簡易檢索 / 詳目顯示

研究生: 崔斯利
Chesly Kit Kobua
論文名稱: SRI農法栽培水稻在不同益生菌施用率下對於作物生長和產量的影響評估
Evaluating the Effect of Variable Probiotic Bacteria Rates on Growth and Yield of Rice cultivated under SRI condition
指導教授: 王裕民
Wang Yu-Min
學位類別: 碩士
Master
系所名稱: 國際學院 - 熱帶農業暨國際合作系
Department of Tropical Agriculture and International Cooperation
論文出版年: 108
畢業學年度: 107
語文別: 英文
論文頁數: 95
中文關鍵詞: 乾物質生產收穫指數植物益生菌水稻強化系統
外文關鍵詞: dry matter production, harvest index, plant probiotic bacteria, System of Rice Intensification
DOI URL: http://doi.org/10.6346/NPUST201900389
相關次數: 點閱:42下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統
  • 水稻(Oryza sativa)是台灣重要的糧食作物。除了營養價值外,
    該作物在該國經濟中發揮著至關重要的作用,為該國的NT500 億美元農業生產貢獻了15%,並為當地農民及其家庭提供了收入來源。而,透過高投入合成肥料來維持作物生產,合成肥料既昂貴又對環境和人類健康產生不利的負面影響。將合成肥料與“植物益生菌”(PPB)結合起來被認為是減少傳統水稻種植中施肥量的替代選擇。目前已知PPB 能刺激植物中的幾種代謝過程,例如增強植物對生物和非生物脅迫的耐受性以及增加水和養分吸收,這反而促進了植物的旺盛生長和產量。本研究位於台灣南部,並使用“水稻強化系統”(SRI)方法培養的水稻,其中包含五種不同的氮(N)基肥和PPB 比率組合(T1 = 100%N:0%PPB、T2 = 75%N:25%PPB、T3 = 50%N:50%PPB、T4 = 25%N:75%PPB 和T5 = 0%N:100%PPB)。本研究的目的是評估在氮(N)基肥和PPB 用量的五種不同比率下栽培的水稻的生長和產量影響,並確定減少水稻氮肥比率的最佳處理組合。實驗結果顯示,在分蘗(44 DAT)和初穗開始(72 DAT)生長階段,植株高度(26.74%)和葉面積指數(34.36%)顯著增加,特別是用肥料和PPB 組合處理的植物。這些改進也使處理過的植物乾物質產量增加了26.74%,收穫指數增加了11.67%。與處理T2II(46.27g),T3(41.83g)和T4(43.41g)相比,對照處理(39.97g)和T5(40.79g)各處理僅用單一N 基肥料和PPB 在成熟期產生較少的總乾物質含量。透T4(4.69 噸/公頃)產生最高的穀物產量,與對照處理(4.02 噸/公頃)相比,穀物產量高14%。雖然五種處理的籽粒產量沒有顯著差異,但填充的籽粒百分比和千粒重顯著分別改善了4-6%,特別是所有用肥料和PPB 組合處理的植株(T2、T3 和 T4)。總而言之,肥料和PPB 的綜合作用產生了良好的生長響應,良好的總乾物質產量和穀物產量。最終結果顯示,與使用傳統施用率植物處理相比,T4 較合適,由於其使得肥料使用顯著減少和高收穫指數(51.34%)。該處理僅使用了25%的所需肥料用量,但當與75%所需的PPB 用量組合時,能夠顯著改善作物生長並且產生最高的穀物產量。因此,從標準施用率來看,使
    用台灣的SRI 栽培方法,可以向當地水稻農場推薦25%N 基肥和
    75%PPB 的組合。

    關鍵字:乾物質生產、收穫指數、植物益生菌、水稻強化系統

    Rice (Oryza sativa) is an important food crop in Taiwan. Besides its
    nutritional values, the crop plays a vital role in the country‟s economy contributing 15% towards the country‟s NT500 billion dollar agricultural production as well as providing a source of income for local farmers and their families. However, the crops production is maintained through high inputs of synthetic fertilizers which are both costly and have adverse negative effects on the environment and human health. Incorporating synthetic fertilizer with“Plant Probiotic Bacteria” (PPB) is deemed as an alternate option to cut down on the rate of fertilizer application used in conventional rice farming. PPB are known to stimulate several metabolic processes in plants such as to enhance the plants' tolerance to biotic and abiotic stresses as well as increase water and nutrient uptake which in turn promote vigorous plant growth and yield. A study was conducted in southern Taiwan where five different combinations of nitrogen (N) based fertilizer and PPB rates (T1=100%N:0%PPB, T2=75%N:25%PPB, T3=50%N:50%PPB, T4=25%N:75%PPB and T5=0%N:100%PPB) were applied to rice cultivated using the “System of rice intensification” (SRI) method. The objectives of this study are to assess the growth and yield response of rice cultivated under the five varied input ratio of nitrogen (N) bases fertilizer and PPB dosage and to determine the best treatment combination that can reduce N fertilizer input in rice cultivation. The experimental results showed significant increase in the plants' height (26.74%) and leaf area index (34.36%) during the active tillering (44 DAT) and panicle initiation (72 DAT) growth stages particularly with plants treated with combinations of both fertilizer and PPB. These improvements also increased the treated plants' dry matter production by 26.74% and harvest index by 11.67%. The control treatment (39.97g) and T5 (40.79g) each treated with only single N based fertilizer and PPB produced less total dry matter content at maturity stage compared to treatments T2 (46.27g), T3 (41.83g) and T4 (43.41g) respectively. The highest grain yield was produced by T4 (4.69 ton/ha) which is 14% higher grain yield compared to that of the control treatment (4.02 ton/ha). Although no significant difference was grained amongst the grain yield of the five treatments, there was a significant improvement in the filled grain percentage and 1000 grain weight by 4-6% (respectively) notably by all plants treated with a combination of fertilizer and PPB (T2, T3, and T4). In all, the combined effect of fertilizer and PPB produced promising growth response, good total dry matter production and grain yield output. The final results showed T4 to be more favorable due to the significant reduction in fertilizer usage and high harvest index (51.34%) compared to those plants treated using the conventional application rate. The treatment only utilized 25% of the required fertilizer dosage yet when combined with 75% of the required PPB dosage was able to produce significant improvement in crop growth and as well as the producing the highest grain yield. Hence, from the standard application rates, a combination of 25% N based fertilizer with 75% of PPB can be recommended to local rice farms using the SRI cultivation method in Taiwan.

    Keywords: dry matter production, harvest index, plant probiotic bacteria,
    System of Rice Intensification

    摘要.......................................................I
    Abstract.................................................III
    Acknowledgments............................................V
    Acronyms.................................................VII
    Table of contents.......................................VIII
    List of Tables.............................................X
    List of Figures...........................................XI
    Chapter 1: Introduction....................................1
    1.1 Research objectives....................................2
    1.2 Specific objectives....................................3
    Chapter 2: Literature Review...............................4
    2.1 Rice...................................................4
    2.2 Rice morphology........................................4
    2.3 Growth stages..........................................6
    2.4 Domestication and distribution of rice.................7
    2.5 Global rice demand.....................................8
    2.6 Rice production........................................9
    2.7 Plant Probiotic Bacteria..............................15
    2.8 System of Rice Intensification........................18
    2.9 Limitations of SRI....................................23
    2.10 Application of PPB in SRI............................24
    Chapter 3: Materials and Methods..........................25
    3.1 Site Description and Experimental Design..............25
    3.2 Trial establishment...................................25
    3.3 Irrigation management.................................26
    3.4 Weather data..........................................27
    3.5 Plant probiotics Bacteria.............................27
    3.6 Application rate of fertilizer and PPB................28
    3.7 Assessment parameters and sampling....................28
    3.8 Soil microbial assessment.............................31
    3.9 Dry matter production.................................32
    3.10 Yield and yield components...........................33
    3.11 Determining Harvest index (%)........................37
    3.12 Determining potential grain yield....................37
    3.13 Statistical analysis.................................37
    Chapter 4: Results........................................38
    4.1 Weather condition.....................................38
    4.2 Soil microbial assessment.............................40
    4.3 Vegetative assessment.................................43
    4.4 Dry matter assessment.................................47
    4.5 Yield and yield components............................52
    Chapter 5: Discussion.....................................61
    5.1 Weather condition and irrigation input................61
    5.2 Soil microbial assessment.............................62
    5.3 Vegetative response...................................64
    5.4 Dry matter partitioning...............................67
    5.5 Yield components......................................68
    5.6 Grain yield...........................................69
    5.7 Harvest index.........................................70
    Chapter 6: Conclusion.....................................72
    References................................................74
    Appendices................................................91
    Biosketch of Author.......................................95

    Abeles, F. B., Morgan, P. W & Saltveit, M. E. Jr. (1992). Ethylene in plant biology. Academic, San Diego, CA.
    Adesemoye, A.O., Obini, M., Ugoji, E.O. (2008). Comparison of plant growth-promotion with Pseudomonas aeruginosa and Bacillus subtilis in three vegetables. Braz. J. Microbiol. 39, 423–426.
    Adhikari, C., Bronson, K. F., Panuallah, G. M., Regmi, A. P., Saha, P. K., Dobermann, A., … Pasuquin, E. (1999). On-farm soil N supply and N nutrition in the rice-wheat system of Nepal and Bangladesh. Field Crops Research, 64(3), 273–286.
    Ahn, S.-W., Bonman, J.M., Brandon, D.M., Groth, D.E., Gunnell, P.S., Hibino, H., Hollier, C.A., Lee, F.N., Mew, T.W., Prot, J.C., Rush, M.C., Schneider, R.W., Webster, R.K., Whitney, G. (1992). Compendium of Rice Diseases. Webster, R.K., Gunnell, P.S. (eds). APS Press,
    Akande, M. O. (2006). Effect of organic root plus (bio-stimulant) on the growth, nutrient content and yield of amaranthus, 5(May), 871–874.
    Alam, S., Cui, Z., Yamagishi, T., Ishii, R., Alam, S., Cui, Z., … Ishii, R. (2015). Grain Yield and Related Physiological Characteristics of Rice Plants (Oryza sativa L .) Inoculated with Free-Living Rhizobacteria Grain Yield and Related Physiological Characteristics of Rice Plants (Oryza sativa L.) Inoculated with Free-Living Rhizobacteria, 1008.
    Alizadeh O., Sharafzadeh S., and Firoozabadi A. H. (2012). The Effect of Plant Growth Promoting Rhizobacteria in Saline Condition. Asian Journal of Plant Sciences, 11: 1-8.
    Amanullah K, Hidayat R, Shah Z, Shah P. 2008. Effects of plant density and N on growth dynamics and light interception in maize. Arch Agron Soil Sci, 54: 401–411.
    Amanullah, & Inamullah. (2016). Dry Matter Partitioning and Harvest Index Differ in Rice Genotypes with Variable Rates of Phosphorus and Zinc Nutrition. Rice Science, 23(2), 78–87.
    Anas, I., Rupela, O. P., Thiyagarajan T. M & Uphoff N. (2011). A review of studies on SRI effects on beneficial organisms in rice soil rhizospheres. Paddy and Water Environment, 9: 53-64.
    Arshad, M & Frankenberger, W. T. Jr. (2002). Ethylene: agricultural sources and applications. Kluwer, New York.
    Ashwani, T. A. Singh, R. & Kumar, A. (2014). The Science behind the System of Rice Intensification ( SRI ). Report. Bhubaneswar Odisha.
    Barber, S. A and Cushman, J. H. (1981). Nitrogen uptake model for agronomic crops. In: Iskander, I. K. (ed). Modeling wastewater renovation-land treatment. Wiley-Inter-science, New York, pp 382–409.
    Barber, S. A & Silverbush, M. (1984). Plant root morphology and nutrient uptake. In: Barber, S. A., Bouldin, D. R., Kral, D. M & Hawkins, S. L. (eds). Roots, nutrient and water influx and plant growth. ASA special publication number 49. American Society of Agronomy, Madison, WI, pp 65–88.
    Batuvitage, G. P. 2002. Adaptation of the system of rice intensification in Sri Lanka. Cornell International Institute for Food, Agriculture and Development [online] Available: http://ciiffad.cornel.edu/sri; 607-255-0831 [12.04.2010].
    Bouman B. A. M., Hengsdijk H., Bardy H., Bindraban P. S., Tuong T. P.& Ladha J. K. (2002). Water-wise Rice Production. Proceedings of the International Workshop on Water-wise Rice Production, 8-11 April 2002, Los Baños, Philippines. Los Baños (Philippines): International Rice Research Institute.( ), 356.
    Cai, H & Chen, Q. (2000). Rice research in China in the early 21st century. Chin. Rice Field Crop Research. 116, 154-164.
    Calvo, P., Nelson, L., and Kloepper, J. W. 2014. Agricultural uses of plant bio stimulants. Plant and Soil, 383(1–2), 3–41.
    Cassman, K. G., & Walters, D. T. (2002). Agro ecosystems, Nitrogen-use Efficiency, and Nitrogen Management Agro ecosystems, Nitrogen-use Efficiency.
    Castanheira, N. L., Dourado, A. C., Pais, I., Semedo, J., Scotti-Campos, P., Borges, N., Fareleira, P. (2017). Colonization and beneficial effects on annual ryegrass by mixed inoculation with plant growth promoting bacteria. Microbiological Research, 198, 47–55.
    Ceesay, M., Reid, W. S., Fernandes, ECM., & Uphoff, NT. 2006. The effects of repeated soil wetting and drying on lowland rice yield with System of Rice Intensification (SRI) methods. International Journal of Agricultural Sustainability 4: 5–14.
    Chauhan, B. S., Jabran, K., & Mahajan, G. (2017). Rice Production Worldwide. Rice Production Worldwide.
    Chi, F., Shen, S. H., Cheng, H. P., Jing, Y. X., Yanni Y. G. & Dazzo F. B. (2005). Ascending migration of endophytic rhizobia, from roots to leaves, inside rice plants and assessment of benefits to rice growth physiology. Applied and Environmental Microbiology, 71: 7271-7278.
    Choudhury, A. T. M. A., & Kennedy, I. R. (2005). Nitrogen fertilizer losses from rice soils and control of environmental pollution problems. Communications in Soil Science and Plant Analysis, 36(11–12), 1625–1639.
    Choudhury, A. T. M. A., Kennedy, I. R., Ahmed, M. F., & Kecskés, M. L. (2007). Phosphorus fertilization for rice and control of environmental pollution problems. Pakistan Journal of Biological Sciences, 10(13), 2098–2105.
    Chaudhary H. J., Shahid W, Bano1, A., Ullah, F., Munis, F., Fahad, S. & Ahmad, I. (2012). In vitro analysis of Cupressus sempervirens L. plant extracts antibaterial activity. Journal of Medicinal Plants Research Vol. 6(2), pp. 273-276.
    Dada, O. A. (2013). Effectof compost augmented soil on growth, nutrient uptake and yield of upland rice in southwestern Nigeria. Ph.D. Thesis, University of Ibadan, Nigeria, 276pp.
    De Datta, S. K. (1981). Principles and Practices of Rice Production: Int. Rice Res. Inst.
    Deichert G & Yang S. K. (2002). Experiences with System of Rice Intensification (SRI) in Cambodia. Deutscher Tropentag, 7.
    Díaz-Leguizamón, J. J., Chingaté-Cruz, O. F., Sánchez-Reinoso, A. D., & Restrepo-Díaz, H. (2016). Efecto de la aplicación foliar de un biostimulante de extracto de algas marinas sobre el comportamiento fisiológico de plántulas de lulo (Solanum quitoense cv. Septentrionale). Ciencia e Investigacion Agraria, 43(1), 25–37.
    Dobermann A, and Fairhurst T. (2000). Rice: Nutrient disorders & nutrient management. Handbook series. Potash & Phosphate Institute (PPI), Potash & Phosphate Institute of Canada (PPIC) and International Rice Research Institute. 191p.
    Donald C M, Hamblin J. 1976. The biological yield and harvest index of cereals as agronomic and plant breeding criteria. Adv Agron, 28: 361–405.
    Egamberdiyeva D and Höflich G. 2004. Effect of plant growth promoting bacteria on growth and nutrient uptake of cotton and pea in a semi-arid region of Uzbekistan. J Arid Environ 56:293–301.
    Eilers, K. G., Lauber, C. L., Knight, R & Fierer, N. (2010). Shifts in bacterial community structure associated with inputs of low molecular weight carbon. In: compounds to soil. Soil Biology & Biochemistry 42: 896–903.
    Elekhtyar, N. (2019). Efficiency of Pseudomonas fluorescens as Plant Growth-Promoting Rhizobacteria ( PGPR ) for the Enhancement of Seedling Vigor , Nitrogen Uptake , Yield and Its Attributes of Rice ( Oryza ..., (March 2015).
    Fageria, N. K. (1980). Influence of phosphorus application on growth, yield and nutrient uptake by irrigated rice. R Bras Ci Solo 4:26–31
    Fageria, N. K and Gheyi H. R. (1999). Efficient crop production. Federal University of Paraiba, Campina Grande.
    Fageria, N. K., Slaton, N.A and Baligar, V. C. (2003). Nutrient management for improving lowland rice productivity and sustainability. Adv Agron 80:63–152.
    Fairhurst, T., & Dobermann, A. (2007). Mineral Deficiencies and Toxicities. Rice: A Practical Guide to Nutrient Management, 46–89.
    Food and Agriculture Organization (FAO). 2016. Save and Grow: Maize, Rice and Wheat – A Guide to Sustainable Crop Production. UN Food and Agriculture Organization, Rome: 44-47.
    Food and Agriculture Organization. (2002a). Fertilizer use by crop in Taiwan Province of China. International Fertilizer Industry Association.
    Food and Agriculture Organization (FAOb). (2002). World agriculture: towards 2015 / 2030 World agriculture : towards 2015 / 2030. Organization, 20(4), 97.
    Food and Agriculture Organization (FAO). (1985). Irrigation water management: Training manual No. 1 – introduction to irrigation, Rome, Italy.
    Food and Fertilizer Technology Centre of the Asia and Pacific Region (FFTC-AP). (2019). Rice industries. FFTC Agricultural Policy Platform.
    Francis PB, Earnest LD, Bryant K (2016) Maize Growth and Yield Response to a Biostimulant Amendment. J. Crop Improv 30(6), 632–640.
    Gendua P. A., Yamamoto Y., Miyazaki A., Yoshida T., & Wang Y. (2009). Responses of Yielding Ability, Sink Size and Percentage of Filled Grains to the Cultivation Practices in a Chinese Large-Panicle-Type Rice Cultivar, Yangdao 4. Plant production and Science, 12(April 2008), 243–256.
    Gholizadeh, A., Saberioon, M., Borůvka, L., Wayayok, A., & Mohd Soom, M. A. (2017). Leaf chlorophyll and nitrogen dynamics and their relationship to lowland rice yield for site-specific paddy management. Information Processing in Agriculture, 4(4), 259–268.
    Gregory D I, Haefele S M, Buresh R J, Singh U. (2010). Fertilizer use, markets, and management. In: Pandey S, Byerlee D, Dawe D, Doberman A A, Mohanty S, Rozell S, Hardy B B. Rice in the Global Economy: Strategic Research and Policy Issues for Food Security. Los Banos, the Philippine: International Rice Research Institute: 231–263.
    Grey, E. J. and Smith D. L. (2005). Intracellular and extracellular PGPR: Commonalities and distinctions in the plant-bacterium signaling process. Soil Biol. Biochem., 37: 395-412.
    GRiSP (Global Rice Science Partnership). (2013). Rice Almanac. 4th Edition. Los Banos (Philippines): International Rice Research Institute.
    Guerra, L. C., Bhauiyan, S. I.,Tuong, T. P & Barker, R. (1998). Producing more rice with less water from irrigated system. SWIM Paper 5, IWMI/IRRI, Colombia.
    Gujja, B., & Thiyagarajan, T. M. (2009). New Hope for Indian Food Security? The System of Rice Intensification. The Gatekeeper - Series of the Natural Resources Group at the International Institute for Environment and Development, (November), 24.
    Gyaneshwar, P., Kumar, G. N., Parekh, L. J., & Poole P. S. (2002). Role of soil microorganisms in improving P nutrition of plants. Plant Soil 245: 83-93.
    Haas, D. and Keel, C. (2003) Regulation of Antibiotic Production in Root-Colonizing Pseudomonas spp. and Relevance for Biological Control of Plant Disease. Annual Review of Phytopathology, 41, 117-153.
    Hardoim, P. R., van Overbeek, L. S., Berg, G., Pirttilä, A. M., Compant, S., Campisano, A. (2015). The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol. Mol. Biol. Rev. 79, 293–320.
    Hasegawa, H. (2003). High yielding rice cultivars perform best even at reduced nitrogen fertilizer rate. Crop Sci, 43: 921–926. IRRI.
    Hiruma, K., Gerlach, N., Sacristán, S., Nakano, R. T., Hacquard, S., Kracher, B., & Schulze-Lefert, P. (2016). Root Endophyte Colletotrichum tofieldiae Confers Plant Fitness Benefits that Are Phosphate Status Dependent. Cell, 165(2), 464–474.
    Hong D. D., Hien H. M., & Son P. N. (2007a). Seaweeds from Vietnam used for functional food, medicine and biofertilizer. J Appl Phycol 19:817–826
    Hong D. D., Hien H. M., & Son P. N. (2007b). Seaweeds from Vietnam used for functional food, medicine and biofertilizer. J Appl Phycol 19:817–826
    Hussain, A., & Hasnain, S. (2009). Cytokinin production by some bacteria: its impact on cell division in cucumber cotyledons. Afr. J. Microbiol. Res, 3(11), 704–712.
    ICRISAT-WWF. (2008). SRI Fact Sheet India. ICRISAT-WWF Project, ICRISAT, Patancheru, Andhra Pradesh, India.
    IRRI. (2015). IRRI Rice Production Manual: Steps to successful rice production. Los Banos, Philippines: Internation Rice Research Institute. Retrieved from http://knowledgebank.irri.org/images/docs/12-Steps-Required-for-Successful-Rice-Production.pdf
    Islam, M. M., Roly, Z. Y., Lee, Y., & Khalekuzzaman, M. (2013). In vitro Propagation and Genetic Transformation System Using Immature Embryo in Elite Rice (Oryza sativa L.) Cultivars. Plant Breeding and Biotechnology, 2(1), 88–96.
    Kandel, S. L., Herschberger, N., Kim, S. H., & Doty, S. L. (2015). Diazotrophic endophytes of poplar and willow for growth promotion of rice plants in nitrogen-limited conditions. Crop Science, 55(4), 1765–1772.
    Karthikeyan, K., Sosamma, J., & Purushothaman, S. M. (2010). Incidence of insect pests and natural enemies under SRI method of cultivation. Oryza 47: 154-157.
    Khalid, A., Arshad, M. A. & Zahir, Z. A. (2006). Phytohormones: Microbial production and applications. In N. Uphoff et al., eds., Biological Approaches to Sustainable Soil Systems, 207-220. CRC Press, Boca Raton, FL.
    Khan, M. M. A., Haque, E., Paul, N. C., Khaleque, M. A., Al-Garni, S. M. S., Rahman, M., & Islam, M. T. (2017). Enhancement of Growth and Grain Yield of Rice in Nutrient Deficient Soils by Rice Probiotic Bacteria. Rice Science, 24(5), 264–273.
    Khan, W., Rayirath, U. P., Subramanian, S., Jithesh, M. N., Rayorath, P., Hodges, D. M., & Prithiviraj, B. (2009). Seaweed extracts as biostimulants of plant growth and development. Journal of Plant Growth Regulation, 28(4), 386–399.
    Kima, A. S., Chung, W. G., & Wang, Y. M. (2014). Improving irrigated lowland rice water use efficiency under saturated soil culture for adoption in tropical climate conditions. Water (Switzerland), 6(9), 2830–2846.
    Kong, L., Xie, Y., Hu, L., Si, J., & Wang, Z. (2017). Excessive nitrogen application dampens antioxidant capacity and grain filling in wheat as revealed by metabolic and physiological analyses. Nature Publishing Group, (January), 1–14.
    Kumar, S. G. V., Singh, S. K., Goyal, P., Dilbaghi, N., & Mishra, D. N. (2005). Beneficial effects of probiotics and prebiotics on human health. Pharmazie, 60(3), 163–171.
    Kunicki, E., Grabowska, A., Sękara, A., & Wojciechowska, R. (2010). The effect of cultivar type, time of cultivation, and bio-stimulant treatment on the yield of spinach (Spinacia oleracea L.). Folia Horticulturae, 22(2), 9–13.
    Lahrmann, U., Strehmel, N., Langen, G., Frerigmann, H., Leson, L., Ding, Y., & Zuccaro, A. (2015). Mutualistic root endophytism is not associated with the reduction of saprotrophic traits and requires a non-compromised plant innate immunity. New Phytologist, 207(3), 841–857.
    Laulanié, H. de. (1993). System of rice intensification. Tropicultura (Brussels), 13(1): 110–114.
    Lee, Y. J., Yang, C. M., Chang, K. W., & Shen, Y. (2011). Effects of nitrogen status on leaf anatomy, chlorophyll content and canopy reflectance of paddy rice. Botanical Studies, 52(3), 295–303.
    Loch, D. S., & Zhou, Y. (2013). Effects of foliar nutrient and bio stimulant applications and soil moisture and nutrient status on establishment of newly-laid sod of zoysia spp. Int Turf grass Society Res J, 12:597-606.
    Lu, C., & Tian, H. (2017). Global nitrogen and phosphorus fertilizer use for agriculture production in the past half century: Shifted hot spots and nutrient imbalance. Earth System Science Data, 9(1), 181–192.
    Mahendrakumar, R. (2008). Evaluation of principles of SRI and its influence on growth parameters and grain yield of rice. In: SRI India 2008. Third National Symposium on System of Rice Intensification in India: policies, institutions and strategies for scaling up. Extended Summaries. December 1-3, 2008. Coimbatore, India.
    Malangen, S., & Komolong, B. (2007). Selection of Rice (Oryza Sativa L.) Varieties for Lowlands Rain-Fed Conditions in Papua New Guinea. Papua New Guinea Journal of Agriculture, Forestry and Fisheries, 50(1 & 2), 15–22.
    Marcos, F. C. C., Iório, R. de P. F., da Silveira, A. P. D., Ribeiro, R. V., Machado, E. C., & Lagôa, A. M. M. de A. (2016). Endophytic bacteria affect sugarcane physiology without changing plant growth. Bragantia, 75(1), 1–9.
    Marenco, R. A., Antezana-Vera, S. A., & Nascimento, H. C. S. (2009). Relationship between specific leaf area, leaf thickness, leaf water content and SPAD-502 readings in six Amazonian tree species. Photosynthetica, 47, 184–190.
    Marschner, H. (1995). Mineral nutrition of higher plants, 2nd edn. Academic Press, New York.
    Markwell, J., Osterman, J. C., & Mitchell, J. L. (1995). Calibration of the Minolta SPAD-502 leaf chlorophyll meter. Photosynthesis Research, 46, 467–472.
    Markowiak, P., & Ślizewska, K. (2017). Effects of probiotics, prebiotics, and symbiotics on human health. Nutrients, 9(9).
    Mattner, S. W., Wite, D., Riches, D. A., Porter, I. J., & Arioli, T. (2013). The effect of kelp extract on seedling establishment of broccoli on contrasting soil types in southern Victoria, Australia. Biological Agriculture and Horticulture, 29(4), 258–270.
    Mattoo, A. K & Suttle, C. S. (1991). The plant hormone ethylene. CRC, Boca Raton, FL.
    Mclean, J. L., Dawe, D. C., Hardy B and Hettel, G. P. (2002). Rice Almanac, 3rd edition. International Rice Research Institute, Los Banos, Philippines.
    Mostajeran A, Rahimi-Eichi V. (2009) Effects of drought stress on growth and yield of rice (Oryza sativa L.) cultivar and accumulation of proline and soluble sugar in sheath and blade of their different ages leaves. American-Eurasian Journal Agriculture & Environmental Science 5:264-272.
    Nakhro, N., & Dkhar, M. S. (2010). Impact of Organic and Inorganic Fertilizers on Microbial Populations and Biomass Carbon in Paddy Field soil. Journal of Agronomy.
    Naether, A., Foesel, B. U., Naegele, V., Wüst, P. K., Weinert, J., Bonkowski, M., … Friedrich, M. W. (2012). Environmental Factors Affect Acidobacterial Communities below the Subgroup Level in Grassland and Forest Soils. Applied and Environmental Microbiology, 78(20), 7398–7406.
    Nguyen, M. L., Spaepen, S., Jardin, P., & Delaplace, P. (2018). Biostimulant effects of rhizobacteria on wheat growth and nutrient uptake depend on nitrogen application and plant development. Archives of Agronomy and Soil Science, 00(00), 1–16.
    Naseer, S., Kashif, M., Muhammad, H. A., Iqbal M. S., & Al, Q. 2015. Estimation of genetic association among yield contributing traits in aromatic and non-aromatic rice (Oryza sativa L) cultivars. Life Science Journal 2015; 12 (4s).
    Parra-Cota, F. I., Peña-Cabriales, J. J., De Los Santos-Villalobos, S., Martínez-Gallardo, N. A., & Délano-Frier, J. P. (2014). Burkholderia ambifaria and B. caribensis promote growth and increase yield in grain amaranth (Amaranthus cruentus and A. hypochondriacus) by improving plant nitrogen uptake. PLoS ONE, 9(2).
    Pascual, V. J., & Wang, Y. (2017). Impact of Water Management on Rice Varieties, Yield, and Water Productivity under the System of Rice Intensification in Southern Taiwan, 1–15.
    Pascual, V. J., & Wang, Y. (2016a). Maximizing Rainfall in Lowland Paddy Rice through Water Depths Control and Alternate Wetting and Drying Irrigation Technique in Southern Taiwan, 1–24.
    Pascual, V. J., & Wang, Y. (2016b). Utilizing rainfall and alternate wetting and drying irrigation for high water productivity in irrigated lowland paddy rice in southern Taiwan. Plant Production Science, 1008(October), 1–12.
    Pedercini, B. M., Zullich, G., & Dianati, K. (2015). Fertilizer addiction : Implications for Sustainable Agriculture.
    Perrott, K. W., Roberts, A. H. C., Saggar, S., Shannon, P. W., O’ Connor, M. B., Nguyen, L., & Risk, W. H. (1992). Pasture production and soil phosphorus fractions resulting from six previous annual applications of triple superphosphate or Sechura phosphate rock. New Zealand Journal of Agricultural Research, 35(3), 307–319.
    Pueyo, A., García, R., Mendiluce, M., & Morales, D. (2011). The role of technology transfer for the development of a local wind component industry in Chile: Special Section: Renewable energy policy and development. Energy Policy, 39(7), 4274–4283.
    Rayorath, P., Jithesh, M. N., Farid, A., Khan, W., Palanisamy, R., Hankins, S. D., Prithiviraj, B. (2008). Rapid bioassays to evaluate the plant growth promoting activity of Ascophyllum nodosum (L.) Le Jol. Using a model plant, Arabidopsis thaliana (L.) Heynh. Journal of Applied Phycology, 20(4), 423–429.
    Radhakrishnan, R., Hashem, A., & Abd Allah, E. F. (2017). Bacillus: A biological tool for crop improvement through bio-molecular changes in adverse environments. Frontiers in Physiology, 8(SEP), 1–14.
    Reid, M. S. (1995). Ethylene in plant growth, development and senescence. In: Davies, P. J. (ed). Plant hormone, physiology, biochemistry and molecular biology. Kluwer, Dordrecht Netherlands, pp 486–508.
    Saberioon, M. M., & Gholizadeh, A. (2016). Novel Approach for Estimating Nitrogen Content in Paddy Fields Using Low Altitude Remote Sensing System. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLI-B1(July), 1011–1015.
    Salisbury, F. B. (1994). The role of plant hormones. In: Wilkinson, R. E. (ed) Plant–environment interactions. Marcel Dekker, New York, USA, pp 39–81.
    Sarkar, A., Sar, P. and Islam, E. (2016) Hexavalent Chromium Reduction by Microbacterium oleivorans A1: A Possible Mechanism of Chromate Detoxification and Bioremediation. Recent Patents on Biotechnology, 9, 116-129.
    Schachtman, D. P., Reid, R. J., & Ayling, S. M. (1998). Phosphorus Uptake by Plants: From Soil to Cell. Plant Physiology, 116(2), 447–453.
    Shaharoona, B., Arshad, M., & Khalid, A. (2007). Differential response of etiolated pea seedlings to inoculation with rhizobacteria capable of utilizing 1-aminocyclopropane-1-carboxylate or L-methionine. Journal of Microbiology, 45(1), 15–20.
    Shaharoona, B., Naveed, M., Arshad, M., & Zahir, Z. A. (2008). Fertilizer-dependent efficiency of Pseudomonads for improving growth, yield, and nutrient use efficiency of wheat (Triticum aestivum L.). Applied Microbiology and Biotechnology, 79(1), 147–155.
    Sharma A, Shankhdar D, and Shankhdhar S. C. (2013). Enhancing grain iron content of rice by the application of plant growth promoting rhizobacteria. Plant Soil Environ 59: 89–94
    SRI-Rice. 2016a. Countries. Available from (July 2nd, 2019 4.58am): http://sri.cals.cornell.edu/countries
    SRI-Rice. 2016b. SRI methodologies. Available from (July 2nd, 2019 4.44am): http://sri.cals.cornell.edu/aboutsri/methods/index.html
    Steinshamn, H., Thuen, E., Bleken, M. A., Brenøe, U. T., Ekerholt, G., & Yri, C. (2004). Utilization of nitrogen (N) and phosphorus (P) in an organic dairy farming system in Norway. Agriculture, Ecosystems and Environment, 104(3), 509–522.
    Stoop, W.A., Uphoff, N., and Kassam, A. 2002. A review of agricultural research issues raised by the system of rice intensification (SRI) from Madagascar: opportunities for improving farming systems for resource poor farmers. Agric. Syst., 71: 249–274.
    Styger, E., & Uphoff, N. (2014). The System of Rice Intensification (SRI): Revisiting Agronomy for a Changing Climate. Climate-Smart, Practice Brief. Retrieved from
    Sutmoller, P., Animal, P. D., & Consultant, H. (1997). Contaminated food of animal origin : hazards and risk management *, 16(2), 1–27.
    Tapsoba, A., & Wang, Y. (2018). Water productivity and yield of Paddy Rice cultivation under AWD irrigation management in Pingtung, southern Taiwan, (7), 10–16.
    Thakur A. K., Rath S & Mandal K. G. 2013. Differential responses of system of rice intensification (SRI) and flooded-rice management methods to applications of nitrogen fertilizer. Plant & Soil 370: 59-71.
    Thiyagarajan, T. M., & Gujja, B. (2012). Transforming rice production with SRI (System of Rice Intensification): Knowledge and Practice. NATIONAL CONSORTIUM OF SRI (NCS).
    Thiyagarajan, T. M., Senthilkumar, K., Priyadarshini, K. V. R., Sundarsingh, J., Muthusankaranarayanan, A., Hengsdijk, H., & Bindraban, P. S. (2005). Evaluation of water saving irrigation and weeder use on the growth and yield of rice. In T. M. Thiyagarajan, H. Hengsdijk, & P. S. Bindraban (Eds.), Transitions in Agriculture for Enhancing Water Productivity. Proceedings of an Interantional Symposium, Tamil Nadu, India, 23-25 September 2003e (pp. 3-18). Tamil Nadu, India: Agricultural College and Research Institute.
    Thiyagarajan, T. M., Velu, V., Ramasamy, S., Durgadevi, D., Govindarajan, K., Priyadarshini, R., … Bindraban, P. S. (2002). Effects of SRI practices on hybrid rice perofrmance in Tamil Nadu, India. Water-Wise Rice Production, (May 2014), 119–127.
    Tilman, D. (1999). The Ecological Consequences of Changes in Biodiversity. Ecology, 80(5), 1455–1474. Tilman, D., Reich, P. B., Knops, J., Wedin, D., Mielke, T., & Lehman, C. (2001). Diversity and productivity in a long-term grassland experiment. Science, 294(5543), 843–845.
    Uphoff N. (2016). Developments in the System of Rice Intensification. In: Sasaki T (ed.) Achieving Sustainable Rice Production. Cambridge, UK: Burleigh-Dodds.
    Uphoff, N. (2015). The system of rice intensification (SRI) - responses to FAQs. Cornell University.
    Uphoff N. (2012). Supporting food security in the 21st century through resource-conserving increases in agricultural production. Agriculture & Food Security 1(18).
    Uphoff, N. (2002). System of rice intensification (SRI) for enhancing the productivity of land labor and water. J. Agric. Resour. Manage. 1 (1): 43–49.
    Uphoff, N., Anas, I., Rupela, O. P., Thakur A. K & Thiyagarajan T. M. (2009). Learning about positive plant-microbial interactions from the System of Rice Intensification (SRI). Aspects of Applied Biology, 98, 29-54.
    Uphoff, N., Chi F., Dazzo F. B & Rodriguez R. J. (2013). Soil fertility as a contingent rather than inherent characteristic: Considering the contributions of crop-symbiotic soil microbiota. In: Principles of Sustainable Soil Management in Agroecosystems, eds. R. Lal and B. Stewart, 141-166. CRC Press, Boca Raton, FL.
    Uphoff, N. & Randriamiharisoa, R. (2002). Reducing water use in irrigated rice production with the Madagascar System of Rice Intensification. In: Water-Wise Rice Production: Proc. Internat. Workshop Water-Wise Rice Production, Bouman, B.A.M., Hengsdijk, H., Hardy, B., Bindraban, P.S., Tuong, T.P., Ladha, J.K. (Eds.), 8– 11 April 2002, International Rice Research Institute, Los Banos, Philippines, 356p.
    USDA. (2018). Grain : World Markets and Trade. United States Department of Agriculture Foreign Agricultural Service, (November), 1–11.
    World Bank. (2010). World Bank Institute. In: Styger, E., & Uphoff, N. (2014). The System of Rice Intensification (SRI): Revisiting Agronomy for a Changing Climate. Climate-Smart, Practice Brief. Retrieved from http://www.fao.org/gacsa/en/
    Yamah A. (2002). The practice of the Sytem on rice intensification in Sierra Leone. In: Uphoff et al., (eds). Assessments of the System of Rice Intensification. Cornell International Institution for Food, Agriculture and Development, Ithaca, NY, pp 103-105.
    Yang, H., Yang, J., Lv, Y., & He, J. (2014). SPAD Values and Nitrogen Nutrition Index for the Evaluation of Rice Nitrogen Status. Plant Production Science, 17(1), 81–92.
    Yoshida, S. (1981). Fundamentals of crop science. The Rice Research Institute, 268, 22–23.
    Zhang, Y., Yu, C., Lin, J., Liu, J., Liu, B., Wang, J., Zhao, T. (2017). OsMPH1 regulates plant height and improves grain yield in rice. PLoS ONE, 12(7), 1–17.
    Zhao, L. M., Wu, L. H., Li, Y.S., Animesh S., Zhu D. F & Uphoff N. (2010). Comparisons of yield, water use efficiency, and soil microbial biomass as affected by the System of Rice Intensification. Communications in Soil Science and Plant Analysis, 41: 1-12.
    Zoundou S. J. (2018). Investigating the growth parameters and yield attributes in different water regimes under the System of Rice Intensification (SRI). Unpublished manuscript, National Pingtung University of Science and Technology.

    無法下載圖示 校外公開
    2024/08/10
    QR CODE