簡易檢索 / 詳目顯示

研究生: 林芝儀
Lin, Chih-Yi
論文名稱: 土壤六價鉻快篩與還原技術
Quick test and reduction technology for hexavalent chromium in soil
指導教授: 薩支高
Sah, Jy-gau
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程與科學系所
Department of Environmental Science and Engineering
畢業學年度: 108
語文別: 中文
論文頁數: 65
中文關鍵詞: 六價鉻三價鉻快速篩測化學還原
外文關鍵詞: Hexavalent chromium, Trivalent chromium, Quick test, Reduction
DOI URL: http://doi.org/10.6346/NPUST202000012
相關次數: 點閱:14下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統
  • 本研究之目的為探索適合快速篩測土壤中所含Cr(Ⅵ)濃度之方法,使得現場調查能較為簡便快速。本研究先選用六種土壤(屏科大淺層、屏科大深層、桃園、演藝廳、吊雞林及赤山巖),與不同濃度Cr(Ⅵ)溶液混合配製受污染土壤,以鹼性消化法及快篩法分別進行Cr(Ⅵ)濃度檢測,試比較並建立關係。次為瞭解使土壤中六價鉻轉變為三價鉻的條件,以建構易操作之還原技術,試驗中使用亞鐵Fe(Ⅱ)作為還原劑與受污染土壤反應,並輔以不同參數進行模擬。

    在製備均質污染土的過程中,六價鉻會與供試土壤原有之還原物質產生作用,因此以鹼性消化法測得土壤中實際六價鉻濃度均低於其理論配製濃度。前人報告指出,土壤所含之天然有機質即具有還原六價鉻的能力(Nakayasu et al.,1999 ; Bartlett and Kimble,1976),初步結果也顯示回收率與土壤有機質含量相關,高有機質含量之組別回收率較差,反之則有較良好的回收率。

    快篩法測得之六價鉻濃度與鹼性消化法具有同樣趨勢,測得濃度同樣與理論配製濃度因土壤而異,然而可能由於萃取法差異所致,回收率優劣排序與鹼性消化不盡相同。前人研究顯示pH值越高六價鉻之吸附率則越低(Heike ,2005),依結果推測主要可能受pH值影響。

    在還原試驗中,使用亞鐵溶液可有效還原本研究配製之1,000mg/kg六價鉻污染土壤。高濃度之亞鐵溶液還原效果皆優於低濃度之亞鐵溶液,但本研究並未發現不同pH組別之還原效果有明顯的關係。

    The purpose of this study was to explore a method suitable for rapid screening of Cr (Ⅵ) concentrations in soil, making field investigations easier and faster. In this study, six kinds of soils were mixed with different concentrations of Cr (Ⅵ) solutions to prepare contaminated soils. Detect Cr (Ⅵ) concentration by alkaline digestion method and Quick test, try to compare and establish the relationship. In order to understand the conditions for transforming hexavalent chromium into trivalent chromium in the soil, in order to construct an easy-to-operate reduction technology. In the experiment, ferrous Fe (Ⅱ) was used as a reducing agent to react with the contaminated soil and supplemented with different parameters for simulation.

    In the process of preparing homogeneous contaminated soil, hexavalent chromium will interact with the original reducing substances of the tested soil. Therefore, the actual hexavalent chromium concentration in the soil measured by alkaline digestion method is lower than its theoretical preparation concentration. Previous reports have pointed out that the natural organic matter contained in the soil has the ability to reduce hexavalent chromium (Nakayasu et al., 1999; Bartlett and Kimble, 1976). Preliminary results also show that recovery is related to soil organic matter content. The recovery rate of the group with high organic matter content is worse, otherwise it has a better recovery rate.

    The hexavalent chromium concentration measured by the Quick test has the same trend as the alkaline digestion method. The measured theoretical concentration is different from the actual concentration in different soils. However, it may be due to the difference in extraction methods. The order of recovery is not the same as that of alkaline digestion. Previous studies have shown that the higher the pH value, the lower the adsorption rate of hexavalent chromium (Heike, 2005). According to the results, it is speculated that it may be mainly affected by pH.

    In the reduction test, the use of ferrous solution can effectively reduce the 1,000 mg / kg hexavalent chromium contaminated soil prepared in this study. The reduction effect of high concentration ferrous solution is better than low concentration ferrous solution. However, this study did not find a significant relationship between the reduction effects of different pH groups.

    目錄
    摘要 Ⅰ
    Abstract Ⅲ
    謝誌 Ⅴ
    目錄 Ⅵ
    表目錄 Ⅸ
    圖目錄 Ⅹ
    第1章 前言 1
    1.1 研究緣起 1
    1.2 研究目的 3
    第2章 文獻回顧 4
    2.1 鉻的特性及危害 4
    2.2 鉻的型態分布 4
    2.3 鉻污染土壤的整治技術 7
    2.3.1 化學處理 7
    2.3.2 生物處理 8
    2.3.3 電化學 8
    2.3.4 離子交換樹脂 9
    第3章 材料與方法 10
    3.1 試驗流程 10
    3.2 試驗材料 12
    3.2.1 試驗設備 12
    3.2.2 試驗藥品 12
    3.3 供試土壤之選用 13
    3.4 供試土壤之前處理與基本性質分析 13
    3.4.1 pH值 13
    3.4.2 有機質含量 14
    3.4.3 土壤質地 14
    3.4.4 土壤氧化還原電位 15
    3.4.5 重金屬全量分析 15
    3.5 製備污染土壤 16
    3.5.1 反應平衡時間 16
    3.5.2 污染土樣配製步驟 16
    3.6 鉻的定量分析 17
    3.6.1 總鉻之測定 17
    3.6.2 六價鉻之測定 17
    3.6.3 六價鉻之快篩法 18
    3.7 六價鉻還原試驗 18
    3.7.1 溶液還原試驗 18
    3.7.2 選定亞鐵濃度之土壤還原試驗 19
    3.7.3 設定不同環境條件之土壤還原試驗 19
    第4章 結果與討論 21
    4.1 供試土壤 21
    4.1.1 基本性質分析 22
    4.1.2 土壤pH值 22
    4.1.3 氧化還原電位 23
    4.1.4 土壤有機質 23
    4.1.5 土壤質地 24
    4.1.6 土壤總鉻及六價鉻濃度 24
    4.2 配製污染土 25
    4.2.1 平衡時間試驗 25
    4.2.2 配製後土壤pH值及氧化還原電位 26
    4.3 鉻的定量分析 29
    4.3.1 鹼性消化法測得之土壤六價鉻濃度 29
    4.3.2 快篩法測得之土壤六價鉻濃度 30
    4.3.3 鹼性消化與快篩結果之關係 32
    4.3.4 土壤 pH值與快篩法/鹼性消化法 37
    4.3.5 土壤氧化還原電位與快篩法/鹼性消化法 40
    4.3.6 鹼性消化法與快篩法之比較 41
    4.4六價鉻還原試驗 42
    4.4.1 溶液還原試驗 42
    4.4.2 選定亞鐵濃度之土壤還原試驗 45
    4.4.3 各土壤還原試驗 48
    第5章 結論及建議 58
    5.1 結論 58
    5.2 建議 59
    參考文獻 60
    作者簡介 65

    參考文獻

    中華土壤肥料學會(主編),1995,土壤分析手冊(二版)

    李芳胤、陳士賢,2007,土壤分析實驗手冊(初版),新文京開發,台北

    張仲民,2005,普通土壤學(一版),茂昌圖書,台北

    郭魁士,1997,土壤學(八版),中國書局,台北

    陳文山 等,2000,揭開福爾摩沙的面紗─臺灣的自然地理,行政院文化建設委員會中部辦公室

    余佩芳,2002,評估選擇性離子交換樹脂法抽出土壤有效六價鉻之適用性,碩士論文,國立臺灣大學,農業化學研究所,台北

    余俊德, 2013,玄武岩及蛇紋岩母質土壤之性質與六價鉻生成之比較,碩士論文,國立屏東科技大學,環境工程與科學系所,屏東

    吳勇興、陳信榮,2012,「從美國的土壤篩選基準制定方式看我國的土壤鉻污染管制標準」,中興工程,第117期,第23-30頁

    張雅菁,2012,鐵或錳氧化物於共存系統中對黑炭和六價鉻反應之影響,碩士論文,國立中興大學,土壤環境科學系所,台中

    許乃樺,2008,稻桿製成之黑炭對六價鉻之吸附和還原轉化作用,碩士論文,國立中興大學,土壤環境科學系所,台中

    曾彥霖,2015,三價鉻與六價鉻在不同性質土壤中的變化,碩士論文,國立屏東科技大學,環境工程與科學系所,屏東

    劉原宏,1995,台灣主要土壤中重金屬之吸附性與聯結態之探討,碩士論文,國立屏東技術學院,環境工程技術研究所,屏東

    劉資祺,2018,應用多硫化鈣整治六價鉻污染土壤及地下水技術之建立-操作參數及衍生物穩定性之研究,碩士論文,朝陽科技大學,環境工程與管理系,台中

    駱傳婷,2014,不同土壤質地對鉻遷移轉化及修復的研究,碩士論文,中國海洋大學,環境科學與工程院,山東

    謝明昇,2012,Fenton-like試劑對蛇紋岩土壤中溶解重金屬與產生六價鉻之影響,碩士論文,國立屏東科技大學,環境工程與科學系所,屏東

    Bartlett, R.J., and J.M. Kimble., 1976,“Behavior of Chromium in Soils: II. Hexavalent Forms ,” J.Environ. Qual. 5, pp. 383-386.

    Cervantes, C., Campos-Garcia, J., Devars, S., Gutierrez-Corona, F., Loza-Tavera, H., Torres-Guzman, J.C., and Moreno-Sanchez, R., 2001, “Interactions of Cr with microorganisms and plants,” FEMS Microbiology Reviews, Vol. 25, pp. 335-347.

    Chung-Yu G., Yi-Ho T., Daniel C.W. Tsangb, Anyi H., Chang-Ping Y., 2019, “Wetland plant microbial fuel cells for remediation of hexavalent chromium contaminated soils and electricity production,” Journal of Hazardous Materials, Vol. 365, pp. 137-145.

    De Filippis, L.F. and Pallaghy, C.K., 1994,“Heavy Metals: Sources and Biological Effects,” in: Rai, L.C., Gaur, J.P. and Soeder, C.J. Eds., Advances in Limnology Series: Algae and Water Pollution, pp. 31-77, E. Scheizerbartsche Press, Stuttgart.

    Elisabeth L. Hawley, Rula A. Deeb, Michael C. Kavanaugh and James Jacobs R.G., 2004,“Treatment Technologies for Chromium(VI), ” in Chromium(VI) Handbook, pp. 274-380 , CRC Press, U.S.A, Boca Raton.

    Fein, J.B., Kemner, K., Fowle, D.A., Cahill, J., Boyanov, M., and Bunker, B., 2001,“Nonmetabolic reduction of Cr(VI) by bacterial surfaces under nutrient-absent conditions, ” Geomicrobiology Journal, Vol. 19, No. 3, pp. 369-382.

    Fendorf S. E., 1995,“Surface reactions of chromium in soils and waters, ” Geoderma, Vol. 67, No.1-2, pp. 55-71.

    Fruchter, J.S., Cole, C.R., Williams, M.D., Vermeul, V.R., Amonette, J.E., Szecsody, J.E., Istok, J.D., and Humphrey, M.D., 2000,“Creation of a subsurface permeable treatment barrier using in situ redox manipulation, ” Groundwater Monitoring and Remediation Review.

    Heike B. Bradl., 2005,“Heavy Metals in the Environment: Origin, Interaction and Remediation, ” Interface Science and Technology, Vol.6 ,pp. 106-107.

    Jacobs, J., Hardison, R.L., and Rouse, J.V., 2001,“In-situ remediation of heavy metals using sulfur-based treatment technologies, ” Hydro Visions, Vol. 10, No. 2, pp. 1-4.

    James, B.R., Petura, J.C., Vitale, R.J., and Mussoline, G.R., 1997,“Oxidation-reduction chemistry of Cr: relevance to the regulation and remediation of chromate-contaminated soils, ” Journal of Soil Contamination, Vol. 6, No. 6, pp. 569-580.

    Lisha, W., Lihui H., Haibing X., Hong L., Xintong L., Xiaowei L., 2019, “Separation and Purification Technology Application of a multi-electrode system with polyaniline auxiliary electrodes for electrokinetic remediation of chromium-contaminated soil, ” Separation and Purification Technology, Vol. 224, pp. 106-112.

    Mayumi H.,Katsumi Shozugawa .,Motoyuki M., 2015,“ Reduction process of Cr(VI) by Fe(II) and humic acid analyzed using high time resolution XAFS analysis, ” Journal of Hazardous Materials, Vol. 285, pp. 140-147.

    McLean, J.S. and Beveridge, T.J., 1999,“Chromate removal from contaminated ground-water using indigenous bacteria, ” in Bioremediation of Metals and Inorganic Compounds, Fifth International In-Situ and On-Site Bioremediation Symposium, Battelle Press, CA, San Diego.

    Nakayasu, K., M. Fukushima, K. Sasaki, S. Tanaka, and H. Nakamura., 1999,“Comparative studies of the reduction behavior of chromium(VI) by humic substances and their precursors. ” Environmental Toxicology and Chemistry, Vol. 18, pp. 1085-1090.

    Nawei C., Guo Q.C., Huang L., Liu G., Li B.C., 2019,“Removal of hexavalent chromium in soil by lignin-based weakly acidic cation exchange resin,” Chinese Journal of Chemical Engineering, Vol. 27, No. 10, pp. 2544-2550.

    Oze C, Bird DK, Fendorf S., 2007,“Genesis of hexavalent chromium from natural sources in soil and groundwater,” Proceedings of the National Academy of Sciences, USA., Vol. 104, No. 6, pp. 6544-6549.

    Ponder, S.M., Darab, J.G., and Mallouk, T.E., 2000,“Remediation of Cr(VI) and Pb(II) aqueous solutions using supported, nanoscale zero-valent iron, ” Environmental Science and Technology, Vol. 34, No. 12, pp. 2564-2569.

    Rai, D., B. M. Sass, and D. A. Moore., 1987,“Chromium (Ⅲ) hydrolysisconstants and solubility of chromium (Ⅲ) hydroxide,” Inorganic Chemistry, Vol. 26, pp. 345-349.

    S. Lukman, A. Bukhari, M. H. AlMalack, N. D. Mu'azu and M. H. Essa., 2014,“Geochemical Modeling of Trivalent Chromium Migration in Saline-Sodic Soil during Lasagna Process: Impact on Soil Physicochemical Properties, ” The Scientific World Journal, Vol. 2014.

    Seaman, J.C., Bertsch, P.M., and Schwallie, L., 1999,“In-situ Cr(VI) reduction within coarse-textured, oxide-coated soil and aquifer systems using Fe(II) solutions,” Environmental Science and Technology, Vol. 33, No. 6, pp. 938-944.

    Stepniewska, Z., K. Bucior, and R. P. Bennicelli., 2004,“The effects of MnO 2 on sorption and oxidation of Cr(III) by soils, ” Geoderma, Vol. 122, No. 2, pp. 291-296.

    Thornton, E.C. and Amonette, J.E., 1999,“Hydrogen sulfide gas treatment of Cr(VI)-contaminated sediment samples from a plating-waste disposalsite-implications for in-situ remediation,” Environmental Science and Technology, Vol. 33, No.22, pp. 4096-4101.

    Zhao, D., A. K. SenGupta, and L. Stewart., 1998,“Selective removal of Cr(Ⅵ) oxyanions with a new anion exchanger,” Industrial & Engineering Chemistry Research,Vol. 37, pp. 4383-4387.

    無法下載圖示 校外公開
    2025/01/07
    QR CODE