簡易檢索 / 詳目顯示

研究生: 莊峻銘
Chuang Chun-Ming
論文名稱: 用於異質接面高效矽晶太陽電池之電漿輔助氣相沉積製程及其設備技術之研究
Research of Plasma-enhanced chemical vapor deposition. process and apparatus technology for Highly efficiency heterojunction solar cells
指導教授: 楊茹媛
Yang Ru-Yuan
學位類別: 碩士
Master
系所名稱: 工學院 - 材料工程研究所
Graduate Institute of Materials Engineering
畢業學年度: 107
語文別: 中文
論文頁數: 78
中文關鍵詞: 異質接面太陽電池電漿PECVD載子壽命
外文關鍵詞: Heterogeneous junction, solar cell, plasma, PECVD, carrier. lifetime
DOI URL: http://doi.org/10.6346/NPUST201900380
相關次數: 點閱:21下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統
  • 本研究在於探究矽晶異質接面太陽能電池,與習知研究不同的是,我們由產業製程需求出發,從設備如何滿足製程需求之觀點啟始,探討設備對應製程技術需求之設計、並藉由該設備實現的薄膜製程結果,檢驗設備能力,藉此使研究內容未來可對於本種電池產品之需求可以系統性觀點進行診斷,並提出整體性的解決方案。在本研究中將首先解析產業問題,並以試量產設備進行薄膜製程開發,試量產設備採用in-line式PECVD超高頻電漿增強式鍍膜設備,就其針對製程需求之設計要點進行討論及性能探討,特別是其屬於連續生產型試量產設備。在設備的建構技術層面上,與單機設備相比較為複雜,製程生產最重要需求為大面積鍍膜之厚度分布均勻性,欲滿足該需求採用之設備核心技術以電磁分析能力為核心,本論文中將解構PECVD的射頻功率工作原理,對於射頻功率輸入腔體之行為,包含阻抗的分析、饋入電路的設計、影響電漿分布均勻性的電極板電場分布,所搭配的流場分析技術,使用儀器如射頻功率量測探針、射頻洩漏量測儀等儀器輔助下,建構出該設備結構。也因自主化設計掌握設備技術,可望能因應為了提升製程效能而不斷產生之設備改善及設計需求。終極目標為成功建構一具有良好鍍膜均勻度與設備穩定度之太陽電池鍍膜設備,其可提供品質穩定,可達到異質接面太陽電池之薄膜生產需求。本論文後半段並藉由改變設備之製程參數,包含功率密度、工作溫度、工作壓力、氣體比例,探討以上製程參數變化產出薄膜之光電特性趨勢,其後針對矽薄膜與矽基板間之缺限密度,對應的載子壽命,以及等效理論效率,進行討論,探討產出之薄膜品質與異質接面太陽電池元件之品質關連性。
    藉由本研究提出之研究流程與內容,希望可更廣泛應用於鍍膜產業中,並結合目前國內設備業者,切入量產型PECVD的市場,提高國內設備業者在半導體界中的設備產品市占率,並為設備供應方以及設備使用者雙方共同創造可觀經濟價值。

    This study is to explore the twin-shaped heterojunction solar cells. Different from the conventional research, we start from the industrial process requirements, and start from the viewpoint of how the equipment meets the process requirements, and explore the design of the equipment corresponding to the process technology requirements. The equipment realizes the film process results and verifies the equipment capabilities, so that the research content can be diagnosed systematically from the needs of the battery products in the future, and a holistic solution is proposed. In this study, the industrial problems will be analyzed first, and the thin-film process development will be carried out with the trial production equipment. The in-line PECVD ultra-high-frequency plasma-enhanced coating equipment will be used for the production equipment, and the design points for the process requirements will be carried out. Discussion and performance discussion, especially for continuous production type production equipment.
    In the construction technology level of the equipment, it is more complicated than the single-machine equipment. The most important requirement for the process production is the uniformity of the thickness distribution of the large-area coating. The core technology of the equipment to meet this demand is based on the electromagnetic analysis capability. In this paper, The RF power working principle of PECVD will be deconstructed. For the behavior of the RF power input cavity, the analysis of the impedance, the design of the feeding circuit, the electric field distribution of the electrode plate that affects the uniformity of the plasma distribution, and the matching flow field analysis technique are used. The equipment is constructed by instruments such as RF power measurement probes, measuring plasma light emission spectrometers, RF leakage measuring instruments, and thermal imaging cameras. Due to the autonomous design and mastery of equipment technology, it is expected that the equipment improvement and design requirements will continue to be generated in order to improve the process performance. The ultimate goal is to successfully construct a coating equipment with good coating uniformity and equipment stability, providing stable quality and meeting the film production requirements of heterojunction solar cells.
    In the second half of the paper, by changing the process parameters of the equipment, including power density, working temperature, working pressure, and gas ratio, the photoelectric characteristics of the film produced by the above process parameters are discussed, and then the defects between the tantalum film and the tantalum substrate are discussed. Limit density, corresponding carrier lifetime, and equivalent theoretical efficiency are discussed to investigate the quality of the resulting film and the quality of the heterojunction solar cell components.
    With the research process and content proposed in this study, it is hoped that it can be widely used in the coating industry, and combined with the current domestic equipment industry, cut into the market of mass production PECVD, and increase the market share of equipment products in the semiconductor industry by domestic equipment manufacturers. And create considerable economic value for both the equipment supplier and the equipment user.

    目錄
    摘要 I
    Abstract III
    謝誌 VI
    目錄 VII
    圖目錄 IX
    表目錄 XII
    第1章 緒論 1
    1.1 研究背景 1
    1.2 文獻回顧 6
    1.3 研究動機 9
    1.4 論文架構 10
    第2章 基本理論 11
    2.1 HIT元件原理 11
    2.2 HIT薄膜製程原理 12
    2.3異質接面太陽能薄膜特性探討 15
    2.3.1工作壓力變化對各種矽薄膜的影響 15
    2.3.2工作壓力變化對矽薄膜特性的影響 16
    2.3.3本質層厚度變化對元件特性的影響 17
    2.4 PECVD種類與原理 22
    2.5 對應異質接面太陽電池PECVD設計與整改需求 28
    第3章 實驗步驟與儀器 30
    3.1 實驗流程說明 30
    3.1.1 PECVD設備關鍵組件開發流程 30
    3.1.2矽薄膜特性的分析方法(微結構、光性、電性分析) 31
    3.2 實驗儀器簡介 32
    3.2.1 In line超高頻電漿增強式鍍膜設備 32
    3.2.2 射頻功率檢測設備 35
    3.2.3 缺陷密度檢測設備 36
    3.2.4 載子壽命檢測設備 37
    第4章 結果與討論 40
    4.1 PECVD設備關鍵模組設計流程與性能探討 40
    4.1.1 加熱系統 40
    4.1.2 射頻功率系統 鍍膜電場均勻性設計 41
    4.1.3 鍍膜流場均勻性設計 46
    4.2 PECVD設備薄膜製程實驗結果探討 52
    4.2.1 不同PECVD設備參數對應之薄膜特性 53
    4.2.2 載子壽命特性探討 60
    4.2.3 低介面缺陷製程技術成效: 63
    4.3 鍍膜均勻性探討 66
    4.3.1 設備運轉製程性能驗證 66
    第5章 結論 72
    參考文獻 73
    作者簡介 78

    [1] 行政院主計總處綜合統計處2019
    [2] ITRPV2014
    [3] Panasonic Corporation, Moriguchi City, Osaka 570-8501, Japan
    , available at: https://panasonic.net/lifesolutions/solar/
    [4] ITRPV2015
    [5] Patel, K., and Tyag, P. K., 2014, “Technological Advances in A-Si: H/C-Si Heterojunction Solar Cells,” International Journal of Renewable Energy Research, Vol.4, No.2, pp.528-538.
    [6] Zhao, L., Diao, H., Zeng, X., Zhou, C., Li, H., and Wang, W., 2010, “Comparative Study of The Surface Passivation on Crystalline Silicon By Silicon Thin Films With Different Structures,” Physica B, 405, pp. 61-64.
    [7] Ram, S., Kroely, L., Kasouit, S., Bulkin, P., and Roca, P., 2010, “Plasma Emission Diagnostics During Fast Deposition of Microcrystalline Silicon Thin Films in Matrix Distributed Electron Cyclotron Resonance Plasma CVD System,” Physica Status Solidi (c), Vol. 7, pp. 553-556.
    [8] Szekeres, A., Gartner, M., Vasiliu, F., Marinov, M., Beshkov, G., 1998, “Crystallization of A-Si:H Films by Rapid Thermal Annealing,” Journal of Non-Crystalline Solids, Vol. 227, pp. 954-957.
    [9] Morral, A. F. i., Cabarrocas, P. R. i., Clerc, C., 2004, “Structure And Hydrogen Content Of Polymorphous Silicon Thin Films Studied by Spectroscopic Ellipsometry and Nuclear Measurements,” Physical Review B, Vol. 69 , pp. 125307.
    [10] Voz, C., Munoz, D., Fonrodona, M., Martin, I., Puigdollers, J., Alcubilla, R., Escarre, J., Bertomeu, J., Andreu, J., 2006, “Bifacial Heterojunction Silicon Solar Cells by Hot-Wire CVD with Open-Circuit Voltages Exceeding 600 mV,” Thin Solid Films, Vol. 511-512, pp. 415-419.
    [11] Wang, Q., Page, M. R., Xu, Y., Iwaniczko, E., Whnams, E., Wang, T. H., 2003, “Development of a Hot-Wire Chemical Vapor Deposition N-Type Emitter on P-Type Crystalline Si-Based Solar Cells,” Thin Solid films, Vol. 430, pp. 208-211.
    [12] Reaux, D., Alvarez, J., Farret, M. E. G., and Kleider, J. P., 2015, “Impact of defect-pool model parameters on the lifetime in c-Si/a-Si:H heterojunction solar cells,” Energy Procedia, Vol. 77, pp. 153-158.
    [13] Taguchi, M., Kawamoto, K., Tsuge, S., Baba, T., Sakata, H., Morizane, Uchihashi, M. K., Nakamura, N., Kiyama, S., and Oota, O., 2000, “HITTM Cells High-Efficiency Crystalline Si Cells with Novel Structure,” Progress in Photovoltaocs, Vol. 8, pp. 503-513.
    [14] Jagannathan, B., and Anderson, W. A., 1997, “Defect Study in Amorphous Silicon/Crystalline Silicon Solar Cells by Thermally Stimulated Capacitance,” Journal of Applied Physics, vol. 82 pp. 1930-1935.
    [15] Voz, C., Martin, I., Orpella, A., Puigdollers, J., Vetter, M., Alcubilla, R., Soler, D., Fonrodona, M., Bertomeu, Andreu, J. J., 2003, “Surface Passivation of Crystalline Silicon by Cat-CVD Amorphous and Nanocrystalline Thin Silicon Films,” Thin Solid Films, Vol. 430, pp. 270-273.
    [16] Kunst, M. S., Aichberger, V., Citarella, G., Wu, F., 2002, “Amorphous Silicon/Crystalline Silicon Heterojunctions for Solar Cells,” Journal of Non-Crystalline Solids, Vol. 299-302, pp.1198-1202.
    [17] Maknys, K., Ulyashin, A. G., Stiebig, H., Kuznetsov, A. Y., Svensson, B. G., 2006, “Analysis of ITO Thin Layers and Interfaces in Heterojunction Solar Cells Structures by AFM, SCM and SSRM Methods”, Thin Solid films, Vol. 511-512, pp. 98-102.
    [18] Kleider, J. P., Alvarez, J., Oudot, A. B., Farret, M. E. G., Maslova, O., 2015, “Revisiting the Theory and Usage of Junction Capacitance: Application to High Efficiency Amorphous/Crystalline Silicon Heterojunction Solar Cells,” Solar Energy Materials and Solar Cells, Vol. 135, pp. 8-16.
    [19] Voz, C., Martin, I., Orpella, A., Puigdollers, J., Vetter, M., Alcubilla, R., Soler, D., Fonrodona, M., Bertomeu, J., and Andreu, J., 2003, “Surface passivation of crystalline silicon by Cat-CVD amorphous and nanocrystalline thin silicon films,” Thin Solid Films, Vol. 430, pp. 270-273.
    [20] Kunst, M. S., Aichberger, V., Citarella, G., and Wu, F., 2002, “Amorphous Silicon/Crystalline Silicon Heterojunctions for Solar Cells”, Journal of Non-Crystalline Solids, Vol. 299–302, pp. 1198-1202.
    [21] Ye, W., Min, K., Martin, P. P., Rockett, A. A., Aluru, N.R., and Lyding, J. W., 2013, “Scanning Tunneling Spectroscopy and Density Functional Calculation of Silicon Dangling Bonds on the Si(100) Surface”, Materials Research Society Symp Surface Science, Vol. 609, pp. 147–151.
    [22] Ghannam, M., Shehadah, G., Abdulraheem, Y., and Poortmans, J., 2015, “On the Possible Role of The Interfacial Inversion Layer in the Improvement of the Performance of Hydrogenated Amorphous Silicon/Crystalline Silicon Heterojunction Solar Cells”, Solar Energy Materials and Solar Cells, Vol 132, pp. 320-328.
    [23] Seager, C. H., Sharp, D. J., and Panitz, J. K. G., 2011, “Effect of Hydrogen Plasma Passivation on Performance of HIT Solar Cells,” Solar Energy Materials and Solar Cells, Vol. 95, pp. 81-83.
    [24] Kim, S., Dao, V. A., Lee, Y., Shin, C., Park, J., Cho, J., Yi, J., 2013, “Processed Optimization for Excellent Interface Passivation Quality of Amorphous/Crystalline Silicon Solar Cells,” Solar Energy Materials and Solar Cells, Vol. 117, pp. 174-177.
    [25] Feldmann, F., Bivour, M., Reichel, C., Hermle, M., Glunz, S. W., 2014, “Passivated Rear Contacts for High-Efficiency N-Type Si Solar Cells Providing High Interface Passivation Quality and Excellent Transport Characteristics,” Solar Energy Materials and Solar Cells, Vol. 120, pp. 270-274.
    [26] Iftiquar, S. M., Lee, Y., Dao, V. A., Kim, S., and Yi, J. High efficiency heterojunction with intrinsic thin layer solar cell: A short review. in Materials and processes for energy: communicating current research and technological development (A. Mendez-Vilas Ed.), 2013, 59-67.
    [27] Fujiwara, H., and Kondo, M., 2007, “Impact of epitaxial growth at the heterointerface of a-Si:H/c-Si solar cells,” Applied Physics Letters, Vol. 90.
    [28] Burrows, M. Z., Das, U. K., Opila, R. L., De Wolf, S., Birkmire, and R. W., 2008, “Role of Hydrogen Bonding Environment in a-Si:H Films for c-Si Surface Passivation,” Journal of Vacuum Science & Technology A, Vol. 26, pp. 683-687.
    [29] Zhao, L., Diao, H., Zeng, X., Zhou, C., Li, H., and Wang, W., 2010, “Comparative study of the surface passivation on crystalline silicon by silicon thin films with different structures,” Physica B, Vol. 405, pp. 61-64.
    [30] Shinohara, W., Aya, Y., Yata, S., Matsumoto, M., and Terakawa, A., 2013, “The Outline And Recent Progress of Thin-Film Solar Cells and Heterojunction with Intrinsic Thin-Layer (HIT) Solar Cells,” 13th International Workshop on Junction Technology, No. 13873499.
    [31] Kim, S. , Dao, V. A., Shin, C., Cho, J., Balaji, N., Ahn, S., Kim, Y. and Yi. J. ,2012, “Low defect interface study of intrinsic layer for c-Si surface passivation in a-Si:H/c-Si heterojunction solar cells,” Thin Solid Films, Vol. 521, No.30, pp. 45-49.
    [32] Deceglie, M. G., and Atwater, H. A., 2011, “Effect of defect-rich epitaxy on crystalline silicon / amorphous silicon heterojunction solar cells and the use of low-mobility layers to improve performance,” 37th IEEE Photovoltaics Specialists Conference, No. 12710878.
    [33] Peng, L. Z., 2014, Design, Fabrication and Characterization Of Thin-Film Materials for Heterojunction Silicon Wafer Solar Cells, Doctor Dissertation, Department of Electrical And Computer Engineering, National University of Singapore, Singapore.
    [34] Hayashi, Y., Li, D., Ogura, A., Ohshita, Y., 2013, “Role of i-aSi:H Layers in aSi:H/cSi Heterojunction Solar Cells,” IEEE Journal of Photovoltaics, Vol. 3, No. 4, pp. 1149 - 1155.
    [35] S. Olibet, 2009, Properties of interfaces in amorphous/crystalline silicon heterojunctions, Doctoral Dissertation, Institut de Microtechnique, University of Neuchâtel, Neuchâtel, Switzerland.
    [36] 蘇青森,真空技術精華,五南圖書,2013。
    [37] Wittenberg, H. H., 1962, Gas Tube Design, Electron Tube Design, RCA Electron Tube Division, pp. 792 - 817。
    [38] 蘇青森,2002,真空技術,東華書局。
    [39]翁敏航,2006,射頻被動元件設計,東華書局。
    [40] 蘇青森,2013,真空技術精華,五南圖書。
    [41] Meyer Burger Technology Ltd, Thun, Switzerland,,available at: https://www.meyerburger.com/en/
    [42] Ansoft HFSS v12,available at: https://www.ansys.com/zh-tw/products/electronics/ansys-hfss。
    [43] 亞樹科技股份有限公司,available at: http://www.asip.org.tw/com/outinfo.php?id=630
    [44]RF Voltage-Current Probe for Plasma Processing Applications, available at: https://www.solayl.com/products/metrology-products/。
    [45] Smith Chart Tool, available at: https://smithchart.net/
    [46] Chamber analyzer(腔體阻抗分析儀), available at: http://tw.adtec-rf.com/product/chamber-analyzer
    [47] Agilent B1500 半導體參數分析儀(With Pulse Generator) ,多功能半導體快速量測系統,中山大學物理系。
    [48]WCT120載子壽命分析儀, available at: https://www.sintoninstruments.com/products/wct-120/
    [49]Perret, A., Chabert, P., Booth, J.-P., Jolly, J., Guillon, J., and Auvray, Ph.,2003, “Ion Flux Nonuniformities in Large-Area High-Frequency Capacitive Discharges.” Appl. Phys. Lett., Vol. 83, No.2.
    [50]Sansonnens, L., Schmidt, H., Howling, A. A., and Hollenstein, Ch., 2006, “Application of The Shaped Electrode Technique to A Large Area Rectangular Capacitively Coupled Plasma Reactor to Suppress Standing Wave Nonuniformity,” J. Vac. Sci. Technol. A, Vol. 24, No.4, pp.1425-1430.
    [51]Kawamura, K., Mashima, H., Takeuchi, Y., Takano, A., Noda, M., Yonekura, Y., and Takatsuka, H., 2006, “Development of Large-Area A-Si:H Films Deposition Using Controlled VHF Plasma,” Thin Solid Films, 506-507, pp. 22-26.
    [52]SOLIDWORKS|,3D CAD Design Software, available at: https://www.solidworks.com/.

    QR CODE