簡易檢索 / 詳目顯示

研究生: 劉易凡
Liu, Yi-Fan
論文名稱: 不同樓層數隔震建築物的地震反應之比較
A Comparison of Seismic Responses of Isolated Buildings with Different Number of Stories
指導教授: 蔡孟豪
Tsai, Meng-Hao
盧俊愷
Lu, Jun-Kai
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程系所
Department of Civil Engineering
畢業學年度: 109
語文別: 中文
論文頁數: 167
中文關鍵詞: 隔震設計近斷層地震層間變位角樓層加速度最佳化
外文關鍵詞: Isolation design, near-field earthquakes, drift ratio, floor acceleration, optimize
DOI URL: http://doi.org/10.6346/NPUST202000044
相關次數: 點閱:21下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統
  • 本文利用SAP2000將地震輸入至不同樓層數未隔震與48種隔震建築物,進行1530次非線性動力歷時分析。由分析結果探討層間變位角、樓層加速度放大倍率和隔震層位移放大倍率,在不同設計參數時的變化趨勢,最後以最佳化目標函數之方法為依據來探討隔震效益。從研究結果可知,五、十與十五層樓建築物受遠域地震影響時,在特徵強度比(Qd/W)為4%且勁度比(α)為0.3之隔震系統時,上部結構的加速度與層間變位角能達到較佳之隔震效益,但是隔震層需採用較小之勁度比即α=0.05,方可降低隔震層之位移;近斷層地震則需使用Qd/W=4%且α=0.05之參數才有優異之成果。五、十與十五層樓建築物在相同之隔震系統時,五層樓建築物的層間變位角最小,十層樓建築物則發生最大的層間變位需求;加速度放大倍率則是五層樓建築物的反應最大,十五層樓建築物的反應最小。從最佳化目標函數IE值可知,若暫不考量隔震層變形量,五層樓建築物在Qd/W=4%且α=0.2時,不管是受到遠域或近斷層地震之影響皆有最佳的隔震反應;十與十五層樓建築物則是在α=0.3時為最佳。若將隔震層的變形量納入IE值之考量,此時需採用較小之勁度比,才能降低位移放大情形。

    In this paper, SAP2000 is used to input earthquakes to unisolated buildings with different numbers of floors and 48 kinds of isolated buildings. Perform 1530 nonlinear dynamic time history analysis. From the analysis results, explore the interstory drift ratio, story acceleration magnification, and isolation layer displacement magnification. Changes in different design parameters. Finally the method of optimizing the objective function is used as the basis to explore the benefits of isolation. Know from the research results. When five, ten, and fifteen-story buildings are affected by distant earthquakes. When an isolation system with a characteristic intensity ratio (Qd / W) of 4% and a stiffness ratio (α) of 0.3. The acceleration of the superstructure and the interstory drift ratio can achieve better isolation performance. But the isolation layer needs to adopt a smaller stiffness ratio, namely α = 0.05. Can reduce the displacement of the isolation layer. Near-fault earthquakes require Qd / W = 4% and α = 0.05 for excellent results. When five, ten and fifteen-story buildings have the same isolation system, the five-story building has the smallest interstory drift ratio, and the ten-story building has the largest interstory drift ratio. The acceleration magnification is the response of the five-story building is the largest, and the response of the fifteen-story building is the smallest. From the optimized objective function IE value. If the amount of deformation of the isolation layer is not considered for the time being. When a five-story building has Qd / W = 4% and α = 0.2. No matter it is affected by distant or near-fault earthquakes, it has the best isolation response. Ten-story and fifteen-story buildings are best when α = 0.3. If the deformation of the seismic isolation layer is taken into consideration in the IE value, a smaller stiffness ratio is needed at this time to reduce the displacement amplification.

    摘要 I
    Abstract II
    謝誌 IV
    目錄 V
    表目錄 VII
    圖目錄 VIII
    符號索引 XXII
    第一章 緒論 1
    1.1 研究背景及目的 1
    1.2 文獻回顧 2
    1.3 研究重點與內容 3
    第二章 近斷層與遠域地震之比較 4
    2.1 近斷層地震之特性 4
    2.2 遠域與近斷層地震反應譜之比較 5
    2.2.1 反應譜基本概念 5
    2.2.2 遠域與近斷層之地震資料 5
    2.2.3 加速度反應譜之比較 6
    第三章 結構案例與基礎隔震之設計 14
    3.1 鉛芯橡膠支承墊 14
    3.2 單自由度模型 14
    3.3 耐震建築物之案例 15
    3.4 隔震設計之考量 16
    3.5 近斷層因子 19
    第四章 反應譜分析法與歷時分析之結果 41
    4.1 反應譜分析法 41
    4.2 歷時分析 42
    4.2.1 五層樓建築物的地震反應之分析結果 43
    4.2.2 十層樓建築物的地震反應之分析結果 48
    4.2.3 十五層樓建築物的地震反應之分析結果 51
    4.2.4 不同樓層數之比較 52
    4.2.5 最佳化目標函數 53
    4.3 建築物遇到強震時之降伏狀態 55
    第五章 結論與建議 159
    5.1 結論 159
    5.2 建議 161
    參考文獻 162
    作者簡介 167

    [1] 張荻薇,1988,「認識隔(減)震、制振結構」,結構工程,第3券,第1期,第67頁-80頁。
    [2] Saiful Islam, A. B. M., Hussain, R. R., Jameel, M. and Jumaat, M. Z., 2012, “Non-linear time domain analysis of base isolated multi-storey building under site specific bi-directional seismic loading,” Automation in Construction ELSEVIER, Vol. 22, pp. 554-566.
    [3] Kalkan, E. and Kunnath, S. K., 2006, “Effects of Fling Step and Forward Directivity on Seismic Response of Buildings,” Earthquake Spectra EERI, Vol. 22, No. 2, pp. 367-390.
    [4] Sharbatdar, M. K., Hoseini Vaez, S. R., Ghodrati Amiri, G. and Naderpour, H., 2011, “Seismic Response of Base-Isolated Structures with LRB and FPS under near Fault Ground Motions,” Procedia Engineering ELSEVIER, Vol. 14, pp. 3245-3251.
    [5] Cancellara, D. and Angelis, F. D., 2017, “Assessment and dynamic nonlinear analysis of different base isolation systems for a multi-storey RC building irregular in plan,” Computers and Structures ELSEVIER, Vol. 180, pp. 74-88.
    [6] Jangid, R. S., 2007, “Optimum lead-rubber isolation bearings for near-fault motions,” Engineering Structures ELSEVIER, Vol. 29, pp. 2503-2513.
    [7] 江銘鴻、鄭錦銅、趙志泓,2013,「自復位搖晃式支承運用於建築隔震之理論研究與分析」,結構工程,第28券,第4期,第91頁-113頁。
    [8] Young, S. C. and Moo, W. H., 2015, “Effects of Isolation Period Difference and Beam-Column Stiffness Ratio on the Dynamic Response of Reinforced Concrete Buildings,” International Journal of Concrete Structures and Materials, Vol. 9, No. 4, pp. 439-451.
    [9] Mazza, F., Vulcano, A. and Mazza, M., 2012, “Nonlinear Dynamic Response of RC Buildings with Different Base Isolation Systems Subjected to Horizontal and Vertical Components of Near-Fault Ground Motions,” The Open Construction & Building Technology Journal Open Access, Vol. 6, pp. 373-383.
    [10] 黃震興、黃尹男、陳偉松,2003,「LRB與FVD隔震系統於近斷層地震之研究」,台北市,國立台灣科技大學營建工程研究所碩士論文。
    [11] Bhagat, S., Wijeyewickrema, A. C., and Subedi, N., 2018, “Influence of Near-Fault Ground Motions with Fling-Step and Forward-Directivity Characteristics on Seismic Response of Base-Isolated Buildings,” Journal of Earthquake Engineering, Vol. 22.
    [12] Providakis, C. P., 2008, “Effect of LRB isolators and supplemental viscous dampers on seismic isolated buildings under near-fault excitations,” Engineering Structures ELSEVIER, Vol. 30, pp. 1187-1198.
    [13] Maniatakis, C. A., Psycharis, I. N. and Spyrakos, C. C., 2013, “Effect of higher modes on the seismic response and design of moment-resisting RC frame structures, Engineering Structures,” ELSEVIER, Vol. 56, pp. 417-430.
    [14] Saifullah, M. K. and Alhan, C., 2017, “Necessity and adequacy of near-source factors for seismically isolated buildings,” Earthquakes and Structures Techno-Press, Vol. 12, No. 1, pp. 91-108.
    [15] Pant, D. R., 2017, “Influence of scaling of different types of ground motions on analysis of code-compliant four-story reinforced concrete buildings isolated with elastomeric bearings,” Engineering Structures ELSEVIER, Vol. 135, pp. 53-67.
    [16] Avsar, Ö. and Özdemir, G., 2013, “Response of Seismic-Isolated Bridges in Relation to Intensity Measures of Ordinary and Pulselike Ground Motions,” Journal of Bridge Engineering ASCE, Vol. 18, No. 3, pp. 250-260.
    [17] Somerville, P. G., Smith, N. F., Graves, R. W. and Abrahamson, N. A., 1997, “Modification of empirical strong ground motion attenuation relations to include the amplitude and duration effects of rupture directivity,” Seismological Society Letters, No. 1, Vol. 68, pp. 199-222.
    [18] Somerville, P. G., 1998, “Development of an improved representation of near-fault ground motions, SMIP98 Proceedings,” Seminar on Utilization of Strong-Motion Data Oakland CA Sept 15 California Division of Mines and Geology Sacramento, pp. 1-20.
    [19] Galesorkhi, R. and Gouchon, J., 2000, “Near-source effects and correlation to recent recorded data,” Proceedings 6th U.S. National Conference on Earthquake Engineering.
    [20] Manfredi, G., Polese, M. and Cozenza, E., 2000, “Cyclic demand in the near-fault area,” Proceedings 6th U.S. National Conference on Earthquake Engineering.
    [21] Hall, J. F., Heaton, T. H., Halling, M. W. and Wald, D. J., 1995, “Near-source ground motions and its effects on flexible buildings,” Earthquake Spectra EERI, Vol. 11, No. 4, pp. 569-605.
    [22] Alavi, B. and Krawinkler, H., 2004, “Behaviour of moment resisting frame structures subjected to near-fault ground motions,” Earthquake Engineering Structural Dynamics, Vol. 33, pp. 687-706.
    [23] Bozorgnia, B. and Bertero, V., 2004, “Earthquake Engineering : from Engineering Seismology to Performance-Based Engineering,” Florida CRCPress.
    [24] Abrahamson, N., 2001, “Incorporating Effects of Near Fault Tectonic Deformation into Design Ground Motions,” a presentation sponsored by the Earthquake Engineering Research Institute Visiting Professional Program, hosted by the State University of New York at Buffalo.
    [25] Chopra, A. K., 2017, Dynamics of Structures, 5th Edition, University of California at Berkeley.
    [26] LI, S. and XIE, L. L., 2007, “Progress and trend on near-field problems in civil engineering,” Acta Seismological Sinica, No. 1, Vol. 20, pp. 105-114.
    [27] Davoodi, M. and Sadjadi, M., 2015, “Assessment of near-field and far-field strong ground motion effects on soilstructure SDOF system,” International Journal of Civil Engineering IJCE, Vol. 13, No. 3, pp. 153-166.
    [28] 程巧瑜、翁駿民,2018,「基礎隔震建築之性能目標設計法」,台中市,國立中興大學土木工程學研究所碩士學位論文。
    [29] 白炎典、吳淵洵,2008,「跨河橋基受損與整治方案探討」,新竹市,中華大學土木與工程資訊學系碩士專班學位論文。
    [30] 張亨瑞、蔡孟豪,2018,「RC耐震建築物底層柱破壞時垂直承載能力之參數影響研究」,屏東縣,國立屏東科技大學土木工程系碩士學位論文。
    [31] 中華民國內政部營建署,2011,「建築物耐震設計規範及解說」。
    [32] 盧煉元、王亮偉、陳慶輝、李官峰、李姿瑩、蔡諄昶,2016,「以性能為導向之二階段隔震設計法」,結構工程,第31券,第3期,第33頁-61頁。
    [33] Uniform Building Code, 1997, “International code of building officials,” California USA.
    [34] Nuclear Regulatory Commission, 2005, “Combining modal responses and spatial components in seismic response analysis,” Regulatory guide 1.92 USA.

    下載圖示
    QR CODE