, No. 3, pp. 259-266.
    Parlanti, E., Wörz, K., Geoffroy, L., and Lamotte, M., 2000, "Dissolved organic matter fluorescence spectroscopy as a tool to estimate biological activity in a coastal zone submitted to anthropogenic inputs," Organic Geochemistry, Vol. 31, No. 12, pp. 1765-1781.
    Parlanti, E., Wörz, K., Geoffroy, L., and Lamotte, M. J. O. g., 2000, "Dissolved organic matter fluorescence spectroscopy as a tool to estimate biological activity in a coastal zone submitted to anthropogenic inputs," Vol. 31, No. 12, pp. 1765-1781.
    Rani, A., Mittal, S., Mehra, R., Ramola, R. J. A. R., and Isotopes, 2015, "Assessment of natural radionuclides in the soil samples from Marwar region of Rajasthan, India," Vol. 101, No. pp. 122-126.
    Shaheen, S. M., Tsadilas, C. D., and Rinklebe, J., 2013, "A review of the distribution coefficients of trace elements in soils: Influence of sorption system, element characteristics, and soil colloidal properties," Advances in colloid and interface science, Vol. 201, No.1 pp. 43-56.
    Sholkovitz, E., Boyle, E., Price, N. J. E., and Letters, P. S., 1978, "The removal of dissolved humic acids and iron during estuarine mixing," Vol. 40, No. 1, pp. 130-136.
    Sholkovitz, E. and Copland, D. J. G. e. C. A., 1981, "The coagulation, solubility and adsorption properties of Fe, Mn, Cu, Ni, Cd, Co and humic acids in a river water," Vol. 45, No. 2, pp. 181-189.
    Sholkovitz, E. J. G. e. C. A., 1976, "Flocculation of dissolved organic and inorganic matter during the mixing of river water and seawater," Vol. 40, No. 7, pp. 831-845.
    Wang, Z.-L. and Liu, C.-Q. J. C. G., 2003, "Distribution and partition behavior of heavy metals between dissolved and acid-soluble fractions along a salinity gradient in the Changjiang Estuary, eastern China," Vol. 202, No. 3-4, pp. 383-396.
    Wang, Z., Wu, Z., and Tang, S. J. W. r., 2009, "Characterization of dissolved organic matter in a submerged membrane bioreactor by using three-dimensional excitation and emission matrix fluorescence spectroscopy," Vol. 43, No. 6, pp. 1533-1540.
    Wells, M. L., Smith, G. J., and Bruland, K. J. M. C., 2000, "The distribution of colloidal and particulate bioactive metals in Narragansett Bay, RI," Vol. 71, No. 1-2, pp. 143-163.
    Wen, L.-S., Santschi, P., Gill, G., and Paternostro, C. J. M. C., 1999, "Estuarine trace metal distributions in Galveston Bay: importance of colloidal forms in the speciation of the dissolved phase," Vol. 63, No. 3-4, pp. 185-212.
    Wilson, B., Pyatt, F. J. E., and safety, e., 2007, "Heavy metal dispersion, persistance, and bioccumulation around an ancient copper mine situated in Anglesey, UK," Vol. 66, No. 2, pp. 224-231.
    Wu, F., Evans, D., Dillon, P., and Schiff, S. J. J. o. A. A. S., 2004, "Molecular size distribution characteristics of the metal–DOM complexes in stream waters by high-performance size-exclusion chromatography (HPSEC) and high-resolution inductively coupled plasma mass spectrometry (ICP-MS)," Vol. 19, No. 8, pp. 979-983.
    Wu, J., Luther III, G. W. J. L., and Oceanography, 1994, "Size‐fractionated iron concentrations in the water column of the western North Atlantic Ocean," Vol. 39, No. 5, pp. 1119-1129.
    Yu, K.-C., Tsai, L.-J., Chen, S.-H., and Ho, S.-T. J. W. R., 2001, "Chemical binding of heavy metals in anoxic river sediments," Vol. 35, No. 17, pp. 4086-4094.

    下載圖示
    QR CODE