簡易檢索 / 詳目顯示

研究生: 陳怡茹
Chen, Yi-Ru
論文名稱: 以超臨界二氧化碳萃取薑辣素之最佳條件探討及薑萃取物在滴丸製劑之應用
The optimum supercritical carbon dioxide extraction conditions for gingerols and application of ginger extract on dripping pill
指導教授: 許祥純
Sheu, Shyang-Chwen
學位類別: 碩士
Master
系所名稱: 農學院 - 食品科學系所
Department of Food Science
畢業學年度: 108
語文別: 中文
論文頁數: 95
中文關鍵詞: 薑辣素超臨界二氧化碳萃取田口方法滴丸
外文關鍵詞: ginger, gingerol, supercritical CO2 extraction, Taguchi method, dripping pill
DOI URL: http://doi.org/10.6346/NPUST202000038
相關次數: 點閱:20下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統
  •   薑 (Zingiber officinale Rosc.)為全球廣泛使用之辛香料,也是中醫及傳統印度醫學之藥用植物。薑所含之薑酚 (gingerol),又稱薑辣素,為其主要辣味來源及生物活性成分,其中以6-薑酚 (6-gingerol)、6-薑烯酚 (6-shogaol)、8-薑酚 (8-gingerol)及10-薑酚 (10-gingerol)含量最豐富。超臨界二氧化碳萃取技術 (Supercritical CO2 extraction)因萃取溫度低、萃取物容易回收且耗時短等優點,廣泛利用於植物成分之萃取。本研究以不同共溶劑比例、萃取壓力、萃取溫度及萃取時間為因子,以田口法探討超臨界二氧化碳萃取薑辣素之最佳條件。實驗結果得到一組最適條件為添加共溶劑比例 30%、壓力 4500 psi、溫度65°C及萃取時間 120 min,可獲得最高薑辣素含量 179.83±17.78 mg/g。
      再以薑萃取物製成薑滴丸製劑,探討儲存期間的薑辣素含量及物理特性變化。結果顯示薑滴丸製劑中的6-薑酚含量於儲存期間顯著下降,8-薑酚含量變化不明顯,10-薑酚及6-薑烯酚在儲存第三個月時含量上升,整體而言總薑辣素含量無明顯變化。薑滴丸重量及直徑於儲存期間無明顯變化,硬度則隨著儲存時間增加逐漸軟化。其L值、a值、b值及白度值均呈先下降後上升趨勢,此些結果可作為薑辣素萃取及滴丸相關加工食品開發之參考。

      Ginger (Zingiber officinale Rosc.) is a widely used spice and medicinal plant. It has been used in traditional Chinese and Indian medicine. Gingerols are the main sources of spiciness and biological activity in ginger. The major gingerols include 6-gingerol, 6-shogaol, 8-gingerol and 10-gingerol. Supercritical CO2 (scCO2) extraction technology is widely used for extraction of active compounds in plants. This technology has the advantages such as: low extraction temperature, easy to separate the extract and reduction of extraction time. The optimum scCO2 condition for gingerol extraction was evaluated. Co-solvent ratios, extraction pressure, extraction temperature, and extraction time were the factors evaluated by Taguchi method. The results showed the optimum conditions were co-solvent ratio 30%, pressure 4500 psi, temperature 65°C and extraction time 120 min. The highest gingerol content was 179.83±17.78 mg/g.  
    Ginger extract obtained by scCO2 extraction was used to make dripping pill. The gingerols content and the physical properties of dripping pill were investigated during storage. The results showed that the content of 6-gingerol in ginger dripping pill significantly decreased during storage. The content of 8-gingerol did not change significantly, but 10-gingerol and 6-shogaol significantly increased after 3 month storage. The total gingerols content remained similar after storage. The weight and diameter of dripping pill did not change significantly during storage. The hardness gradually decreased with storage time. The L, a, b value and whiteness decreased first then increased during the storage. The result might provide useful information for extraction of gingerol and production of dripping pill.

    中文摘要 I
    Abstract I
    謝誌 III
    目錄 IV
    圖目錄 VII
    表目錄 VIII
    第一章 前言 1
    第二章 文獻回顧 3
    2.1 薑 3
    2.1.1 薑的產地及種類 3
    2.1.2薑的藥用性質 6
    2.1.3 薑的基本成分 6
    2.1.4 薑的活性成分 8
    2.1.5 薑酚 8
    2.1.6有效成分的萃取 12
    2.2 田口式實驗設計法 12
    2.3 超臨界萃取技術 13
    2.3.1 超臨界二氧化碳流體 14
    2.3.2共溶劑之應用 17
    2.4 高效能液相層析儀分析 17
    2.4.1 分析原理 17
    2.4.2 薑辣素之分析 18
    2.5 滴丸製劑 19
    第三章 材料與方法 22
    3.1 實驗架構 22
    3.2 儀器設備 22
    3.3 藥品試劑 24
    3.4 樣品前處理 24
    3.5 超臨界萃取設備之操作 24
    3.5.1 開機及清洗操作 24
    3.5.2 樣品萃取 27
    3.6 超臨界二氧化碳萃取條件之探討 28
    3.6.1 單因子分析 28
    3.6.2 以田口法計算最適條件 29
    3.7 以高效能液相層析儀分析薑辣素含量 29
    3.7.1 薑辣素標準品及樣品配製 29
    3.7.2 高效能液相層析之條件及方法 32
    3.8 薑萃取物萃取率 32
    3.8.1 薑萃取物之製備 32
    3.8.2薑萃取物萃取率計算 32
    3.9 抗氧化活性分析 34
    3.9.1 總酚含量測定 34
    3.9.2 總類黃酮含量測定 34
    3.9.3 DPPH自由基清除能力測定 34
    3.9.4 ABTS自由基清除能力測定 35
    3.10 薑滴丸製作 35
    3.11 薑滴丸之儲存安定性分析 37
    3.11.1 薑滴丸及薑萃取物薑辣素含量分析 37
    3.11.2 重量及直徑測量 37
    3.11.3 薑滴丸硬度測定 38
    3.11.4 薑滴丸於儲存過程中顏色變化 38
    3.12 統計分析 38
    第四章 結果與討論 40
    4.1 單因子超臨界二氧化碳萃取條件之評估 40
    4.1.1 不同共溶劑比例 40
    4.1.2 不同萃取壓力 40
    4.1.3 不同萃取溫度 43
    4.1.4 不同萃取時間 43
    4.2 以高效能液相層析儀分析薑辣素含量 46
    4.3 田口法之最適化萃取條件 46
    4.4 不同超臨界萃取條件對薑辣素含量之影響 51
    4.5 薑萃取物萃取率 55
    4.6 抗氧化活性分析 56
    4.6.1 萃取物總酚含量測定 56
    4.6.2 萃取物總類黃酮含量 57
    4.6.3 DPPH自由基清除能力 57
    4.6.4 ABTS自由基清除能力 61
    4.7 薑滴丸成品及各項物理性質分析 61
    4.8 安定性試驗分析結果 65
    4.8.1 滴丸製劑對於儲存期間薑辣素含量之影響 65
    4.8.2儲存期間薑滴丸物理性質之變化 68
    4.8.3儲存期間薑滴丸顏色之變化 68
    第五章 結論 72
    第六章 參考文獻 73
    附錄 84
    作者簡介 95

    王富春、段育華. 1992. 蔥薑蒜治百病. 躍昇文化事業有限公司,第14-16
    頁.
    尹華文. 2011. 植物精油萃取技術及其改良. 行政院農業委員會林業試驗
    所. 232: 2-13.
    石原結實. 2017. 生薑不思議. 文經出版社有限公司,第34-40頁.
    朱嘉琳. 2007. 薑心比心. 書虫股份有限公司,第60-64頁.
    行政院衛生署福利部中醫藥司. 2018. 公告「中藥藥品安定性試驗基準」.
    2019年10月7日,取自https://dep.mohw.gov.tw/DOCMAP/ cp-862-41407-108.html
    呂明方、王福大. 1994. 中國中成藥圖鑑. 渡假出版社有限公司,第14-18
    頁.
    李建鈞. 2009. 含中草藥之滴丸的製備技術和物理化學性質研究. 嘉南藥
    理科技大學藥物科技研究所碩士論文.
    李樂. 1999. 以薑為藥. 錦德圖書事業有限公司,第119-127頁.
    李輝煌. 2008. 田口方法:品質設計的原理與實務. 高立圖書有限公司,
    第44-52頁.
    卓芷聿. 2011. 精油大全. 大樹林出版社,第156-157頁.
    林秀雄。1997. 田口方法與品質工程. 新知企業管理顧問有限公司,第
    21-22頁.
    林崑狄. 2004. 以田口方式探討茶焗蛋製程之最適條件. 國立屏東科技大
    學食品科學系研究所碩士論文.
    徐雅芬、廖美智、羅淑慧. 2005. 天然萃取物應用在保健品、化妝品及醫
    藥產業之發展契機. 經濟部科技專案成果,第53-57頁.
    寒峰. 2003. 薑是百病剋星. 文斐書屋出版有限公司,頁15-22.
    網路資料. 2007. 滴丸. 2019年8月19日,取自「Wikia生物學」:
    https://biology.fandom.com/zh/wiki/%E6%BB%B4%E4%B8%B8
    Al, G., U. Özdemir, and Ö. Aksoy. 2013. Cytotoxic effects of Reactive Blue 33 on Allium cepa determined using Taguchi’s L8 orthogonal array. Ecotoxicology and Environmental Safety. 98: 36-40.
    Alcântara, M. A., I. D. L. B. Polari, B. R. L. D. A. Meireles, A. E. A. D. Lima, J. C. D. S. Junior, É. D. A. Vieira, N. A. D. Santos, and A. M. T. D. M. Cordeiro. 2019. Effect of the solvent composition on the profile of phenolic compounds extracted from chia seeds. Food Chemistry. 275: 489-496.
    Ali, B. H., G. Blunden, M. O. Tanira, and A. Nemmar. 2008. Some phytochemical, pharmacological and toxicological properties of ginger (Zingiber officinale Roscoe): A review of recent research. Food and Chemical Toxicology. 46: 409-420.
    Ali, A. M. A., M. E. M. El-Nour, and S. M. Yagi. 2018. Total phenolic and flavonoid contents and antioxidant activity of ginger (Zingiber officinale Rosc.) rhizome, callus and callus treated with some elicitors. Journal of Genetic Engineering and Biotechnology. 16: 677-682.
    Arablou, T., and N. Aryaeian. 2018. The effect of ginger (Zingiber Officinale) as an ancient medicinal plant on improving blood lipids. Journal of Herbal Medicine. 12: 11-15.
    Bag, B. B. 2018. Ginger Processing in India (Zingiber officinale): A Review. International Journal of Current Microbiology and Applied Sciences. 7: 1639-1651.
    Balachandran, S., S. E. Kentish, and R. Mawson. 2006. The effects of both preparation method and season on the supercritical extraction of ginger. Separation and Purification Technology. 48: 94-105.
    Bartley, J. B., and A. L. Jacobs. 2000. Effects of drying on flavour compounds in Australian-grown ginger (Zingiber officinale). Journal of the Science of Food and Agriculture. 80: 209-215.
    Baümler, E. R., M. E. Carrín, and A. A. Carelli. 2017. Diffusion of tocopherols, phospholipids and sugars during oil extraction from sunflower collets using ethanol as solvent. Journal of Food Engineering. 194: 1-8.
    Cabeza, L. F., A. deGracia, A. I. Fernández, and M. M. Farid. 2017. Supercritical CO2 as heat transfer fluid: A review. Applied Thermal Engineering. 125: 799-810.
    Chakraborty, D., K. Bishayee, S. Ghosh, R. Biswas, M. S. Kumar and K. B. A. Rahman. 2012. [6]-Gingerol induces caspase 3 dependent apoptosis and autophagy in cancer cells: Drug-DNA interaction and expression of certain signal genes in HeLa cells. European Journal of Pharmacology. 694: 20-29.
    Chang, C. W., C. Y. Wang, Y. T. Wu, and M. C. Hsu. 2016. Enhanced solubility, dissolution, and absorption of lycopene by a solid dispersion technique. The dripping pill delivery system. Powder Technology. 301: 641-648.
    Chen, G. T., X. M. Ma, S. T. Liu, Y. L. Liao, and G. Q. Zhao. 2012. Isolation, purification and antioxidant activities of polysaccharides from Grifola frondosa. Carbohydrate Polymers. 89: 61-66.
    Ciurlia, L., M. Bleve, and L. Rescio. 2009. Supercritical carbon dioxide co-extraction of tomatoes (Lycopersicum esculentum L.) and hazelnuts (Corylus avellana L.): A new procedure in obtaining a source of natural lycopene. Journal of Supercritical Fluids. 49: 338-344.
    DaSilva, R. P. F. F., T. A. P. Rocha-Santos, and A. C. Duarte. 2016. Supercritical fluid extraction of bioactive compounds. TrAC -Trends in Analytical Chemistry. 76: 40-51.
    deLima, R. M. T., A. C. dosReis, S. J. V. deOliveira, F. J. R. deOliveira, B. A. Lima, F. J. W. G. deOliveira, A. A. P. M. deMenezes, A. M. O. F. D. Mata, M. V. O. B. D. Alencar, D. C. D. N. Rodrigues, P. M. P. Ferreira, T. D. J. A. D. S. Andrade, J. C. R. Gonçalves, F. C. C. D. Silva, J. M. D. C. Sousa, and A. A. D. C. M. Cavalcant. 2019. Toxic, cytogenetic and antitumor evaluations of [6]-gingerol in non-clinical in vitro studies. Biomedicine and Pharmacotherapy. 115: 108873.
    DeMelo, M. M. R., A. J. D. Silvestre, and C. M. Silva. 2014. Supercritical fluid extraction of vegetable matrices: Applications, trends and future perspectives of a convincing green technology. Journal of Supercritical Fluids. 92: 115-176.
    de O. Silva, L., L. G. Ranquine, M. Monteiro, and A. G. Torres. 2019. Pomegranate (Punica granatum L.) seed oil enriched with conjugated linolenic acid (cLnA), phenolic compounds and tocopherols: Improved extraction of a specialty oil by supercritical CO2. Journal of Supercritical Fluids. 147: 126-137.
    Dhanik, J. 2017. Biochemical screening of ethanolic extracts of five accessions of Zingiber officinale Roscoe. rhizomes from Kumaun and Garhwal region of Uttarakhand, India. Chemical Science Review and Letters. 6: 2453-2457.
    dosSantos, L. C., R. G. Bitencourt, P. dosSantos, V. R. P. deTarso, and J. Martínez. 2019. Solubility of passion fruit (Passiflora edulis Sims) seed oil in supercritical CO2. Fluid Phase Equilibria. 493: 174-180.
    Equbal, M. I., R. kumar, M. Shamim, and R. K. Ohdar. 2014. A grey-based Taguchi method to optimize hot forging process. Procedia Materials Science. 6: 1495-1504.
    Esslinger, S., J. Riedl, and H. C. Fauhl. 2014. Potential and limitations of non-tar- geted fingerprinting for authentication of food in official control. Food Research International. 60: 189-204.
    Esteki, M., Z. Shahsavari, G. J. Simal. 2019. Food identification by high performance liquid chromatography fingerprinting and mathematical processing. Food Research International. 122: 303-317.
    Ghayur, M. N., A. H. Gilani, M. B. Afridi, and P. J. Houghton. 2005. Cardiovascular effects of ginger aqueous extract and its phenolic constituents are mediated through multiple pathways. Vascular Pharmacology, 43: 234-241.
    Guan, X., X. Wang, K. Yan, Y. Chu, S. Li, W. Li, X. Yan, Y. Chu, S. Li, W. Li, X. Yan, X. Ma, S. Zhou, H. Sun, and C. Liu. 2016. UFLC-MS/MS determination and pharmacokinetic studies of six Saikosaponins in rat plasma after oral administration of Bupleurum Dripping Pills. Journal of Pharmaceutical and Biomedical Analysis, 124, 288-293.
    Guo, J. B., Y. Fan, W. Zhang, H. Wu, L. M. Du, and Y. X. Chang. 2017. Extraction of gingerols and shogaols from ginger (Zingiber officinale Roscoe) through microwave technique using ionic liquids. Journal of Food Composition and Analysis. 62: 35-42.
    Hu, X. X., X. Liu, Y. Chu, W. X. Chen, K. W. Zhang, and H. Wu. 2016. Antiemetic activity of effective extract and bioactive compounds in ginger. China journal of Chinese materia medica. 41: 904-909.
    Idris, N. A., H. M. Yasin, and A. Usman. 2019. Voltammetric and spectroscopic determination of polyphenols and antioxidants in ginger (Zingiber officinale Roscoe). Heliyon. 5: e01717.
    Iitsuka, H., K. Koizumi, A. Inujima, M. Suzaki, Y. Mizuno, Y. Takeshita, T. Eto, Y. Otsuka, R. Shimada, M. Liu, K. Ikeda, M. Nakano, R. Suzuki, K. Maruyama, Y. Zhou, H. Sakurai, and N. Shibahara. 2018. Discovery of a sugar-based nanoparticle universally existing in boiling herbal water extracts and their immunostimulant effect. Biochemistry and Biophysics Reports. 16: 62-68.
    Jia, Y., F. Huang, S. Zhang, and S. W. Leung. 2012. Is danshen (Salvia miltiorrhiza) dripping pill more effective than isosorbide dinitrate in treating angina pectoris? A systematic review of randomized controlled trials. International Journal of Cardiology. 157: 330-340.
    Johnston, K. P., and S. R. P. D. Rocha. 2009. Colloids in supercritical fluids over the last 20 years and future directions. Journal of Supercritical Fluids. 47: 523-530.
    Juchen, T., P. N. Araujo, M. Hamerski, F. Corazza, M. Lúcio, P. Voll, and F. Augusto. 2019. Extraction of parboiled rice bran oil with supercritical CO2 and ethanol as co-solvent: Kinetics and characterization. Industrial Crops and Products. 139: 111506.
    Jude, S., S. Gopi, K. Varma, and S. Jude. 2017. Study on temperature dependent conversion of active components of ginger. International Journal of Pharma Sciences. 6: 1344-1347.
    Kang, S. W., M. S. Rahman, A. N. Kim, K. Y. Lee, C. Y. Park, W. L. Kerr, and S. G. Choi. 2017. Comparative study of the quality characteristics of defatted soy flour treated by supercritical carbon dioxide and organic solvent. Journal of Food Science and Technology. 54: 2485-2493.
    Karna, S. K. 2016. An overview on Taguchi method. Engineering and Mathematical Sciences. 1: 10-17.
    Katyayani, M., S. Tandra, and J. Narsimha. 2010. Comparative antioxidant and anti-inflammatory effects of [6]-gingerol, [8]-gingerol, [10]-gingerol and [6]-shogaol. Journal of Supercritical Fluids. 127: 515-520.
    Kechagias, J. D., K. E. Aslani, N. A. Fountas, N. M. Vaxevanidis, and D. E. Manolakos. 2020. A comparative investigation of Taguchi and full factorial design for machinability prediction in turning of a titanium alloy. Measurement. 151: 107213.
    Khajeh, M., Y. Yamini, F. Sefidkon, N. Bahramifar. 2004. Comparison of essential oil composition of Carum copticum obtained by supercritical carbon dioxide extraction and hydrodistillation methods. Food Chemistry. 86: 587-591.
    Koch, W. K. Kukula, W. Dziedzic, K. Glowniak, and Y. Asakawa. 2016. Influence of thermal processing and in vitro digestion on the antioxidant potential of ginger and ginger containing products. Natural Product Communications. 11: 1153-1156.
    Labuschagne, P. 2018. Impact of wall material physicochemical characteristics on the stability of encapsulated phytochemicals: A review. Food Research International. 107: 227-247.
    Liang, N., W. Xue, P. Kennephol, and D. D. Kitts. 2016. Interactions between major chlorogenic acid isomers and chemical changes in coffee brew that affeect antioxidant activitys. Food Chemistry. 213: 251-259.
    Liu, Y., Y. Wang, and D. Huang. 2019. Supercritical CO2 brayton cycle: A state-of-the-art review. Energy. 189: 115900.
    Lu, D. L., X. Z. Li, F. Dai, Y. F. Kang, Y. Li, M. M. Ma, X. R. Ren, R. Xiao, G. W. Du, X. L. Jin, and X. L. Zhou. 2014. Influence of side chain structure changes on antioxidant potency of the [6]-gingerol related compounds. Food Chemistry. 165: 191-197.
    Lu, T., F. Gaspar, R. Marriott, S. Mellor, C. Watkinson, B. Al-Duri, J. Seville, and R. Santos. 2007. Extraction of borage seed oil by compressed CO2: Effect of extraction parameters and modelling. Journal of Supercritical Fluids. 41: 68-73.
    Manjare, S. D., and K. Dhingra. 2019. Supercritical fluids in separation and purification: A review. Materials Science for Energy Technologies. 2: 463-484.
    Marx, W. M., L. Teleni, A. L. McCarthy, L. Vitetta, D. McKavanagh, D. Thomson, and E. Isenring. 2013. Ginger (Zingiber officinale) and chemotherapy-induced nausea and vomiting: a systematic literature review. Nutrition Reviews: 71: 245-254.
    Mesomo, M. C., M. L. Corazza, P. M. Ndiaye, S. O. R. Dalla, L. Cardozo, and A. D. P. Scheer. 2013. Supercritical CO2 extracts and essential oil of ginger (Zingiber officinale R.): Chemical composition and antibacterial activity. Journal of Supercritical Fluids. 80: 44-49.
    Mesomo, M. C., A. D. P. Scheer, E. Perez, P. M. Ndiaye, and M. L. Corazza. 2012. Ginger (Zingiber officinale R.) extracts obtained using supercritical CO2 and compressed propane: Kinetics and antioxidant activity evaluation. Journal of Supercritical Fluids. 71: 102-109.
    Monroy, Y. M., R. A. F. Rodrigues, M. V. N. Rodrigues, A. S. Sant, B. S. Silva, and F. A. Cabral. 2017. Brazilian green propolis extracts obtained by conventional processes and by processes at high pressure with supercritical carbon dioxide , ethanol and water. Journal of Supercritical Fluids. 130: 189-197.
    Ni, X., Z. Zhou, X. Wen, and L. Li. 2011. The use of Taguchi method to optimize the laser welding of sealing neuro-stimulator. Optics and Lasers in Engineering. 49: 297-304.
    Noorwali, A. 2013. Apply lean and taguchi in different level of variability of food flow processing system. Procedia Engineering. 63: 728-734.
    Oriani, V. B., I. D. Alvim, B. N. Paulino, F. R. Procópio, G. M. Pastore, and M. D. Hubinger. 2018. The influence of the storage temperature on the stability of lipid microparticles containing ginger oleoresin. Food Research International. 109: 472-480.
    Pawar, N., S. Pai, M. Nimbalkar, and G. Dixit. 2011. RP-HPLC analysis of phenolic antioxidant compound 6-gingerol from different ginger cultivars. Food Chemistry. 126: 1330-1336.
    Peter, K.V., and M. R. Shylaja. 2012. Introduction to herbs and spices: Definitions, trade and applications. Handbook of Herbs and Spices: Second Edition. 1: 1-24.
    Ponphaiboon, J., S. Limmatvapirat, A. Chaidedgumjorn, and C. Limmatvapirat. 2018. Optimization and comparison of GC-FID and HPLC-ELSD methods for determination of lauric acid, mono-, di-, and trilaurins in modified coconut oil. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences. 1099: 110-116.
    Rahmani, A. H., F. M. A. Shabrmi, and S. M. Aly. 2014. Active ingredients of ginger as potential candidates in the prevention and treatment of diseases via modulation of biological activities. International journal of physiology, pathophysiology and pharmacology. 6: 25-36.
    Reverchon, E. 1997. Supercritical fluid extraction and fractionation of essential oils and related products. Journal of Supercritical Fluids. 10: 1-37.
    Sabarish, K. V., and P. Pratheeba. 2019. An experimental analysis on structural beam with Taguchi orthogonal array. Materials Today: Proceedings. Retrieved from https://linkinghub.elsevier.com/retrieve/pii/S2214785319337320
    Schwertner, H. A., and D. C. Rios. 2007. High-performance liquid chromatographic analysis of 6-gingerol, dietary supplements, spices, teas, and beverages. Journal of Chromatography B. 856: 41-47.
    Semwal, R. B., D. K. Semwal, S. Combrinck, and A. M. Viljoen. 2015. Gingerols and shogaols: Important nutraceutical principles from ginger. Phytochemistry. 117: 554-568.
    Shirin A. P. R and P. Jamuna. 2010. Chemical composition and antioxidant properties of ginger root (Zingiber officinale). Journal of Medicinal Plants Research. 4: 674-679.
    Shukla, A., S. N. Naik, V. V. Goud, and C. Das. 2019. Industrial crops products supercritical CO2 extraction and online fractionation of dry ginger for production of high-quality volatile oil and gingerols enriched oleoresin. Industrial Crops Products. 130: 352-362.
    Silva, J. A., A. B. Becceneri, H. S. Mutti, A. C. B. M. Martin, M. F. D. G. F. D. Silva, J. B. Fernandes, P. C. Vieira, P. C. Cominetti, and M. Regina. 2012. Purification and differential biological effects of ginger-derived substances on normal and tumor cell lines. Journal of Chromatography B. 903: 157-162.
    Siripoltangman, N., and J. Chickos. 2019. Vapor pressure and vaporization enthalpy studies of the major components of ginger, α-zingiberene, β-sesquiphellandrene and (-) ar curcumene by correlation gas chromatography. The Journal of Chemical Thermodynamics. 138: 107-115.
    Souza, A. R. C., A. R. Guedes, R. J. M. Folador, M. C. M. Bombardelli, and M. L. Corazza. 2018. Extraction of Arctium lappa leaves using supercritical CO2 and ethanol: Kinetics, chemical composition, and bioactivity assessments. Journal of Supercritical Fluids. 140: 137-146.
    Srinivasan, K. 2017. Ginger rhizomes (Zingiber officinale): A spice with multiple health beneficial potentials. Pharma Nutrition. 5: 18-28.
    Śrīvāstava, P. 2008. Ginger - A Wonderful Spice: An Overview. Vegetos. 21: 1-10.
    Švarc-Gajić, J., A. Cvetanović, A. Segura-Carretero, I. B. Linares, and P. Mašković. 2017. Characterisation of ginger extracts obtained by subcritical water. J. Supercrit. Fluids. 123: 92-100.
    Syafitri, D. M., J. Levita, M. Mutakin, and A. Diantini. 2018. A review: Is ginger (Zingiber officinale var. Roscoe) potential for future phytomedicine. Indonesian Journal of Applied Sciences. 8: 1-6.
    Taguchi, G., S. Chowdhury, and Y. Wu. 2007. Appendix A: Orthogonal arrays and linear graphs: tools for quality engineering. Taguchi’s quality engineering handbook. Wiley-Interscience. United States. 1523-1597.
    Torabi, M., M. Drahansky, M. Paridah, A. Moradbak, A. Mohamed, F. Owolabi, M. Asniza, and H. P. Shawkataly. 2016. Pharmacological potentials of ginger. Intech. 1: 1-19.
    Unor, G. R. N. N. O. J., C. H. E. G. Reen, S. H. L. H. Ibbert, C. O. N. A. S. Almon, and A. N. N. M. A. S. Mith. 2008. Changes in the contents of oleoresin and pungent bioactive principles of Jamaican ginger (Zingiber officinale Roscoe.) during maturation. Journal of Agricultural and Food Chemistry. 56: 5564-5571.
    VanBreemen, R. B., Y. Tao, and W. Li. 2011. Cyclooxygenase-2 inhibitors in ginger (Zingiber officinale). Fitoterapia. 82: 38-43.
    Vasala, P. A. 2012. Handbook of Herbs and Spices (Second edition). Woodhead Publishing, United Kingdom. 319-335.
    Wang, J., and W. Wan. 2009. Experimental design methods for fermentative hydrogen production: A review. International Journal of Hydrogen Energy. 34: 235-244.
    Wong, T. L., Y. Q. An, B. C. Yan, R. Q. Yue, T. B. Zhang, H. M. Ho, T. J. Ren, T. J. Fung, H. Y. Ma, D. L. Leung, C. H. Liu, Z. L. Pu, J. X. Han, Q. B. Sun, and H. Dong. 2016. Comprehensive quantitative analysis of Chinese patent drug YinHuang drop pill by ultra high-performance liquid chromatography quadrupole time of flight mass spectrometry. Journal of Pharmaceutical and Biomedical Analysis. 125: 415-426.
    Wohlmuth, H., D. N. Leach, M. K. Smith, and S. P. Myers. 2005. Gingerol content of diploid and tetraploid clones of ginger (Zingiber officinale Roscoe). Journal of Agricultural and Food Chemistry. 53: 5772-5778.
    Wolfe, K., X. WU, and R. LIU. 2003. Antioxidant activity of apple peels. Journal of Agricultural and Food Chemistry. 51: 609-614.
    Yeh, H. Y., C. H. Chuang, H. C. Chen, C. J. Wan, T. L. Chen, and L. Y. Lin. 2014. Bioactive components analysis of two various gingers (Zingiber officinale Roscoe) and antioxidant effect of ginger extracts. LWT - Food Science and Technology. 55: 329-334.
    You, H., B. Ireland, M. Moeszinger, H. Zhang, L. Snow, and S. Krepich. 2019. Determination of bioactive nonvolatile ginger constituents in dietary supplements by a rapid and economic HPLC method: analytical method development and single-laboratory validation. Talanta. 194: 795-802.
    Yousefi, M., M. Rahimi-Nasrabadi, S. M. Pourmortazavi, M. Wysokowski, T. Jesionowski, H. Ehrlich, and S. Mirsadeghi. 2019. Supercritical fluid extraction of essential oils. TrAC-Trends in Analytical Chemistry. 118: 182-193.
    Zancan, K. C., M. O. M. Marques, A. J. Petenate, and M. A. A. Meireles. 2001. Extraction of ginger (Zingiber officinale Roscoe) oleoresin with CO2 and co-solvents: A study of the antioxidant action of the extracts. Journal of Supercritical Fluids. 24: 57-76.
    Zhang, F., J. G. Zhang, W. Yang, P. Xu, Y. L. Xiao, and H. T. Zhang. 2018. 6-Gingerol attenuates LPS-induced neuroinflammation and cognitive impairment partially via suppressing astrocyte overactivation. Biomedicine and Pharmacotherapy. 107: 1523-1529.
    Zuknik, M. H., N. N. A. Norulaini, and O. A. K. Mohd. 2012. Supercritical carbon dioxide extraction of lycopene: A review. Journal of Food Engineering. 112: 253-262.

    下載圖示
    QR CODE