簡易檢索 / 詳目顯示

研究生: 林慕堯
Lin, Mu-Yao
論文名稱: 臺灣水鹿茸重遺傳參數估計及關聯基因標記研究
Study on genetic parameter estimation of velvet antler weight and associated gene marker in Formosan sambar
指導教授: 張秀鑾
Chang, Hsiu-Luan
學位類別: 碩士
Master
系所名稱: 農學院 - 動物科學與畜產系所
Department of Animal Science
畢業學年度: 108
語文別: 中文
論文頁數: 94
中文關鍵詞: ALYREF 基因臺灣水鹿遺傳變異率重複勢鹿茸
外文關鍵詞: ALYREF gene, Formosan sambar, Heritability, Repeatability, Velvet antler
DOI URL: http://doi.org/10.6346/NPUST202000023
相關次數: 點閱:37下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統
  • 臺灣水鹿 (Rusa unicolor swinhoei) 為臺灣特有亞種,有 63 條染色體,原棲息於臺灣山區林地,現以民間圈養為主。鹿茸 (velvet antler) 供食用歷史已久,且為我國養鹿產業主要收入來源。本試驗旨在估計臺灣水鹿產茸相關遺傳參數,並發展產茸相關基因檢測平台。試驗I:應用 2003 至 2015 年間出生之 62 頭臺灣水鹿 184 筆剪茸紀錄,以動物模式-限制性最大似然法進行茸重累加性遺傳、永久環境與殘差變方-共變方估計後,預測茸鹿產茸育種價。臺灣水鹿產茸能力具高遺傳性與重複性,遺傳變異率與重複勢估值分別為 0.488 與 0.735;其中父方影響效應約為母方兩倍。同時,年改進趨勢評估顯示,茸重表型改進量較遺傳改進大;此可能係因飼養管理提升與鹿農主觀式留種所致。試驗II:依白尾鹿基因序列設計七組引子,進行臺灣水鹿 ALYREF 基因序列解碼。完成臺灣水鹿該基因序列串接,全長共 3,432 bp;並已登錄於 NCBI GenBank 基因組核苷酸資料庫,登錄號 MN006827 (Accession number)。本研究發現臺灣水鹿 ALYREF 基因七個點突變,其中五個具多態性。進一步比較五個多態性位點之不同基因型對其產茸性能之影響發現:ALYREF-in2-C910T 顯著影響三至五歲齡茸重,且 TT 為有利基因型。ALYREF-in2-A1381G 與 ALYREF-in5-C2922T 組合基因型中,GGCC 基因型茸鹿有顯著較重茸重。同時,ALYREF-in2-C910T、ALYREF-in2-A1381G 與 ALYREF-in5-C2922T 三個多態性位點之不同組合基因型茸鹿產茸量比較顯示,具 TTGGCC 基因型之茸鹿有最佳產茸量。綜合言之,鹿茸重屬於高度遺傳與重複性狀,預期個體選拔且輔以標記選拔應可有效地提升臺灣水鹿產茸量與提升養鹿產業競爭力。

    Formosan sambar (Rusa unicolor swinhoei) is an endemic subspecies of Taiwan with 63 of chromosome. Although Formosan sambar were originally inhabited in the woodlands of mountain areas in Taiwan, they are now mainly in captivity by farmers. Velvet antler has been used for over thousands of year as tonic in traditional Chinese medicine, which is the main source of income for the deer industry in Taiwan. The objectives of this study were to estimate genetic parameters related to velvet antler production of Formosan sambar, and to develop a genotyping platform for marker genes related to antler production. Experiment I: A total of 184 antler velvet weight (AVW) records from 62 bucks born during 2003 and 2015 was used for analysis. Animal model-restricted maximum likelihood method was used to estimate the additive genetic, permanent environment, and residual variance-covariance components, and breeding value of velvet antler weight was then predicted. Velvet antler weight was high heritable and repeatable with estimates of heritability and repeatability being 0.488 and 0.735, respectively. The paternal effect (sire) was about twice that of the maternal (dam). Furthermore, the evolution of phenotype and genotype indicated more progress was shown in phenotype than that of genotype, which might be due to the improvement of management, including feeds and feeding, and no selection conducted during the years. Experiment II: Seven sets of primers based on the whitetail deer gene sequence were used to decode the ALYREF gene of Formosan sambar. Whole sequence of ALYREF gene for Formosan sambar was concatenated completely with a total length of 3,432 bp; and registered in the NCBI GenBank genomic nucleotide database, accession number MN006827. Seven point mutations were observed in ALYREF gene of Formosan sambar with five polymorphic sites. Effects of ALYREF-in2-C910T polymorphism on velvet antler weight showed TT genotype was the favorable one. Also, genotype combination of GGCC was preferred when ALYREF-in2-A1381G and ALYREF-in5-C2922T were evaluated jointly. Moreover, TTGGCC was the most favorable genotype combination for velvet antler weight when three polymorphism sites were considered. In conclusions, velvet antler weight of Formosan sambar was a highly inherited and repetitive trait, and thus mass selection could be effective. Also, significant ALYREF gene polymorphic effects showed marker assisted selection incorporated into breeding program should effectively increase the velvet antler production and enhance the competitiveness of the Taiwan’s deer industry.

    摘要 I
    Abstract II
    謝誌 IV
    目錄 V
    圖表目錄 VII
    壹、 前言 1
    貳、 文獻回顧 4
    一、 各國養鹿產業現況 4
    二、 茸角重量影響因子 11
    三、 鹿茸重遺傳變異率估計 22
    四、 ALYREF 基因介紹 27
    參、 材料與方法 39
    一、 鹿茸重遺傳參數估計 39
    (一) 試驗動物 39
    (二) 統計模式 39
    二、 鹿茸重關聯基因標記定序與基因型效應 43
    (一) 試驗動物 43
    (二) 血液樣本採集 43
    (三) 基因組 DNA 萃取 43
    (四) DNA 濃度定量 43
    (五) ALYREF基因目標序列之擴增 44
    (六) 目標片段定序與比對 47
    (七) 統計模式 49
    肆、 結果與討論 51
    一、 鹿茸重遺傳參數估計 51
    (一) 臺灣水鹿產茸性狀敘述統計 51
    (二) 臺灣水鹿產茸性狀遺傳參數估計 60
    二、 鹿茸重關聯基因標記定序與基因型效應 63
    (一) 臺灣水鹿 ALYREF 基因定序結果 63
    (二) 臺灣水鹿 ALYREF 基因多態性位點基因型頻率 66
    (三) ALYREF 基因多態性位點對臺灣水鹿茸重之影響 68
    伍、 結論 76
    陸、 參考文獻 77
    附錄 91
    作者簡介 94

    台灣畜產種原資訊網。2019。鹿品種介紹。Accessed Oct. 25, 2019. http://www.angrin.tlri.gov.tw/deer_all.htm.
    行政院農業委員會。2019。107 年農業統計年報。臺北,行政院農業委員會。
    李在軒。2011。利用 G 顯帶和螢光原位雜交技術比較臺灣特有鹿科動物間之核型差異。中山醫學大學碩士論文。
    Andersen, P. R., M. Domanski, M. S. Kristiansen, H. Storvall, E. Ntini, C. Verheggen, A. Schein, J. Bunkenborg, I. Poser, M. Hallais, R. Sandberg, A. Hyman, J. LaCava, M. P. Rout, J. S. Andersen, E. Bertrand, and T. H. Jensen. 2013. The human cap-binding complex is functionally connected to the nuclear RNA exosome. Nat. Struct. Mol. Biol. 20:1367–1376.
    Appleby, M. C. 1982. The consequences and causes of high social rank in red deer stags. Behaviour 80:259–273.
    Archer, J. A. 2003. Genetic improvement of red deer. Proc. N. Z. Soc. Anim. Prod. 63:233–236.
    Archer, J. A., J. C. McEwan, and R. Hall. 2007. Genetic technologies for deer breeding. Proc. N. Z. Soc. Anim. Prod. 67:91–94.
    Asher, G. W., D. S. Gallagher, M. L. Tate, and C. Tedford. 1999. Hybridization between sika deer (Cervus nippon) and axis deer (Axis axis). J. Hered. 90:236–240.
    Asher, G. W., and N. Cox. 2013. The relationship between body-mass and puberty in young red deer (Cervus elaphus) hinds: evidence of early-life effects on permissive live-weight thresholds. Anim. Reprod. Sci. 143:79–84.
    Ball, A. J., J. M. Thompson, and P. F. Fennessy. 1994. Relationship between velvet antler weight and liveweight in red deer (Cervus elaphus). New Zeal. J. Agr. Res. 37:153–157.
    Barling, P. M., A. K. Lai, and L. F. Nicholson. 2005. Distribution of EGF and its receptor in growing red deer antler. Cell Biol. Int. 29:229–236.Bartoš, L., R. Bahbouh, and M. Vach. 2007. Repeatability of size and fluctuating
    asymmetry of antler characteristics in red deer (Cervus elaphus) during ontogeny. Biol. J. Linn. Soc. Lond. 91:215–226.
    Bartoš, L., V. Perner, and B. Procházka. 1987. On the relationship between social rank during the velvet period and antler parameters in a growing red deer stag. Acta Theriol. 32:403–412.
    Bartoš, L., V. Perner, and S. Losos. 1988. Red deer stags rank position, body weight and antler growth. Acta Theriol. 33:209–217.
    Bartoš, L. 1990. Social status and antler development in red deer. Pages 442–459 in Horns, Pronghorns, and Antlers: Evolution, Morphology, Physiology, and Social Significance. Springer, NY.
    Boehme, K. A., R. Kulikov, and C. Blattner. 2008. p53 stabilization in response to DNA damage requires Akt/PKB and DNA-PK. Proc. Natl. Acad. Sci. U. S. A. 105:7785–7790.
    Bonnet-Garnier, A., S. Thévenon, F. Claro, M. Gautier, and H. Hayes. 2001. Cytogenetic comparison between Vietnamese sika deer and cattle: R-banded karyotypes and FISH mapping. Chromosome Res. 9:673–687.
    Bonnet-Garnier, A., F. Claro, S. Thévenon, M. Gautier, and H. Hayes. 2003. Identification by R-banding and FISH of chromosome arms involved in Robertsonian translocations in several deer species. Chromosome Res. 11:649–663.
    Bourdon, R. M. 2000. Understanding Animal Breeding. 2nd ed. Prentice Hall, Inc. NJ.
    Bruhn, L., A. Munnerlyn, and R. Grosschedl. 1997. ALY, a context-dependent coactivator of LEF-1 and AML-1, is required for TCRalpha enhancer function. Genes Dev. 11:640–653.
    Bucan, V., M. Y. Adili, C. Y. Choi, M. T. Eddy, P. M. Vogt, and K. Reimers. 2010. Transactivation of lifeguard (LFG) by Akt-/LEF-1 pathway in MCF-7 and MDA-MB 231 human breast cancer cells. Apoptosis 15:814–821.
    Chandra, H. S., D. A. Hungerford, J. Wagner, and R. L. Snyder. 1967. Chromosomes of five artiodactyl mammals. Chromosoma 21:211–220.
    Chavez, S., and A. Aguilera. 1997. The yeast HPR1 gene has a functional role in transcriptional elongation that uncovers a novel source of genome instability. Genes Dev. 11:3459–3470.
    Chavez, S., M. Garcia-Rubio, F. Prado, and A. Aguilera. 2001. Hpr1 is preferentially required for transcription of either long or G+C-rich DNA sequences in Saccharomyces cerevisiae. Mol. Cell Biol. 21:7054–7064.
    Cheng, H., K. Dufu, C. S. Lee, J. L. Hsu, A. Dias, and R. Reed. 2006. Human mRNA export machinery recruited to the 5’ end of mRNA. Cell 127:1389–1400.
    Clark, D. E., E. A. Lord, and J. M. Suttie. 2006. Expression of VEGF and pleiotrophin in deer antler. Anat. Rec. A Discov. Mol. Cell Evol. Biol. 288:1281–1293.
    Clements, M. N., T. Clutton-Brock, S. D. Albon, J. M. Pemberton, and L. E. Kruuk. 2010. Getting the timing right: antler growth phenology and sexual selection in a wild red deer population. Oecologia 164:357–368.
    Clutton-Brock, T. H., S. D. Albon, and P. H. Harvey. 1980. Antlers, body size and breeding group size in the Cervidae. Nature 285:565–567.
    Clutton-Brock, T. H., F. E. Guinness, and S. D. Albon. 1982. Red deer, behavior and ecology of two sexes. The University of Chicago, University Press, Edinburgh.
    Cortés-Vieyra, R., A. Bravo-Patiño, J. J. Valdez-Alarcón, M. C. Juárez, B. B. Finlay, and V. M. Baizabal-Aguirre. 2012. Role of glycogen synthase kinase-3 beta in the inflammatory response caused by bacterial pathogens. J. Inflamm. 9:23. doi:10.1186/1476-9255-9-23.
    CRAAQ. 2013. Domestic game farm animals. Centre de référence en agriculture et agroalimentaire du Québec. Québec.
    Daian, T., A. Ohtsuru, T. Rogounovitch, H. Ishihara, A. Hirano, Y. Akiyama-Uchida, V. Saenko, T. Fujii, and S. Yamashita. 2003. Insulin-like growth factor-I enhances transforming growth factor-beta-induced extracellular matrix protein production through the P38/activating transcription factor-2 signaling pathway in keloid fibroblasts. J. Invest. Dermatol. 120:956–962.
    Deer Industry New Zealand. 2018. Deer industry statistics. Accessed Nov. 31, 2018. https://www.deernz.org/about-deer-industry/deer-industry/deer-
    industry-statistics#.XbQGgEUzbRY.
    Domínguez-Sánchez, M. S., S. Barroso, B. Gómez-González, R. Luna, and A. Aguilera. 2011. Genome instability and transcription elongation impairment in human cells depleted of THO/TREX. PLoS Genet. 7:e1002386.
    Duan, L. X., J. S. Ma, L. Weng, L. J. Wang, S. W. Chen, Y. Q. Liu, B. X. Wang, and Q. L. Zhou. 2007. Preventive and therapeutic effect of total velvet antler polypeptides on osteoporosis induced by retinoic acid in rats. Chin. Pharm. J. 42:264–267.
    Fan, J., B. Kuai, G. Wu, X. Wu, B. Chi, L. Wang, K. Wang, Z. Shi, H. Zhang, S. Chen, Z. He, S. Wang, Z. Zhou, G. Li, and H. Cheng. 2017. Exosome cofactor hMTR4 competes with export adaptor ALYREF to ensure balanced nuclear RNA pools for degradation and export. EMBO J. 36:2870–2886.
    Fisher, R. A. 1958. The genetical theory of natural selection. 2nd ed. Dover. Publications, Mineola, NY.
    Foley, A. M., R. W. DeYoung, S. D. Lukefahr, J. S. Lewis, D. G. Hewitt, M. W. Hellickson, D. A. Draeger, and C. A. DeYoung. 2012. Repeatability of antler characteristics in mature white-tailed deer in South Texas: consequences of environmental effects. J. Mammal. 93: 1149–1157.
    Foster, L. J., P. A. Zeemann, C. Li, M. Mann, O. N. Jensen, and M. Kassem. 2005. Differential expression profiling of membrane proteins by quantitative proteomics in a human mesenchymal stem cell line undergoing osteoblast differentiation. Stem Cells 23:1367–1377.
    Francis, S. M., and J. M. Suttie.1998. Detection of growth factors and proto-oncogene mRNA in the growing tip of red deer (Cervus elaphus) antler using reverse-transcriptase polymerase chain reaction (RT-PCR). J. Exp. Zool. 281:36–42.
    Fraser, A., S. R. Haines, E. C. Stuart, M. J. Scandlyn, A. Alexander, T. J. Somers-Edgar, and R. J. Rosengren. 2010. Deer velvet supplementation decreases the grade and metastasis of azoxymethane-induced colon cancer in the male rat. Food Chem. Toxicol. 48:1288–1292.
    García-Cortés, L. A., J. C. Martínez-Ávila, and M. A. Toro. 2008. Partition of the genetic trend to validate multiple selection decisions. Animal 2:821–824.
    Garrick, D. J., and G. H. J. van den Berg. 1996. Relationships between adult liveweights and velvet weights in farmed red deer. Proc. N. Z. Soc. Anim. Prod. 56:334–337.
    Geist, V. 1998. Deer of the world: their evolution, behavior, and ecology. 1st ed. Stackpole Books, Mechanicsburg, PA.
    Goosen, G. J., K. G. Dodds, M. L. Tate, and P. F. Fennessy. 1999a. QTL for live weight traits in Père David’s x red deer interspecies hybrids. J. Hered. 90:643–647.
    Goosen, G. J., P. F. Fennessy, and A. J. Pearse. 1999b. Carcass composition comparison of male and female red deer and hybrids with Père David's deer. New Zeal. J. Agr. Res. 42:483–491.
    Groeneveld E, M. Kovač, and N. Mielenz. 2010. VCE user’s guide and reference manual, version 6.0. Institute of Farm Animal Genetics, Neustadt, Germany.
    Groeneveld, E., M. Kovač, and T. Wang. 1990. Pest, a general purpose BLUP package for multivariate prediction and estimation. Pages 488–491 in Proc. 4th WCGALP, Edinburgh, Scotland.
    Gu, L., E. Mo, Z. Yang, X. Zhu, Z. Fang, B. Sun, C. Wang, J. Bao, and C. Sung. 2007. Expression and localization of insulin-like growth factor-I in four parts of the red deer antler. Growth Factors 25:264–279.
    Harrington, R. 1973. Hybridisation among deer and its implications for conservation. Irish Forestry 30:64–78.
    Hauer, C., J. Sieber, T. Schwarzl, I. Hollerer, T. Curk, A. M. Alleaume, M. W. Hentze, and A. E. Kulozik. 2016. Exon junction complexes show a distributional bias toward alternatively spliced mRNAs and against mRNAs coding for ribosomal proteins. Cell Rep. 16:1588–1603.
    Heath, C. G. N. Viphakone, and S. A. Wilson. 2016. The role of TREX in gene expression and disease. Biochem. J. 473:2911–2935.
    Henderson, C. R. 1973. Sire evaluation and genetic. J. Anim. Sci. 1973:10–41.
    Hsu, T. C., and K. Benirschke. 1967. An Atlas of Mammalian Chromosomes. 1st ed. Springer, NY.
    Hu, P. F., J. P. Xu, C. Ai, X. J. Shao, H. L. Wang, Y. M. Dong, X. Z. Cui, Y. Fuhe, and X. Xiumei. 2017. Screening weight related genes of velvet antlers by whole genome re-sequencing. Yi Chuan 39:1090–1101.
    Huxley, J. S. 1924. Constant differential growth-ratios and their significance. Nature 114:895–896.
    Huxley, J. S. 1931. The relative size of antlers in deer. J. Zool. 101:819–864.
    Hwang, S. S., S. W. Jang, M. K. Kim, L. K. Kim, B. S. Kim, H. S. Kim, K. Kim, W. Lee, R. A. Flavell, and G. R. Lee. 2016. YY1 inhibits differentiation and function of regulatory T cells by blocking Foxp3 expression and activity. Nat. Commun. 7:10789. doi:10.1038/ncomms10789.
    Hyvärinen, H., T. Helle, M. Nieminen, P. Väyrynen, and R. Väyrynen. 1977. The influence of nutrition and seasonal condition on mineral status in the reindeer. Can. J. Zool. 55:648–655.
    Idris, I., and S. Moin. 2009. Somatic chromosomes of the bornean sambar deer and rusa deer interspecific hybrids. Am. J. Appl. Sci. 6:862–868.
    Im, S., R. L. Fernando, and D. Gianola. 1989. Likelihood inferences in animal breeding under selection: a missing-data theory view point. Genet. Sel. Evol. 21:399–414.
    Janiszewski, P., and S. Kolasa. 2006. Zoometric characteristics of red deer (Cervus elaphus L.) stags from northern Poland. Balt. For. 12:122–127.
    Jimeno, S., A. G. Rondón, R. Luna, and A. Aguilera. 2002. The yeast THO complex and mRNA export factors link RNA metabolism with transcription and genome instability. EMBO J. 21:3526–3535.
    Johnson, S. A., G. Cubberley, and D. L. Bentley. 2009. Cotranscriptional recruitment of the mRNA export factor Yra1 by direct interaction with the 3’ end processing factor Pcf11. Mol. Cell 33:215–226.
    Kasarda, R., N. Moravčíková, and A. Trakovická. 2014. Advances in genomic sequencing using bovine SNP beadchip in deer. Acta Fytotechn. Zootechn. 17:65–71.
    Kim, V. N., N. Kataoka, and G. Dreyfuss. 2001. Role of the nonsense-mediated decay factor hUpf3 in the splicing-dependent exon-exon junction complex. Science 293:1832–1836.
    Kir, S., S. A. Beddow, V. T. Samuel, P. Miller, S. F. Previs, K. Suino-Powell, H. E. Xu, G. I. Shulman, S. A. Kliewer, and D. J. Mangelsdorf. 2011. FGF19 as a Postprandial insulin-independent activator of hepatic protein and glycogen synthesis. Science 331:1621–1624.
    Kruuk, L. E. B., J. Slate, J. M. Pemberton, S. Brotherstone, F. Guinness, and T. Clutton-Brock. 2002. Antler size in red deer: heritability and selection but no evolution. Evolution 56:1683–1695.
    Kyoto Encyclopedia of Genes and Genomes. 2019. Wnt signaling pathway. Accessed Nov. 11, 2019. https://www.genome.jp/kegg-bin/show_pathwa
    -y?hsa04310.
    Leccia, F., M. Batisse-Lignier, I. Sahut-Barnola, P. Val, A. M. Lefrançois-Martinez, and A. Martinez. 2016. Mouse Models Recapitulating Human Adrenocortical Tumors what is Lacking. Front. Endocrinol. 7:93. doi: 10.3389/fendo.2016.00093.
    Lee, N., D. K. Kim, S. H. Han, H. G. Ryu, S. J. Park, K. T. Kim, and K. Y. Choi. 2017. Comparative interactomes of VRK1 and VRK3 with their distinct roles in the cell cycle of liver cancer. Mol. Cells 40:621–631.
    Leslie, D. M. 2011. Rusa unicolor (Artiodactyla: Cervidae). Mamm. Species 43:1–30.
    Levanon, D., R. E. Goldstein, Y. Bernstein, H. Tang, D. Goldenberg, S. Stifani, Z. Paroush, and Y. Groner. 1998. Transcriptional repression by AML1 and LEF-1 is mediated by the TLE/Groucho corepressors. PNAS, USA. 95:11590–11595.
    Li, C., F. Yang, and J. Suttie. 2011. Stem cells, stem cell niche and antler development. Anim. Prod. Sci. 51:267–276.
    Li, C., J. A. Stanton, T. M. Robertson, J. M. Suttie, P. W. Sheard, A. J. Harris, and D. E. Clark. 2007. Nerve growth factor mRNA expression in the regenerating antler tip of red deer (Cervus elaphus). PLoS ONE 2:e148.
    Lowe, V. P. W., and A. S. Gardiner. 1975. Hybridization between red deer (Cervus elaphus) and sika deer (Cervus nippon) with particular reference to stocks in N.W. England. J. Zoology 177:553–566.
    Lukefahr, S. D., and H. A. Jacobson. 1998. Variance component analysis and heritability of antler traits in white-tailed deer. J. Wildl. Manage. 62:262–268.
    Luo, M. L., Z. Zhou, K. Magni, C. Christoforides, J. Rappsilber, M. Mann, and R. Reed. 2001. Pre-mRNA splicing and mRNA export linked by direct interactions between UAP56 and Aly. Nature 413:644–647.
    Mancini, A., S. C. Niemann-Seyde, R. Pankow, O. El Bounkari, S. Klebba-Färber, A. Koch, E. Jaworska, E. Spooncer, A. D. Gruber, A. D. Whetton, and T. Tamura. 2010. THOC5/FMIP, an mRNA export TREX complex protein, is essential for hematopoietic primitive cell survival in vivo. BMC Biol. 8:1. doi: 10.1186/1741-7007-8-1.
    Maqbool, N. J., M. L. Tate, K. G. Dodds, R. M. Anderson, K. M. McEwan, H. C. Mathias, J. C. McEwan, and R. J. Hall. 2007. A QTL study of growth and body shape in the inter-species hybrid of Père David’s deer (Elaphurus davidianus) and red deer (Cervus elaphus). Anim. Genet. 38:270–276.
    Masuda, S., R. Das, H. Cheng, E. Hurt, N. Dorman, and R. Reed. 2005 Recruitment of the human TREX complex to mRNA during splicing. Genes Dev. 19:1512–1517.
    McCulloch, T. R. 2014. Genetic markers to identify the resilient and susceptible phenotypes to Johne’s disease in red deer (Cervus elaphus). Master Diss. University of Otago, Dunedin.
    Medina, M. A., G. D. Ugarte, M. F. Vargas, M. E. Avila, D. Necuñir, A. A. Elorza, S. E. Gutiérrez, and G. V. De Ferrari. 2016. Alternative RUNX1 Promoter Regulation by Wnt/β‐Catenin Signaling in Leukemia Cells and Human Hematopoietic Progenitors. J. Cell Physiol. 231:1460–1467.
    Michel, E. S., S. Demarais, B. K. Strickland, T. Smith, and C. M. Dacus. 2016. Antler characteristics are highly heritable but influenced by maternal factors. J. Wildl. Manage. 80:1420–1426.
    Moore, G. H., R. P. Littlejohn, and G. M. Cowie. 1998. Liveweights, growth rates, and antler measurements of farmed red deer stags and their usefulness as predictors of performance. New Zeal. J. Agr. Res. 31:285–291.
    Muir, P. D., G. Semiadi, G. W. Asher, T. E. Broad, M. L. Tate, and T. N. Barry. 1997. Sambar deer (Cervus unicolor) X red deer (C. elaphus) interspecies hybrids. J. Hered. 88:366–372.
    Muravenko, O. V., R. Z. Gizatullin, A. N. Al-Amin, A. I. Protopopov, V. I. Kashuba, A. V. Zelenin, and E. R. Zabarovsky. 2000. Human ALY/BEF gene map position 17q25.3. Chromosome Res. 8:562.
    National Center for Biotechnology Information. 2019. ALYREF Aly/REF export factor [Homo sapiens (human)]. Accessed Feb. 19, 2019. https://www.ncbi.nlm.nih.gov/gene/10189.
    Neitzel, H. 1982. Karyotypen evolution und deren bedeutung für den speciation prozess der Cerviden (Cervidae; Artiodactyla; Mammalia). Ph.D. Thesis, Freie Universitat, Berlin.
    Nussey, D. H., L. E. Kruuk, A. Morris, M. N. Clements, J. M. Pemberton, and T. H. Clutton-Brock. 2009. Inter- and intrasexual variation in aging patterns across reproductive traits in a wild red deer population. Am. Nat. 174:342–357.
    Okada, M., S. W. Jang, and K. Ye. 2008. Akt phosphorylation and nuclear phosphoinositide association mediate mRNA export and cell proliferation activities by ALY. PNAS, USA. 105:8649–8654.
    Phimphilai, M., Z. Zhao, H. Boules, H. Roca, and R. T. Franceschi. 2006. BMP signaling is required for RUNX2‐dependent induction of the osteoblast phenotype. J. Bone Miner. Res. 21:637–646.
    Piruat, J. I., and A. Aguilera. 1998. A novel yeast gene, THO2, is involved in RNA pol II transcription and provides new evidence for transcriptional elongation-associated recombination. EMBO J. 17:4859–4872.
    Pitzonka, L., S. Ullas, and M. Chinnam, B. J. Povinelli, D. T. Fisher, M. Golding, M. M. Appenheimer, M. J. Nemeth, S. Evans, and D. W. Goodrich. 2014. The Thoc1 encoded ribonucleoprotein is required for myeloid progenitor cell homeostasis in the adult mouse. PLoS One 9:e97628.
    Playfair, D. 2015. The UK venison market: what do we know. Accessed Sep. 10, 2019. http://deerfarmdemoproject.scottish-venison.info/wpcontent/
    uploads/2015/05/Dick-Playfair-ppt-DFDP-Day-11.pdf.
    Price, T., M. Kirkpatrick, and S. J. Arnold. 1988. Directional selection and the evolution of breeding date in birds. Science 240:798–799.
    Rodrigues JP, Rode M, Gatfield D, Blencowe B, Carmo-Fonseca M,
    Izaurralde E (2001) REF proteins mediate the export of spliced
    and unspliced mRNAs from the nucleus. Proc Natl Acad Sci USA
    98: 1030–1035
    Rodrigues JP, Rode M, Gatfield D, Blencowe B, Carmo-Fonseca M,
    Izaurralde E (2001) REF proteins mediate the export of spliced
    and unspliced mRNAs from the nucleus. Proc Natl Acad Sci USA
    98: 1030–1035
    Rodrigues JP, Rode M, Gatfield D, Blencowe B, Carmo-Fonseca M,
    Izaurralde E (2001) REF proteins mediate the export of spliced
    and unspliced mRNAs from the nucleus. Proc Natl Acad Sci USA
    98: 1030–1035
    Rodrigues JP, Rode M, Gatfield D, Blencowe B, Carmo-Fonseca M,
    Izaurralde E (2001) REF proteins mediate the export of spliced
    and unspliced mRNAs from the nucleus. Proc Natl Acad Sci USA
    98: 1030–1035
    Reed, R., and H. Cheng. 2005. TREX, SR proteins and export of mRNA. Curr. Opin. Cell Biol. 17:269–273.
    Rehwinkel, J., A. Herold, K. Gari, T. Köcher, M. Rode, F. L. Ciccarelli, M. Wilm, and E. Izaurralde. 2004 Genome-wide analysis of mRNAs regulated by the THO complex in Drosophila melanogaster. Nat. Struct. Mol. Biol. 11:558–566.
    Rodrigues, J. P., M. Rode, D. Gatfield, B. J. Blencowe, M. Carmo-Fonseca, and E. Izaurralde. 2001. REF proteins mediate the export of spliced and unspliced mRNAs from the nucleus. PNAS, USA. 98:1030–1035.
    Rubtsov, Y. P., and A. Y. Rudensky. 2007. TGFbeta signalling in control of T-cell-mediated self-reactivity. Nat. Rev. Immunol. 7:443–453.
    Saran, S., D. D. Tran, F. Ewald, A. Koch, A. Hoffmann, M. Koch, B. Nashan, and T. Tamura. 2016. Depletion of three combined THOC5 mRNA export protein target genes synergistically induces human hepatocellular carcinoma cell death. Oncogene 35:3872–3879.
    Saran, S., D. D. Tran, S. Klebba-Färber, P. Moran-Losada, L. Wiehlmann, A. Koch, H. Chopra, O. Pabst, A. Hoffmann, R. Klopfleisch, and T. Tamura. 2013. THOC5, a member of the mRNA export complex, contributes to processing of a subset of wingless/integrated (Wnt) target mRNAs and integrity of the gut epithelial barrier. BMC Cell Biol. 14:51. doi: 10.1186/1471-2121-14-51.
    Schmidt, K. T., A. Stien, S. D. Albon, and F. E. Guinness. 2001. Antler length of yearling red deer is determined by population density, weather and early life-history. Oecologia 127:191–197.
    Scottish venison partnership. 2018. Product specification: Scottish wild venison. Accessed Aug. 22, 2018. https://assets.publishing.service.gov.uk
    /government/uploads/system/uploads/attachment_data/file/775607/pfn-scottish-wild-venison-spec.pdf.
    Shi, M., H. Zhang, X. Wu, Z. He, L. Wang, S. Yin, B. Tian, G. Li, and H. Cheng. 2017. ALYREF mainly binds to the 5’ and the 3’ regions of the mRNA in vivo. Nucleic Acids Res. 45:9640–9653.
    Subramanian, G., R. E. Schwarz, L. Higgins, G. McEnroe, S. Chakravarty, S. Dugar, and M. Reiss. 2004. Targeting endogenous transforming growth factor beta receptor signaling in SMAD4-deficient human pancreatic carcinoma cells inhibits their invasive phenotype1. Cancer Res. 64:5200–5211.
    Strässer, K., S. Masuda, P. Mason, J. Pfannstiel, M. Oppizzi, S. Rodriguez-Navarro, A. G. Róndon, A. Aguilera, K. Struhl, R. Reed, and E. Hurt. 2002. TREX is a conserved complex coupling transcription with messenger RNA export. Nature 417:304–308.
    Suttie, J. M. 1980. The effect of antler removal on dominance and fighting behaviour in farmed red deer stags. J. Zool. 190:217–224.
    Suttie, J. M. 1983. Body size: dominance relationships in red deer stag calves. Anim. Behav. 31:610–611.
    Thévenon, S., F. Claro, A. Bonnet-Garnier, and V. Volobouev. 2000. Karyotype identity of two subspecies of Eld’s deer [Cervus eldi (Cervinae, Artiodactyla)] and its consequences for conservation. J. Hered. 91:402–405.
    Tran, D. D., A. Koch, and T. Tamura. 2014. THOC5, a member of the mRNA export complex: a novel link between mRNA export machinery and signal transduction pathways in cell proliferation and differentiation. Cell Commun. Signal. 12:3. doi: 10.1186/1478-811X-12-3.
    Vallée, A., and Y. Lecarpentier. 2018. Crosstalk between peroxisome proliferator-activated receptor gamma and the canonical WNT/β-catenin pathway in chronic inflammation and oxidative stress during carcinogenesis. Front. Immunol. 9:745. doi: 10.3389/fimmu.2018.00745.
    van den Berg, G. H. J., and D. J. Garrick. 1997. Inheritance of adult velvet antler weights and live weights in farmed red deer. Livest. Prod. Sci. 49:287–295.
    van Mourik, S., and V. Schurig. 1985. Hybridization between sambar (Cervus (Rusa) unicolor) and rusa (Cervus (Rusa) timorensis) deer. Zool. Anz. 214:177–184.
    Virbasius, C. M., S. Wagner, and M. R. Green. 1999. A human nuclear-localized chaperone that regulates dimerization, DNA binding, and transcriptional activity of bZIP proteins. Mol. Cell 4:219–228.
    Viphakone, N., G. M. Hautbergue, M. Walsh, C. T. Chang, A. Holland, E. G. Folco, R. Reed, and S. A. Wilson. 2012. TREX exposes the RNA-binding domain of Nxf1 to enable mRNA export. Nat. Commun. 3:1006. doi: 10.1038/ncomms2005.
    Viphakone, N., I. Sudbery, L. Griffith, C. G. Heath, D. Sims, and S. A. Wilson. 2019. Co-transciptional loading of RNA export factors shapes the human transcriptome. Mol. Cell 75:310–323.
    Walker, P. 2014. Deer farming gathers momentum as retail sales of venison quadruple. Accessed Mar. 4, 2018. http://www.deer-management.co.uk/
    deer-farming-gathers-momentum-as-retail-sales-of-venison-quadruple/.
    Wang, Z., and R. F. Du. 1983. Karyotypes of Cervidae and their evolution. Acta Zool. Sin. 29:214–222.
    Wang, Z., and R. F. Du. 1988. The karyotypes and chromosomal evolution of deer. 1st ed. Science Press, Beijing.
    Wang, Z., R. C. Yang, L. A. Goonewardene, and C. Huedepoh. 1999. Genetic analysis of velvet antler yield in farmed elk (Cervus elaphus). Can. J. Anim. Sci. 79:569–571.
    Wang, L., Y. L. Miao, X. Zheng, B. Lackford, B. Zhou, L. Han, C. Yao, J. M. Ward, A. Burkholder, I. Lipchina, D. C. Fargo, K. Hochedlinger, Y. Shi, C. J. Williams, and G. Hu. 2013. The THO complex regulates pluripotency gene mRNA export and controls embryonic stem cell self-renewal and somatic cell reprogramming. Cell Stem Cell 13:676–690.
    Williams, J. D., W. F. Krueger, and D. H. Harmel. 1994. Heritabilities for antler characteristics and body weight in yearling white-tailed deer. Heredity 73:78–83.
    Wilson, D.E., and D. M. Reeder. 2005. Mammal species of the world: a taxonomic and geographic reference. 3rd ed. JHUP, Baltimore, MD.
    Xia, Y., H. Zhuo, Y. Lu, L. Deng, R. Jiang, L. Zhang, Q. Zhu, L. Pu, X. Wang, and L. Lu. 2015. Glycogen synthase kinase 3β inhibition promotes human iTreg differentiation and suppressive function. Immunol. Res. 62:60–70.
    Yang, Z. Q., H. L. Zhang, C. C. Duan, S. Geng, K. Wang, H. F. Yu, Z. P. Yue, and B. Guo. 2017. IGF1 regulates RUNX1 expression via IRS1/2: Implications for antler chondrocyte differentiation. Cell Cycle 16:522–532.
    Yavropoulou, M. P., and J. G. Yovos. 2007. The role of the wnt signaling pathway in osteoblast commitment and differentiation. Hormones 6:279–294.
    Zhang, B., B. Zhang, X. Chen, S. Bae, K. Singh, M. K. Washington, and P. K. Datta. 2014. Loss of Smad4 in colorectal cancer induces resistance to 5-fluorouracil through activating Akt pathway. Br. J. Cancer.110:946–957.
    Zhou. R., and S. F. Li. 2009. In vitro antioxidant analysis and characterisation of antler velvet extract. Food Chem. 114:1321–1327.
    Zhou, S., and S. Wu. 1979. A preliminary study of the quantitative and character inheritance of antlers. Chin. J. Genet. 6: 434-440.

    無法下載圖示 校外公開
    2025/01/18
    QR CODE