簡易檢索 / 詳目顯示

研究生: 陳融
Chen, Rong
論文名稱: 不同生物炭施用方式對坡地果園土壤性質之影響
Effects of different application methods of biochar on soil properties on slopeland orchards
指導教授: 簡士濠
Jien, Shih-Hao
學位類別: 碩士
Master
系所名稱: 工學院 - 水土保持系所
Department of Soil and Water Conservation
畢業學年度: 108
語文別: 中文
論文頁數: 62
中文關鍵詞: 生物炭深層環施表土混拌坡地果園
外文關鍵詞: Biochar, Deep-banded application in rows, Topsoil-mixing, Slope orchard
DOI URL: http://doi.org/10.6346/NPUST202000072
相關次數: 點閱:23下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統
  • 本研究使用700℃熱裂解之生物炭(Biochar)及壤土為研究材料,其試驗設計處理有深層環施(deep-banded application in rows,AR)及表土混合施用(topsoil-mixing,TM)並分別與未施用生物炭之試區比較(CK),而果樹以荔枝及芒果為實驗對象,監測其一年間之土壤溫度、含水量、電導度、土壤沖蝕量,各季節之土壤中有機碳、總氮、有效性氮、有效性磷,以及測量果樹之生長勢以此評估生物炭施用於坡地果園之效益。
    監測結果顯示施用生物炭後,土壤有機碳及銨態氮含量分別提升3.5-15%及1.7-14%,電導度增加47-78%,而土壤沖蝕量則降低12-20%。但施用生物炭後對其果樹生長無效益,甚至較對照組之生長慢,添加生物炭之果重、果長及果寬皆較對照組減少,分別減少1.6-45%、0.8-11%及2.1-18%,而其糖度及酸度則以表土混合施用最高,分別增加43.4%及38.2%。綜合結果,其生物炭較好之施用方式為深層環施,但對其果樹品質之影響較好為表土混合施用。

    The study used a wood biochar pyrolized with 700℃ as a soil amendment to the soil of slopeland orchards including orchards of litchi and mango. This study aimed to evaluate the effects of different biochar applied ways including “deep-banded application in rows (AR) and topsoil-mixing (TM) on soil properties in the orchards. In our study, soil temperature, water content, electrical conductivity, and soil erosion amounts were monitored for one year. During the experimental period, we analysis organic carbon, total-N, NH4+-N, NO3- -N, Av. P every season in this year. Furthermore, we investigated the growth potential of fruit plants and fruit quality to find a suitable application method of biochar addition on slopeland orchards.
    The results displayed that the contents of organic carbon and NH4+-N increases by 3.5-15% and 1.7-14%, respectively, compared with the control in two orchards. Additionally, as comparison with the control, electrical conductivity (EC) increased by 47-78% and soil erosion reduced by 12-20% in biochar-treatments. However, biochar application on the orchards seems not to be a well strategy for fruit growing and quality regardless application methods. The weight, length, and width of fruit reduced by 1.6-45%, 0.8-11%, and 2.1-18%, respectively, compared with the control. Regarding the fruit quality, TM seems to be a better way for sweetness and sourness of fruit, which increased 43.4% and 38.2%, respectively, compared with the control. As a whole, AR of the biochar might be the better application way for the soil properties, but TM seems to be better for fruit quality on slopeland orchards.

    目錄
    摘要 I
    Abstract II
    表目錄 V
    圖目錄 VI
    第一章 前言 1
    第二章 前人研究 3
    一、 生物炭(biochar) 3
    (一)、 添加生物炭對土壤物理性質之影響 3
    (二)、 添加生物炭對土壤化學性質之影響 3
    (三)、 生物炭施用方法 4
    (四)、 添加生物探對作物產量之影響 4
    二、 沖蝕對土壤養分之影響 4
    三、 添加生物炭於農地土壤對土壤沖蝕及地表逕流之影響 5
    第三章 研究材料與方法 6
    一、 研究流程 6
    二、 試驗區域 7
    三、 試驗區域之土壤基本性質 7
    (一)、 土壤物理性質分析 7
    四、 供試用生物炭燒製 21
    五、 供試生物炭基本理化性質分析 22
    六、 施用生物炭於坡耕地之影響 23
    (一)、 試驗地點 23
    (二)、 試驗處理設計 24
    (三)、 供試試區 24
    (四)、 施用方式 24
    (五)、 試驗設計 26
    (六)、 Data Logger 29
    (七)、 生長勢之調查 29
    七、 統計分析 29
    第四章 結果與討論 30
    一、 試區之土壤及生物炭之基本理化性質 30
    (一)、 試區土壤 30
    (二)、 供試生物炭 30
    二、 施用生物炭對坡地果園之有效性養份於各季節之影響 32
    (一)、 有機碳 32
    (二)、 總氮 34
    (三)、 銨態氮 36
    (四)、 硝酸態氮 38
    (五)、 有效磷 40
    三、 施用生物炭對土壤物理狀態之影響 42
    (一)、 土壤溫度 42
    (二)、 電導度 44
    (三)、 現地含水量 46
    (四)、 施用生物炭於坡地果園對土壤沖蝕之影響 48
    (五)、 施用生物炭對果樹枝生長勢及果重影響 50
    第五章 結論與建議 55
    參考文獻 56

    1. 李家興,2012,「短期施用豬糞堆肥對輪作系統下土壤品質之影響與評估」,碩士論文,國立台灣大學,台北。
    2. 李秀英,趙秉強,李絮花,李燕婷,孫瑞蓮,朱魯生,徐晶,王麗霞,李小平,張夫道,2005,「不同施肥制度對土壤微生物的影響及其與土壤肥力的關係」,中國農業科學,第38卷,第8期,第1591-1599頁。
    3. 郭魁士,1997,土壤學,中國書局,臺北。
    4. 葉全寶,張洪程,魏海燕,張瑛,汪本福,夏科,霍中洋,戴其根,許軻,2005,「不同土壤及氮肥條件下水稻利用效率和增產效應研究」,作物學報,第31卷,第11期,第1422-1428頁。
    5. 吳文希,2012,有機農業,藝軒圖書文具有限公司,台北。
    6. 王建昇、林亭君、艾至宣、林宗輝、簡士濠,2012,「不同土地利用方式對土壤有機質及團粒穩定度之影響」,土壤與環境,第15卷,第1-2期,第63-76頁。
    7. 簡士濠、江介倫、王建昇、張庠睿,2012,「添加生物探對酸性紅壤肥力之影響」,農業工程學報,第58卷,第4期,第15-22頁。
    8. 簡士濠,陳文棋,2014,「共同施用堆肥與碳化稻殼對坡地土壤氮與磷釋放潛勢之影響」,農業工程學報,第60卷,第4期,第61-71頁。
    9. Boarchad, N., A. Wolf, V. Laabs, R. Aeckersberg, H. W. Scherer, A. Moeller and W. Amelung, 2012. Physcal activation of biochar and its meaning for soil fertility and nutrient leaching – a greenhouse experiment, Soil Use and Management, Vol. 28, pp. 177-184.
    10. Bruun, E. W., P. Ambus, H. Egsgaard, and H. Hauggard-Nielsen, 2012. Effects of slow and fast pyrolysis biochar on soil C and N turnover dynamics, Soil Biology and Biochemistry, Vol. 46, pp.73-79.
    11. Chan, K. Y., L. Vann Zwioten, I. Mesaros, A. Downie, and S. Joseph, 2007. Agronomic values of greenwaste biochar as a soil amendment, Australia Journal of Soil Research, Vol. 45, pp.629-634.
    12. Czimzik, C. I., and Masiello, C. A., 2007. Controls on black carbon storage in soils, Global Biogeochemical Cycles, Vol. 21, pp. 3.
    13. DeLuca, T. H., M. D. MacKenzie, and M. J. Gundle, 2009. Biochar effects on soil nutrient transformation, Biochar for Environmental Management, Earthscan, London, pp. 251-270.
    14. Dregne, H. E., 1990. Erosion and soil productivity in Africa, Journal of Soil and Water Conservation, Vol. 45, pp. 431-436.
    15. Dowine, A., Crosky, A., and Munroe, P., 2009. Physical properties of biochar, In: Johannes, L., and Stephen, J., Biochar for Environmental Management ‐ Science and Technology, Earthscan, Sterling, V.A., pp. 13-29.
    16. Follentt, Follett, R. F., and Stewart, B. A. (Eds.), 1985. Soil Erosion and Crop productivity, American Society of Agronomy and Crop Science Society of America, Madison, Wisconsin.
    17. Forbes, M. S., Raison, R. J., and Skjemstad, J. O., 2006. Formation, transformation and transport of black carbon (charcoal) in terrestrial and aquatic ecosystems, Sci Total Environ, Vol. 370, No.1, pp. 190-206.
    18. Frye, W. W., Ebelhar, S. A., Murdock, L. W., and Bevins, R. L., 1982. Soil erosion effects on properties and productivity of two Kentucky soils, Soil Science Society of America Journal, Vol. 46, pp 1051.
    19. Gander, Gardner, W. H., 1986. Water content, In: A. Klute, G.S. Campell, R.D. Jackson, M.M. Mortland, and D.R. Nielsen(eds.), Methods of soil analysis. Part 1. Physical and mineralogical method, Agronomy monograph No. 9. ASA and SSSA, Madison, Wisconsin, USA., pp. 493-544.
    20. Gander, W. H., 1986. Water content. In: A. Klute et al. (eds.). Methods of soil analysis. Part 1. Physical and mineralogical method, Agronomy monograph No. 9. ASA and SSSA, Madison, Wisconsin, USA., pp. 493-544.
    21. Gee, G. W., and Bauder, J. W., 1986. Particle-size analysis. In A. Klute, G.S. Campell, R.D. Jackson, M.M. Mortland, and D.R. Nielsen (ed.) Methods of soil analysis, Part 1. Physical and Mineralogical methods-Agronomy monograph No. 9. ASA and SSSA, Madison, Wisconsin, USA., pp. 383-411.
    22. Hudson, N. W., 1982. Soil conservation research and training requirements in developing, American Society of Agronomists and Soil Science Society of America, Soil Erosion and Conservation in the Tropics, American Society of Agronomists, Madison, Wisconsin, Vol. 43, pp. 121-133.
    23. Jien, S. H., and Wang, C. S., 2013. Effects of biochar on soil properties and erosion potential in highly weathered soil, Catena, Vol.110, pp. 225-233.
    24. Khademalracoul, A., Naved, M., Heckrath, G., Kumari, K. G. I. D., de Jonge, L. W., Elsgaard, L., Vogel, H. J., and Iversen, B. V., 2014. Biochar Effects on Soil Aggregate Properties Under No-Till Maize, Soil Science, Vol.179, No. 6, pp. 273-283.
    25. Kleinman, P. J. A., Pimentel, D., and Bryant, R. B., 1995. The ecological sustainability of slash-and-burn agriculture, Agriculture, Ecosystems & Environment, Vol. 52, pp. 235-249.
    26. Klute, A., and Dirksen, C., 1986. Particle-size analysis. In Klute, A., Campell, G. S., Jackson, R. D., Mortland, M. M., and Nielsen, D. R. (ed.) Methods of soil analysis,” Part 1. Physical and Mineralogical methods-Agronomy monograph No. 9. ASA and SSSA, Madison, Wisconsin, USA., pp. 687-733.
    27. Kuo, S., 1996. Phosphorus, In: Sparks, D L et al. (Eds.). Methods of Soil Analysis, Part 3: Chemical methods. SSSA Book Series No. 5, Madison, WI: SSSA, 1996, pp. 869-919.
    28. Laird, D., Fleming, P., Wang, B., Horton, R., and Karlen, D., 2010. Biochar impact on nutrient leaching from a Midwestern agricultural soil, Journal of Geoderma, Vol. 158, pp. 436-442.
    29. Lal, R., 1976. Soil erosion problems on an Alisol in western Nigeria and their Control,” International institute of tropical agriculture, Ibadan, Nigeria.
    30. Lal, R., 1980. Losses of plant nutrients in runoff and eroded soil,” T. Rosswall (Ed.) “Nitrogen cycling in West African ecosystems, Reklan and Katalogtryck, Uppsala, Sweden, pp. 31-38.
    31. Lal, R., 1984. Productivity assessment of tropical soils and the effects of erosion,” In F. R. Rijsberman and M. G. Wolman (Eds.) , Quantification of the Effect of Erosion on soil productivity in an international Context,” Delft Hydraulics Laboratory, Delft, Netherlands, pp. 70-94.
    32. Landale, G. W., Box, J. E., Leonard, R. A., Barnett, A. P., and Fleming, W. G., 1979. Com yield reduction on eroded Southern Piedmont soils, Journal of Soil and Water Conservation, Vol. 34, No. 5, pp. 226-228.
    33. Landale, G. W. West, L. T., Bruce, R. R., Miller, W. P., and Thomas, A. W., 1992. Restoration of eroded soil with conservation tillage, Soil Technology ,Vol. 5, pp. 81.
    34. Le Bissonnais, Y., 1996. Aggregate stability and assessment of crustability and erodibility: 1. theory and methodology, European Journal of Soil Science, Vol. 47, No. 4, pp. 425-437.
    35. Lehmann, J., 2007. Bio-energy in the black, Fornitiers in Ecology and the Environment, Vol. 5, No. 7, pp. 381-387.
    36. Lehmann, J., and Joseph, S., 2009. Biochar for Environmental Management: Science and Technology, Earthscan.
    37. Lehmann, J. , J. P. Jr. da Silva, C. Steiner, T. Nehls, W. Zech, and B. Glaser, 2003. Nutrient availability and leaching in an archaeological Anthrosol and a Ferralsol of the Central Amazon basin : fertiliser, manure and charcoal amendments, Plant and Soil, Vol. 249, pp. 343-357.
    38. Lehmann, J. and M. Rondon, 2006. Biochar soil management on highly weathered soils in humid tropics, Biological Approaches to Sustainable Soil Systems, pp. 517-530.
    39. Liang, B., J. Lehmann, S. P. Sohi, J. E. Theis, B. O’ Neill, L. Trujillo, J. Guant, D. Solmon, J. Grossman, E. G. Neves, and F. J. Luizao, 2010. Black carbon affects the cycling of non-black carbon in soil, Organic Chemistry, Vol. 41, pp. 206-213.
    40. Liu, X. H., Han, F. P., and Zhang, X. C., 2012. Effects of biochar on soil aggregates in the Loess Plateau: results from incubation experiments,” International Journal of Agriculture and Biology, Vol. 14, pp. 975-979.
    41. McLean, E. O., 1982. Soil pH and lime requirement, In A.L. Page, R.H. Miller and D.R. Keeney (eds.) Methods of soil analysis, Part 2. Chemical and microbiological properties, Agronomy monograph No. 9. ASA and SSSA, Madison, Wisconsin, USA., pp.199-244.
    42. Mokma, D. L., and Sietz, M. A., 1992. Effects of soil erosion on com yields on Marlette soils in south-central Michigan, Journal of Soil and Water Conservation, Vol. 47, pp. 325.
    43. Mulvaney, R. L., 1996. Nitrogen-Inorganic forms, In: Sparks D L et al. (Eds.), Methods of Soil Analysis. Part 3: Chemical Methods, SSSA Book Series No. 5, Madison, WI: SSSA, pp. 1123-1184.
    44. Nelson, D. W., and Sommer, L. E., 1982. Total carbon. Organic carbon, and organic matter,” In Page, A. L., Miller, R. H., and Keeney, D.R. (ed.) “Methods of soil and analysis, Part 2. Chemical and microbiological properties,” Agronomy monograph No. 2. ASA and SSSA, Madison, Wisconsin, USA., pp. 539-577.
    45. Nelson, D. W., and Sommers, L. E., 1982. Total carbon, organic carbon and organic matter,” In A.L. Page, R.H. Miller and D.R. Keeney (ed.) “Methods of soil analysis. Part 2 Chemical and Microbiological Properties,” pp: 539-579.
    46. Nelson, N. O., S. C. Agudelo, W. Yuan, and J. Gan, 2011. Nitrogen and Phosphorus Availability in Biochar-Amended Soils, Soil Science, Vol.176, pp.218-226.
    47. Novak, J. M., Busscher, W. J., Laird, D. L., Ahmedna, M., Watts, D. W., and Niandou, M. A. S., 2009. Impact of biochar amendment on fertility of a southeastern coastal plain soil, Soil Science, Vol. 174, pp.105-112.
    48. Novak, J. M., Lima, I., Xing, B., Gaskin, J. W., Steiner, C., and Das, K. C., 2009. Characterization of designer biochar produced at different temperatures and their effects on a loamy sand, Annals of Environmental Science, Vol. 3, pp. 195-206.
    49. Olson, K. R., and Nizeyimana, E., 1988. Chemical, Mineralogical, and Physical Property Differences Between Moderately and Severely Eroded Illinois Soils,” Journal of Production Agriculture, Vol. 1, pp. 13.
    50. Pimentel, D., Harvey, C., Resosudarmo, P., Sinclair, K., Kurz, D., McNair, M., Crist, S., Shpritz, L., Fitton, L., Saffouri, R., and Blair, R., 1995. Environmental and economic costs of soil erosion and conservation benefits, Science, Vol. 267, pp. 1117-1123.
    51. Pierzynski, G. M., R. W. McDowell, and J. T. Sims, 2005, Chemistry, cycling, and potential movement of inorganic phosphorus in soils, In: Sims, J. T. and A. N., Sharpley, (Editors), Phosphorus: Agriculture and the Environment, Agron Monog No. 46. Madison, WI, USA, pp. 53-86.
    52. Renard, K. G., Foster, G. A., Weesies, D. A., McCool, D. K., Yoder, D. C., 1997. Predicting soil erosion by water: a guide to conservation planning with the revised universal soil loss equation (RUSLE), Agriculture Handbook, No. 703, United States Department of Agriculture, Washington, District of Columbia.
    53. Schertz, D. L., Moldehauert, W. C., Livingston, S. J., Weesies, F. A., and Hintr, E. A., 1989. Effect of past soil erosion on crop productivity in Indianna, Journal of Soil and Water Conservation, Vol. 44, pp. 604.
    54. Soinne, H., Hovi, J., Tammeorg, P., and Turtola, E., 2014. Effect of biochar on phosphorus sorption and clay soil aggregate stability, Geoderma, Vol. 219-220, pp. 162-167.
    55. Steiner, C., Teixeira, W. G., Lehmann, J., Nehls, T., de Macedo, J. L. V., Blum, W. E. H., and Zech, W., 2007. Long term effects of manure, charcoal and mineral fertilization on crop production and fertility on a highly weathered Central Amazonian upland soil,” Plant and Soil, Vol. 291, pp. 275-290.
    56. Tiessen, H., Cuevas, E., and Chacon, P., 1994. The role of soil organic matter in sustaining soil fertility, Nature Journal, Vol. 371, pp. 783-785.
    57. Yu, X. Y., Ying, G. G., and Kookana, R. S., 2009. Reduced plant uptake of pesticides with biochar additions to soil, Chemosphere, Vol. 76, No. 5, pp. 665-671.
    58. Zheng, H, Z. Wang, X. Deng, S. Herbert, and B. Xing, 2013. Impacts of adding biochar on nitrogen retention and bioavailability in agricultural soil, Geoderma, Vol.206, pp.32-39.

    下載圖示
    QR CODE