簡易檢索 / 詳目顯示

研究生: 方納多
Ito Fernando
論文名稱: 芝麻與愛玉半胱胺酸水解酵素抑制劑對四紋豆象抑制效應之研究
Study on the Inhibitory Effects of Phytocystatins from Sesame and Jelly Fig Against the Cowpea Weevil Callosobruchus maculatus
指導教授: 徐志宏
Douglas J. H. Shyu
Retno Dyah Puspitarini
學位類別: 碩士
Master
系所名稱: 農學院 - 生物科技系
Department of Biological Science and Technology
畢業學年度: 107
語文別: 英文
論文頁數: 70
中文關鍵詞: 植物蛋白酶轉基因植物飼養試驗人工種子系統
外文關鍵詞: phytocystatins, transgenic plants, feeding assay, artificial seed system
DOI URL: http://doi.org/10.6346/NPUST201900388
相關次數: 點閱:11下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統
  • 已知植物抑制素作為植物中的天然防禦機制,以對抗食草害蟲的侵襲。近年來,表達胱抑素的轉基因作物的發展受到極大關注。然而,鑑於幾種昆蟲克服障礙的能力,不斷需要新的遺傳資源來擴大轉基因植物的有效性和增加其耐久性。在這裡,從芝麻(SiCYS)和果凍無花果(FaCYS)中獲得了編碼植物抑素的cDNA,並將其構建為pET載體系統作為其標記的蛋白質並在 大腸桿菌BL21(DE3)。首先進行木瓜蛋白酶抑制測定以證實純化的重組植物生成抑制素的功能,然後對在Callosobruchus maculatus幼蟲中發現的中腸酶進行體外抑制測定。使用人工種子系統進行飼養測定以闡明兩種抑製劑對C. maculatus的整體生物學的能力。SiCYS和FaCYS完全抑制了木瓜蛋白酶的活性,並顯著抑制了C. maculatus幼蟲的中腸酶蛋白水解活性,分別達到~75和~55%。飼餵試驗表明,兩種抑製劑均未能對昆蟲幼蟲造成明顯的死亡率。然而,當加入高劑量的SiCYS時,獲得了顯著的延遲對
    C. maculatus發育期的影響。顯然,成人體重和豆類重量損失在治療組和對照組之間沒有差異,表明抑製劑對C. maculatus幼蟲晚期沒有拒食作用。考慮到這一顯著的結果,可以考慮將SiCYS用作有希望的候選轉基因基因用於未來的研究。

    Phytocystatins have been known to act as a natural defense mechanism in plants to combat herbivorous insect pests attack. In recent years the development of cystatin expressing transgenic crops is of great interest. However a new genetic resources are much needed for broadening the effectiveness and increasing durability of transgenic plants given the ability of several insects to overcome the barriers. Here a cDNA encoding phytocystatins had been obtained from sesame (SiCYS) and jelly fig (FaCYS) and were constructed into pET vector system as his-tagged protein and produced in
    E. coli BL21(DE3). Initially, papain inhibitory assays were conducted to confirm the functionality of the purified recombinant phytocystatins, followed by in vitro inhibitory assay against midgut enzymes found in Callosobruchus maculatus larvae. A feeding assay using artificial seed system were carried out to elucidate the ability of both inhibitors on the overall biology of C. maculatus. SiCYS and FaCYS completely inhibited the papain activity, and dramatically suppressed the midgut enzymes proteolytic activity of C. maculatus larvae up to ~75 and ~55%, respectively. Feeding assay revealed that both inhibitors were failed to cause noticeable mortality on the insect larvae. Nevertheless, a pronounced retardation effects on the developmental period of C. maculatus were obtained when high dose of SiCYS was incorporated. Apparently, the adults body weight and beans weight losses didn’t differ amongst the treatment and control group, indicating no antifeedant effects of the inhibitors on the late stage of C. maculatus larvae. Taking into account of this prominent results, the utilization of SiCYS as a promising candidate transgenic gene might be considered for future studies.

    TABLE OF CONTENTS
    中文摘要 I
    ABSTRACT III
    ACKNOWLEDGEMENTS V
    TABLE OF CONTENTS VI
    LIST OF FIGURES IX
    LIST OF TABLES XII
    I. INTRODUCTION 1
    1.1 Background 1
    1.2 Purpose of Study 3
    II. LITERATURE REVIEW 5
    2.1 Protease 5
    2.1.1 Cysteine Protease 6
    2.2 Protease Inhibitor 7
    2.2.1 Cysteine Protease Inhibitor 8
    2.2.2 Phytocystatin 9
    2.3 Agricultural Utilizations of Protease Inhibitors 10
    2.3.1 Cystatin Expressing Transgenic Crops 11
    2.4 Cowpea Weevil Callosobruchus maculatus 14
    2.4.1 General Morphology and Biology of Callosobruchus
    maculatus 14
    2.4.2 Economic Importance of Callosobruchus maculatus 15
    2.4 Insect Gut Proteases 16
    III. METHODOLOGY 18
    3.1 Conceptual Framework 18
    3.2 Methods 18
    3.2.1 Construction of AcCYS Expression System 18
    3.2.1.1 Synthesize of AcCYS Gene 19
    3.2.1.2 Transformation of AcCYS-pUC57 into E. coli DH5α cell 19
    3.2.1.3 Transformant Selection by Plasmid Digestion Method 19
    3.2.1.4 Agarose Gel Electrophoresis 20
    3.2.1.5 AcCYS Gene PCR Amplification 20
    3.2.1.6 Agarose Gel Purification 21
    3.2.1.7 Ligation of AcCYS Gene into TA Vector 21
    3.2.1.8 Selection of AcCYS-yT&A DH5α and DNA Sequencing 21
    3.2.1.9 Construction of the Expression Vector 22
    3.2.2 Overexpression of the Recombinant Phytocystatin
    Genes 22
    3.2.3 Production and Purification of the Recombinant
    Phytocystatins 23
    3.2.3.1 IPTG Induction 23
    3.2.3.2 Sonication 24
    3.2.3.3 Protein Purification Affinity Chromatography 24
    3.2.4 SDS-Polyacrylamide Gel Electrophoresis 24
    3.2.5 Soluble Protein Content Quantitation 25
    3.2.6 Phytocystatins Inhibitory Activity Assay towards
    Cysteine Protease 26
    3.2.7 Preparation of Insect Midgut Enzymes 27
    3.2.8 In Vitro Phytocystatins Inhibitory Assay against Insect
    Gut Enzymes 28
    3.2.9 Effects of Phytocystatins on the Biology of
    Callosobruchus maculatus 28
    3.2.10 Statistical Analysis 29

    IV. RESULTS 31
    4.1 AcCYS Gene Synthesize and Transformation into E. coli
    DH5α 31
    4.2 AcCYS Gene PCR Amplification, Cloning into TA Vector
    and Sequencing 31
    4.3 AcCYS Expression System Construction 35
    4.4 Recombinant Phytocystatins Expression in E. coli BL21(DE3 35
    4.5 Purification of the Recombinant Phytocystatins 42
    4.6 Phytocystatins Inhibitory Activity Assessment towards Cysteine Protease 46
    4.7 Insect Midgut Enzyme Extraxtion and In Vitro Inhibition of Insect Disgestive Protease by Phytocystatins 46
    4.8 Antibiosis Effects of Phytocystatins on Callosobruchus maculatus Biology 50
    V. DISCUSSION 52
    VI. CONCLUSIONS 58
    REFERENCES 59

    REFERENCES
    Abe K., Y. Emori, H. Kondo, S. Arai, K. Suzuki. 1988. The NH2-terminal 21 amino acid residues are not essential for the papain-inhibitory activity of oryzacystatin, a member of the cystatin superfamily. Expression of oryzacystatin cDNA and its truncated fragments in Escherichia coli. J. Biol. Chem. 263(16): 7655-7659.
    Aguiar J.M., O.L., Franco, D.J. Rigden, C. Bloch, A. Monteiro, V.M. Flores, T. Jacinto, J. Xavier-Filho, A.E.A. Oliveira, M.F., Grossi-de-Sa, K.V.S. Fernandes. 2006. Molecular modeling and inhibitory activity of cowpea cystatin against bean bruchid pests. Proteins: Struc. Func. Bioinform. 63(6): 662-670.
    Ahn J.E., M.R. Lovingshimer, R.A. Salzman, J.K. Presnail, A.L. Lu, H. Koiwa, K. Zhu-Salzman. 2007. Cowpea bruchid Callosobruchus maculatus counteracts dietary protease inhibitors by modulating propeptides of major digestive enzymes. Insect Mol. Biol. 16(3): 295-304.
    Amirhusin B., R.E. Shade, H. Koiwa, P.M. Hasegawa, R.A. Bressan, L.L. Murdock, K. Zhu-Salzman. 2007. Protease inhibitors from several classes work synergistically against Callosobruchus maculatus. J. Insect Physiol. 53: 734-740.
    Arai S, K. Abe. 2000. Cystatin-based control of insects, with special reference to oryzacystatin. In: Michaud D., editor. Recombinant protease inhibitors in plants. Georgetown, TX: Landes Bioscience. p. 27-42.
    Atkinson H.J., K.A. Johnston, M. Robbins. 2004. Prima facie evidence that a phytocystatin for transgenic plant resistance to nematodes is not toxic risk in the human diet. J. Nutr. 134: 431-434.
    Bangrak P., W. Chotigeat. 2011. Molecular cloning and biochemical characterization of novel cystatin from Hevea rubber latex. Plant Physiol. Biochem. 49: 244-250.
    Barret A.J., N.D. Rawling, E.A. Briem. 2001. The MEROPS database as protease information system. J. Struct. Biol. 14: 95-102.
    Benchabane M., U. Schluter, J. Vorster, M.C. Goulet, D. Michaud. 2010. Plant cystatins. Biochimie 11: 1657-1666.
    Benchekroun A, D. Michaud, B. Nguyen-Quoc, S. Overney, Y. Desjardins, S. Yelle. 1995. Synthesis of active oryzacystatin I in transgenic potato plants. Plant Cell Reports 14(9): 585-588.
    Bunelle F., C. Cloutier, D. Michaud. 2004. Colorado potato beetles compensate for tomato cathepsin D inhibitor expressed in transgenic potato. Arch. Insect Biochem. Physiol. 55: 103-113.
    Bode W. R. Huber. 1992. Natural protein proteinase inhibitors and their interaction with proteinases. J. Biochem. 204: 433-451.
    Bown, D.P., H.S. Wilkinson, J.A. Gatehouse. 1997. Differentially regulated inhibitor-insensitive and insensitive protease gene from the phytophagous insect pest, Helicoverpa armigera, are members of complex multigene families. Insect Biochem. Mol. Biol. 27: 625-638.
    Chapman H.A., R.J. Riese, G.P. Shi. 1997. Emerging roles for cysteine protease in human biology. Annu. Rev. Physiol. 59: 63-88.
    Cheng M.L., J.T.C. Tzen, D.J.H. Shyu, W.M. Chou. 2014. Functional characterization of the N-terminal and C-terminal domains of a sesame group II phytocystatin. Bot. Stud. 55: 18.
    Chi Y.H., R.A. Salzman, S. Balfe, J.E. Ahn, W. Sun, J. Moon, D.J. Yun, S.Y. Lee, T.J.V. Higgins, B. Pittendrigh, L.L. Murdock, K. Zhu-Salzman. 2009. Cowpea bruchid midgut transcriptome response to a soybean cystatin – costs and benefits of counter-defence. Insect Mol. Biol. 18(1): 97-110.
    Chougule N.P., E. Doyle, E. Fitches, J. A. Gatehouse. 2008. Biochemical characterization of midgut digestive proteases from Mamestra brassicae (cabbage moth; Lepidoptera: Noctuidae) and effect of soybean Kunitz inhibitor (SKTI) in feeding assays. J. Insect Physiol. 54: 563-572.
    Christova P.K., N.K. Christov, P.V. Mladenov, R. Imai. 2018. The wheat multidomain cystatin TaMDC1 displays antifungal, antibacterial and antiinsecticidal activities in planta. Plant Cell Rep. 37(6): 923-932.
    Cingel A., J. Savic, B. Vinterhalter, D. Vinnterhalter, M. kostic, D.S. Jovanovic, A. Smigocki, Ninkovic S. 2015. Growth and development of Colorado potato beetle larvae, Leptinotarsa decemlineata, on tomato plants expressing the oryzacystatin II proteinase inhibitor. Transgenic Res. 24(4): 729-740.
    Cloutier C., C. Jean, M. Fournier, S. Yelle, D. Michaud. 2000. Adult Coloroado potato beetles, Leptinotarsa decemlineata compensate for nutritional stresses on oryzacystatin I-transgenic potato plants by hypertrophic behaviour and over-production of insensitive proteases. Arch. Insect Biochem. Physiol. 44: 69-81.
    Connors B.J., N.P. Laun, C.A. Maynard, W.A. Powell. 2002. Molecular characterization of gene encoding a cystatin expressed in the stems of American Chestnut (Castanea dentata). Planta 215: 510-514.
    Costa T.F.R., A.P.C.A. Lima. 2016. Natural cysteine protease inhibitors in protozoa: Fifteen years of the chagasin family. Biochimie 122: 197-207.
    Cruz A.C.B., F.S. Massena, L. Migliolo, l.L.P. Macedo, N.K.V. Monteiro, A.S. Oliveira, F.P. Macedo, A.F. Uchoa, M.F.G. de Sa, I.M. Vasconcelos, A.M. Murad, O.L. Franco, E.A. Santos. 2013. Bioinsecticidal activity of a novel Kunitz trypsin inhibitor from Catanduva (Piptadenia moniliformis) seeds. Plant Physiol. Biochem. 70: 61-68.
    Dantzger M., I.M. Vasconcelos, V. Scorsato, R. Aparicio, S. Marangoni, M.L.R. Macedo. 2015. Bowman-Birk proteinase inhibitor from Clitoria fairchildiana seeds: Isolation, biochemical properties and insecticidal potential. Phytochemistry 118: 224-235.
    De Leo F., M.A. Bonade-Bottino, L.R. Ceci, R. Gallerani, L. Jouanin. 1998. Opposite effects on Spodoptera littoralis larvae of high expression level of a trypsin proteinase inhubitor in transgenic plants. Plant Physiol. 118(3): 997-1004.
    Deshpande V.K., B. Makanur, S.K. Deshpande, A. Sateesh, P.M. Salimath. 2011. Quantitative and qualitative losses caused by Callosobruchus maculatus in cowpea during seed storage. Plant. Arch. 11: 723–731.
    Diop N.N., M. Kidric, A. Repellin, M. Gareil, A. d’Arcy-Lameta, A.T. Pham Thi, Y. Zuily-Fodil. 2004. A multicystatin in induced by drought-stress in cowpea (Vigna unguiculata (L.) Walp.) leaves. FEBS Lett. 577: 545-550.
    Duan X, X. Li, Q. Xue, M. Abo-el-Saad, D. Xu, R. Wu. 1996. Transgenic rice plants harboring an introduced potato proteinase inhibitor II gene are insect resistant. Nat. Biotechnol. 14(4): 494-498.
    Dunaevsky Y.E., E.N. Elpidina, K.S. Vinokurov, M.A. Belozersky. 2005. Protease inhibitors in improvement of plant resistance to pathogens and insects. Mol. Biol. 39(4): 608-613.
    Dunaevsky Y.E., V.V. Popova, T.A. Semenova, G.A. Beliakova, M.A. Belozersky. 2014. Fungal inhibitors of proteolytic enzymes: Classification, properties, possible biological roles, and perspectives for practical use. Biochimie 101: 10-20.
    Edmonds H.S., L.N. Gatehouse, V.A. Hilder, J.A. Gatehouse. 1996. The inhibitory effects of the cysteine protease inhibitor, oryzacystatin, on digestive proteases and on larval survival and development of the southern corn rootworm. Entomol. Exp. Appl. 78(1): 83-94.
    Ehrmann M., T. Clausen. 2004. Proteolysis as a regulatory mechanism. Ann. Rev. Genet. 38: 709-724.
    Emori Y., N. Ono, K. Saigo, K. Abe, S. Arai. 1993. Expression of oryzacystatin cDNA using yeast artificial chromosome under ADH promoter in baker’s yeast. Biochem. Mol. Biol. Intel. 30(3): 499-504.
    Farady C.J., C.S. Craik. 2010. Mechanism of macromolecular protease inhibitors. Chembiochem 11: 2341-2346.
    Fox J.W., J.D. Shannon, J.B. Bjamason. 1991. Proteinase and their inhibitors in Biotechnology: Enzymes in biomass conversion. Acs. Symp. Ser. 460: 62-79.
    Gianotti A., W.M. Rios, A. Soares-Costa, V. Nogaroto, A.K. Carmona, M.L.V. Oliva, S.S. Andrade, F. Henrique-Silva. 2006. Recombinant expression, purification, and functional analysis of two novel cystatins from sugarcane (Saccharum officinarum). Protein Expr. Purif. 47: 483-489.
    Godfrey T., S. West. 1996. Industrial Enzymology, 2nd ed. Macmillan Publisher, Inc. New York, USA.
    Goulet M.C., C. Dallaire, L.P. Vaillancourt, M. Khalf, A.M. Badri, A. Preradov, M.O. Duceppe, C. Goulet, C. Cloutier, D. Michaud. 2008. Tailoring the specificity of a plant cystatin toward herbivorous insect digestive cysteine proteases by single mutations at positively selected amino acid sites. Plant Physiol. 146: 1010-1019.
    Habib H., K.M. Fazili. 2007. Plant protease inhibitors: a defense strategy in plants. Biotechnol. Mol. Biol. Rev. 2(3): 68-85.
    Hagstrum, D. W., T. Klejdysz, B. Subramanyam, J. Nawrot. 2013. Atlas of stored-product insects and mites. AACCI Press, USA.
    Harish B.S., K.B. Uppuluri. 2018. Microbial serine protease inhibitors and their therapeutic applications. Int. J. Biol. Macromol. 107(B): 1373-1387.
    Harrison R.L., B.C. Bonning. 2010. Proteases as insecticidal agents. Toxins 2:
    935-953.
    Hollenberg M.D., K.K. Hansen, K. Mihara, R. Ramachandran. 2011. Proteolytic Enzymes and Cell Signaling: Pharmalogical Lessons. In Vergnolle N, Chignard M (Eds.). Proteases and Their Receptors in Inflammation. pp. 1-25. Basel, Springer.
    Horng S.B. 1997. Larval competition and egg-laying decisions by the bean weevil, Callosobruchus maculatus. Animal Behav. 53(1): 1-12.
    Hosoyama H., K. Irie, K. Abe, S. Arai. 1994. Oryzacystatin exogenously introduced into protoplasts and regeneration of transgenic rice. Biosci. Biotechnol. Biochem. 58(8): 1500-1505.
    Hosoyama H., K. Irie, K. Abe, S. Arai. 1995. Introduction of a chimeric gene encoding an oryzacystatin-b-glucuronidase fusion protein into rice protoplasts and regeneration of transformed plants. Plant Cell Rep.
    15(3-4): 174-177.
    Howe R.W., J.E. Currie. 1964. Some laboratory observations on the rates of development, mortality and oviposition of several species of Bruchidae breeding in stored pulses. Bull. of Entomol. Res. 55(3): 437-477.
    Hudaib T., S. Brown, A. M. Goodman, P. E. Eady. 2013. Efficacy of artificial seeds in the delivery of bioactive compounds to the seed dwelling larvae of Callosobruchus maculatus (Coleoptera: Bruchidae). Arthropod Plant Interact. 7: 527-533.
    Irie K., H. Hosoyama, T. Takeuchi, K. Iwabuchi, H. Watanabe, M. Abe, K. Abe, S. Arai. Plant Mol. Biol. 30(1): 149-157.
    Jongsma M.A., C. Bolter. 1997. The adaptation of insects to plant protease inhibitors. J. Biol. Chem. 262: 8956-8959.
    Josephrajkumar A., R. Chakrabarty, G. Thomas. 2006. Midgut proteases of the cardamom shoot and capsule borer Conogethes punctiferalis (Lepidoptera: Pyralidae) and their interaction with aprotinin. Bull. Entomol. Res. 96: 91-98.
    Junior J.E.M., N.F. Valadares, H.D. Pereira, F.H. Dyszy, A.J. da Costa Filho, A.F. Uchoa, A.S. de Oliveira, C.P. da Silveira Carvalho, T.B. Grangeiro. 2017. Expression in Escherichia coli of cysteine protease inhibitors from cowpea (Vigna unguiculata): The crystal structure of a single-domain cystatin gives insights on its thermal and pH stability. Int. J. Biol. Macromol. 102: 29-41.
    Kedzior M., R. Sredynski, J. Gutowicz. 2016. Microbial inhibitors of cysteine proteases. Med. Microbiol. Immunol. 205(4): 275-296.
    Kiggundu A., J. Muchwezi, C. van der Vyver, A. Viljoen, J. Vorster, U. Schluter, K. Kunert, D. Michaud. 2010. Deleterious effects of plant cystatins against the banana weevil Cosmopolites sordidus. Arch. Insect. Biochem. Physiol. 73(2): 87-105.
    Kondo H., S. Ijiri, K. Abe, H. Maeda, S. Arai. 1992. Inhibitory effect of oryzacystatins and a truncation mutant on the replication of poliovirus in infected Vero cells. FEBS Lett. 299: 48-50.
    Kitch L.W., L.L. Murdock. 1986. Partial characterization of a major gut thiol proteinase from larvae of Callosobruchus maculatus F. Arch. Insect Biochem. Physiol. 3: 561-575.
    Lemos F.J.A., F.A.P. Campos, C.P. Silva, J. Xavier-Filho. Proteinases and amylases of larval midgut of Zabrotes subsfasciatus reared on cowpea (Vigna unguiculata) seeds. Entomol. Exp. Appl. 56: 219-227.
    Leplé J.C., M. Bonade-Bottino, S. Augustin, G. Pilate, V.D. Le Tan, A. Delplanque, D. Cornu, L. Jouanin. 1995. Toxicity to Chrysomela tremulae (Coleoptera: Chrysomelidae) of transgenic poplars expressing a cysteine proteinase inhibitor. Mol. Breed. 1(4): 319-328.
    Liang C., G. Brookhart, G.H. Feng, G.R. Reeck, K.J. Kramer. 1991. Inhibition of digestive proteinase of stored grain Coleoptera by oryzacystatin, a cysteine protease inhibior from rice seed. FEBS Lett. 278(2): 139-142,
    Martinez M., M.E. Santamaria, M. Diaz-Mendoza, A. Arnaiz, L. Carrillo, F. Ortego, I. Diaz. 2016. Phytocystatins: Defense proteins against phytophagous insects and acari. Int. J. Mol. Sci. 17: 1747-1762.
    Masoud S.A., L.B. Johnson, F.F. White, G.R. Reeck. 1993. Expression of a cysteine proteinase inhibitor (oryzacystatin-I) in transgenic tobacco plants. Plant Mol. Biol. 21(4): 655-663.
    Mazumdar-Leighton S., R.M. Broadway. 2001. Transciptional induction of diverse midgut trypsin in larval Agrotis ipsilon and Helicoverpa zea feeding on the soybean trypsin inhibitor. Insect Biochem. Mol. Biol. 31: 645-657.
    McGrath M.E. 1999. The lysosomal cysteine protease. Annu. Rev. Biophys. Biomol. Struct. 28: 181-204.
    Messina F.J., A.F. Slade. 1999. Expression of a life-history trade-off in a seed beetle depends on environmental context. Physiol. Entomol. 24(4): 358-363.
    Murdock L.L., G. Brookhart, P.E. Dunn, D.E. Foard, S. Kelley, L. Kitch, R.E. Shade, R.H., Shukle, J.L. Wolfson. 1987. Cysteine digestive proteinases in Coleoptera. Comp. Biochem. Physiol. 87B: 783-787.
    Murdock L.L., D. Seck, G. Ntoukam, L. Kitch, R.E. Shade. 2003. Preservation of cowpea grain in Sub-Saharan Africa—Bean/Cowpea CRSP contributions. Field Crop Res. 82:169–178.
    Oikonomopoulou K. K.K. Hansen, M. Saifeddine, N. Vergnolle, I, Tea, E.P. Diamandis, M.D. Hollenberg. 2006. Proteinase-mediated cell signalling: targetting proteinase-activated receptors (PARs) by kallikreins and more. Biol. Chem. 387(6): 677-685.
    Oliveira A.S., J. Xavier-Filho, M.P. Sales. 2003. Cysteine proteinases and cystatins. Braz. Arch. Biol. Technol. 46(1): 91-104.
    Oliveira A.S., L. Migliolo, R.O. Aquino, J.K.C. Ribeiro, L.L.P. Macedo, L.B.S. Andrade, M.P. Bemquerer, E.A. Santos., S. Kiyota, M.P. de Sales. 2007. Purification and characterization of a trypsin-papain inhibitor from Pithecelobium dumosum seeds and its in vitro effects towards digestive enzymes from insect pests. Plant Physiol. Biochem. 45: 858-865.
    Oppert B, T.D. Morgan, C. Culbertson, K.J. Kramer. 1993. Dietary mixtures of cysteine and serine proteinase inhibitors exhibit synergistic toxicity toward the red flour beetle, Tribolium castaneum. Comp. Biochem. Physiol. 105C: 379-385.
    Ouédraogo A.P., S. Sou, A. Sanon. 1996. Influence of temperature and humidity on populations of Callosobruchus maculatus (Coleoptera Bruchidae) and its parasitoids Dinarmus basalis (Pteromalidae) in two zones of Burkina Faso. Bull. Entomol. Res. 86: 695–702.
    Pajni H. R., M. Airi. 2017. Phenotypic plasticity in Callosobruchus maculatus (Fab.)- A critical review (Bruchidae: Coleoptera). J. Entomol. Zool. Stud. 5(2): 163-168.
    Parr M.J., B.M.D. Tran, M.S.J. Simmonds, P.F. Credland. 1996. Oviposition behaviour of the cowpea seed beetle, Callosobruchus maculatus. Physiol. Entomol. 21(2): 107-117.
    Parr M.J., B.M.D. Tran, M.S.J. Simmonds, P.F. Credland. 1998a. Duration of behaviour patterns during oviposition by the bruchid beetle, Callosobruchus maculatus. Physiol. Entomol. 23(2): 150-157.
    Parr M.J., B.M.D. Tran, M.S.J. Simmonds, G.C. Kite, P.F. Credland. 1998b. Influence of fatty acids on oviposition by the bruchid beetle, Callosobruchus maculatus. J. Chem. Ecol. 24(10): 1577-1593.
    Patankar A.G., A. P. Giri, A.M. Harsulkar, M.N. Sainani, V.V. Deshpand, P.K. Ranjenkar, V.S. Gupta. 2001. Complexity in specifities and expression of Helicoverpa armigera gut proteinases explains polyphagous nature of the insect pest. Insect Biochem. Mol. Biol. 31: 453-464.
    Pernas M., R. Sanchez-Monge, L. Gomez, G. Salcedo. 1998. A chestnut seed cysttain differentially effective against cysteine proteinases from closely related pests. Plant Mol. Biol. 38: 1235-1242.
    Prabucka B., M. Mielecki, M. Chojnacka, W. Bielawski, M. Czarnocki-Cieciura, S. Orzechowski. 2017. Structural and functional characterization of the triticale (x Triticosecale Wittm.) phytocystatin TrcC-8 and its dimerization-dependent inhibitory activity. Phytochemistry 142: 1-10.
    Poldermans B. 1990. Proteolytic enzymes. In: Gerhatz W. (ed.). Proteolytic enzymes in industry: Production and application. VCH Publishers. Weinheim, Germany. pp. 108-123.
    Rao M.B. A.M. Tanksale, M.S. Ghatge, V.V. Deshpande. 1998. Molecular and Biotechnological Aspects of Microbial Protease. Microbiol. Mol. Biol. Rev. 62(3): 597-635.
    Rawling N.D., A.J. Barrett. 1994. Families of cysteine peptidases. Methods Enzymol. 244: 461-486.
    Rawling N.D., A.J. Barrett, A. Bateman. 2010. MEROPS: the peptidase database. Nucleic Acid Res. 38: 227-233.
    Ryan C.A.1990. Protease inhibitors in plants: Genes for improving defenses against insects and pathogens. Annu. Rev. Phytopathol. 28: 425-429.
    Ryan C.A. 1973. Proteolytic enyzymes and their inhibitors in plants. Annu. Rev. Plant Physiol. 24: 173-196.
    Sainsbury, F., A.J. Rheaume, M.C. Goulet, J. Vorster, D. Michaud. 2012. Discrimination of differentially cysteine proteases by activity-based profiling using cystatin variants with tailored specifities. J. Proteome Res. 11: 5983-5993.
    Sanon A., L.C.B. Dabiré, A.P. Ouedraogo, J. Huignard. 2005. Field occurrence of bruchid pests of cowpea and associated parasitoids in a sub humid zone of Burkina Faso: importance on the infestation of two cowpea varieties at harvest. Plant. Pathol. J. 4:14–20.
    Shamsi T.N., R. Parveen, S. Fatima. 2016. Characterization, biomedical and agricultural applications of protease inhibitors: A review. Int. J. Biol. Macromol. 91: 1120-1133.
    Shyu D.J.H., W.M. Chou, T.J. Yiu, C.P.C. Lin, J.T.C. Tzen. 2004. Cloning, functional expression, and characterization of cystatin in sesame seed.
    J. Agric. Food Chem. 52: 1350-1356.
    Shyu D.J.H., Y.M. Young, H.C. Lu, Y.M. Cheng, J.T.C. Tzen, W.M. Chou. 2011. Cloning, functional expression and characterization of phytocystatin gene from jelly fig (Ficus awkeotsang Makino) achenes. Bot. Stud. 52: 407-416.
    Siegel R.M. 2006. Caspases at the crossroads of immune-cell life and death. Nat. Rev. Immunol. 6(4): 308-317.
    Sijwali P.S., P.J. Rosenthal. 2004. Gene disruption confirms a critical role for the cysteine protease falcipain-2 in hemoglobin hydrolysis by Plasmodium falciparum. Proc. Natl. Acad. Sci. USA 101: 4384-4389.
    Silva C.P., J. Xavier-Filho. Comparison between the levels of aspartic and cysteine proteases of the larval midguts of Callosobruchus maculatus (F.) and Zabrotes subfasciatus (BOH.) (Coleoptera: Bruchidae). Comp.Biochem. Physiol. Part B Comp. Biochem. 99: 529-533.
    Singh D., F. Jamal, P. K. Pandey. 2014. Kinetic assessment and effect on developmental physiology of a trpsin inhibitor from Eugenia jambolana (Jambul) seeds on Helicoverpa armigera (Hubner). Arch. Insect Biochem. Physiol. 85(2): 94-113.
    Siqueira-Junior C.L., K.V.S. Fernandes, O.L.T. Machado, M. da Cunha, V.M. Gomes, D. Moura, T. Jacinto. 2002. 87 kDa tomato cystatin exhibits properties of a defense protein and forms protein crystals in prosystemin overexpressing transgenic plants. Plant Physiol. Biochem. 40: 247-254.
    Soares-Costa A., L.M. Beltramini, O.H. Thiemann, F. Henrique-Silva. 2002. A sugarcane cystatin: recombinant expression, purification, and antifungal activity. Biochem. Biophys. Res. Commun. 296: 1194-1199.
    Szewinska J., J. Siminska, W. Bielawski. 2016. The roles of cysteine proteases and phytocystatins in development and germination of cereal seeds. J. Plant Physiol. 2017: 10-21.
    Trysellius Y, D. Hultmark. 1997. Cysteine proteinase 1 (CP1), a cathepsin L-like enzyme expressed in Drosophila melanogaster haemocyte cell line mbn-2. Insect Mol. Biol. 6(2): 173-181.
    Valdes-Rodriguez S., A. Cedro-Tanda, V. Aguilar-Hernandez, E. Cortes-Onofre, A. Blanco-Labra, A. Guerrero-Rangel. 2010. Recombinant amaranth cystatin (AhCPI) inhibits the growth of phytopathogenic fungi. Plant Physiol. Biochem. 48: 469-475.
    Valdes-Rodriguez S., J.P. Galvan-Ramirez, A. Guerrero-Rangel, A. Cedro-Tanda. 2015. Multifunctional amaranth cystatin inhibits endogenous and digestive insect cysteine endopeptidases: A potential tool to prevent proteolysis and for the control of insect pests. Biotech. App. Biochem. 62(5): 634-641.
    Vasiljeva O., T. Reinheckel, C. Peters, D. Turk, V. Turk, B. Turk. 2007. Emerging roles of cysteine cathepsins in disease and their potential as drug targets. Curr. Pharm. Des. 13: 387-403.
    Walker A.J., P.E. Urwin, H.J. Atkinson, P. Brain, D.M. Glen, P.R. Shewry. 1999. Transgenic Arabidopsis leaf tissue expressing a modified oryzacystatin shows resistance to the field slug Deroceras reticulatum (Muller). Transgenic Res. 8: 95-103.
    Wijeratne P.M, R.H. Smith. 1998. Olfactory response to egg odours and the effect of oviposition marker in uniform egg spacing of Callosobruchus maculatus (F) Brazil strain (Coleoptera; Bruchidae). Trop. Agric. Res. Exten. 1(2): 136-142.
    Yu Y., G. Zhang, Z. Li, Y. Cheng, C. Gao, L. Zeng, J. Chen, L. Yan, X. Sun, L. Guo, Z. Yan. 2017. Molecular cloning, recombinant expression and antifungal activitiy of BnCPI, a cystatin in Ramie (Boehmeria nivea L.). Genes 8(10): 265-280.
    Zhao Y., M.A. Botella, L. Subramanian, X. Niu, S.S. Nielsen, R.A. Bressan, P.M. Hasegawa. 1996. Two wound-inducible soybean cyteine proteinase inhibitors have greater insect digestive proteinase inhibitory activities than a constitutive homolog. Plant Physiol. 111: 1299-1306.
    Zhu-Salzman K., H. Koiwa, R.A. Salzman, R.E. Shades, J.E. Ahn. 2003a. Cowpea bruchid Callosobruchus maculatus uses a three-component strategy to overcome a plant defensive cysteine protease inhibitor. Insect Mol. Bol. 12(2): 135-145.
    Zhu-Salzman K., J.E. Ahn, R.A. Salzman, H. Koiwa, R.E. Shade, S. Balfe. 2003b. Fusion of a soybean cysteine protease inhibitor and legume lectin enhances anti-insect activity synergistically. Agric. Forest Entomol. 5: 317-323.

    無法下載圖示 校外公開
    2024/08/11
    QR CODE