簡易檢索 / 詳目顯示

研究生: 陳秉鉎
Chen, Ping-Sheng
論文名稱: 添加生物炭對泥岩土壤侵蝕量之影響
Effects of Biochar Application on Soil Erosion in a Mudstone Soil
指導教授: 李明熹
Lee, Ming- Hsi
學位類別: 碩士
Master
系所名稱: 工學院 - 水土保持系所
Department of Soil and Water Conservation
畢業學年度: 108
語文別: 中文
論文頁數: 77
中文關鍵詞: 生物炭泥岩土壤侵蝕植被覆蓋
外文關鍵詞: Biochar, Mudstone, Soil erosion, Plant coverage
DOI URL: http://doi.org/10.6346/NPUST202000140
相關次數: 點閱:35下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統
  • 土壤侵蝕受人為干擾及氣候變遷的影響逐漸加劇,引發嚴重的危害。在臺灣由於泥岩極易發生土壤侵蝕,導致下游集水區含砂量激增、環境污染及土地劣化等問題。近年來以生物炭作為土壤改良劑在降低土壤侵蝕量上已有明顯成效,但由於目前相關研究對於在泥岩中添加生物炭以改善泥岩土壤侵蝕方面較少有著墨,因此仍需被研究與探討。
    本研究將700 oC熱裂解製成之木炭及稻殼炭,以2 %(w/w)為添加量施用於泥岩土壤中,分析受自然降雨侵蝕120天後泥岩理化性質變化,同時收集現地每週土壤侵蝕量,分析添加生物炭處理對泥岩侵蝕量之差異,並於120天侵蝕試驗結束後,觀察試驗區內植被覆蓋情況,分析生物炭改良後對植物在泥岩土壤中生長之影響。
    由120天之泥岩土壤侵蝕試驗結果顯示,添加2 %木炭後平均可減少39 %的泥岩侵蝕量,而添加2 %稻殼炭後平均可減少44 %的泥岩侵蝕量,顯示添加生物炭可降低泥岩之土壤侵蝕量,其可能為在生物炭改良後,泥岩土壤之有機質增加,且泥岩之總體密度下降,提升土壤孔隙度有助於減少地表逕流水的產生,因此降低泥岩土壤侵蝕量。
    植被覆蓋方面結果顯示,自侵蝕試驗結束後,植物經過18天的生長,添加生物炭處理之覆蓋率皆可達50 %以上,其中2 %稻殼炭處理更達62 %,為控制組覆蓋率之2倍,由此可知2 %木炭及2 %稻殼炭可促進植物生長,並顯著縮短植生覆蓋的時間。

    Soil erosion is gradually affected by human disturbance and climate change and therefore cause serious disaster. In Taiwan, mudstone is extremely susceptible to soil erosion, which leads to problems such as siltation of watershed, environmental pollution, and loss of agricultural production. In recent years, biochar has been used as a soil amendment to reduce soil erosion, but there has less research on the application of biochar to improve soil erosion of mudstone. Therefore it still needs to be studied and discussed.
    In this study, wood biochar and rice hull biochar are pyrolized with 700 oC, and applied to mudstone soil at application rate of 2 % (w/w) for 120 days, than analysis the effect of biochar on soil erosion. After the 120 day erosion, this study observe the growth and coverage of plants in the test area, and analyze the effect of biochar improvement on plant growth in mudstone soil.
    The results show that the soil loss of the treatment of 2 % wood biochar addition was significantly lower than the control treatment by 39 %, and the soil loss of the treatment of 2 % rice hull biochar was significantly lower than the control treatment by 44 %. The results of plant coverage show that the treatment of biochar addition could reach more than 50 % coverage at 18 days, and the treatment with 2 % rice hull biochar can increased by 2 fold that of the control.
    In conclusion, the addition of biochar can effectively reduce soil loss, improve plant growth, and significantly shorten the time of plant cover for mudstone soils.

    摘要 I
    Abstract III
    謝誌 V
    目錄 VI
    表目錄 VIII
    圖目錄 IX
    壹、緒論 1
    貳、文獻回顧 3
    一、泥岩 3
    (一)泥岩之分布 3
    (二)泥岩理化性質 3
    (三)泥岩土壤侵蝕 4
    二、土壤改良對土壤侵蝕的影響 5
    三、生物炭 6
    (一)生物炭性質 6
    (二)生物炭改良對土壤侵蝕的影響 7
    四、生物炭對植物生長之影響 9
    五、植被覆蓋率分析 10
    參、研究材料與方法 11
    一、研究流程 11
    二、研究試區選定 12
    三、研究試區建置 13
    四、泥岩土壤採樣及基本性質分析 14
    (一)供試土壤選定及採集 14
    (二)土壤基本性質分析 14
    五、試驗處理 22
    (一)供試生物炭選用及基本性質分析 22
    (二)試驗條件 23
    六、試驗分析 24
    (一)侵蝕前後泥岩理化性質分析 24
    (二)土壤侵蝕量差異分析 25
    (三)植被覆蓋率分析 27
    肆、結果與討論 32
    一、現地泥岩及生物炭基本性質 32
    (一)現地泥岩基本性質 32
    (二)供試生物炭基本性質 33
    二、添加生物炭對侵蝕前後泥岩理化性質之影響 34
    (一)土壤pH值 35
    (二)陽離子交換容量 37
    (三)有機質含量 39
    (四)總體密度 41
    (五)電導度 43
    (六)土壤全氮 45
    (七)礦化氮 47
    (八)有效磷 50
    (九)侵蝕前後生物炭對泥岩理化性質之影響 52
    三、添加生物炭對泥岩土壤侵蝕量的影響 54
    (一)土壤侵蝕量與降雨量分析 54
    (二)土壤侵蝕量差異分析 57
    四、添加生物炭對植物生長之影響 61
    (一)泥岩侵蝕試驗區植被覆蓋率分析 61
    (二)理化性質與植被覆蓋率之探討 64
    伍、結論與建議 65
    一、結論 65
    二、建議 66
    參考文獻 67
    作者簡介 77

    1. 尤敬弦,顏粕昇,郭婉儀,簡士濠,2013,「以炭資材改善泥岩土壤之物化性質」,中華水土保持學會102年年會論文集,論文編號:6-8。
    2. 王巽輝,2017,觀賞植物寒害復原之研究,碩士論文,東海大學,景觀學系,臺中。
    3. 王鑫,1988,泥岩惡地地景保留區之研究,行政院農業委員會。
    4. 江介倫,黃國禎,邱宏彬,黃瀞瑩,2009,「臺灣常用覆蓋草類覆蓋率之研究」,農業工程學報,第55卷,第4期,第90-99頁。.
    5. 李德河,紀雲曜,田坤國,1994,「泥岩之基本特性及泥岩邊坡之保護措施」,地工技術雜誌,第48期,第35-47頁。
    6. 周佳,陳維婷,羅敏輝,李明安,許晃雄,洪志誠,鄒治華,盧孟明,洪致文,陳正達,鄭兆尊,2017,臺灣氣候變遷科學報告 2017 -物理現象與機制,行政院國家科學委員會,第51-52頁。
    7. 林俐玲,1996,「矽質玄武岩石粉控制土壤沖蝕功效之研究」,水土保持學報,第27卷,第2期,第167-174頁。
    8. 林俐玲,許靖男,何俊賢,2013,「添加生物炭對紅壤性質影響之探討」,水土保持學報,第45卷,第2期,第599-616頁。
    9. 林俐玲,蔡義誌,王永琦,馮美禎,2009,「崩塌地植生復育與土壤性質之調查研究」,坡地防災學報,第8卷,第1期,第25-39頁。
    10. 林信輝,2006,水土保持植物解說系列-坡地植生草類與綠肥植物,行政院農業委員會水土保持局。
    11. 邱雅詩,2002,矽酸鈉及磷酸銨對土壤理化性質及土壤沖蝕影響之研究,碩士論文,國立中興大學,水土保持系,臺中。
    12. 唐琦,簡銘辰,林楹倫,沈興,陳柏宇,2015,「莿竹林集水區於闢墾後之地表植被覆蓋率調查」,社團法人中華水土保持學會 104 年度研討會論文摘要集,論文編號:3-6。
    13. 耿文溥,1981,「臺南以東丘陵之地質」,經濟部中央地質調查所彙刊,第1號,第1-31頁。
    14. 張秀燕,1995,臺灣草坪植物適應性與土壤壓實改進之研究,碩士論文,國立臺灣大學,園藝學研究所,臺北。
    15. 張俊斌,2003,西南部泥岩景觀生態結構與變遷之研究,博士論文,國立中興大學,水土保持系,臺中。
    16. 張逸群,2013,應用ImageJ於估算綠美化工程之植草存活率,碩士論文,國立屏東科技大學,土木工程系所,屏東。
    17. 莊皓雲,2001,土壤團粒化劑對土壤保育功效與種子發芽影響之探討,碩士論文,國立中興大學,水土保持系,臺中。
    18. 許正一,賴美君,林盈成,駱佩如,2002,「臺灣南部泥岩惡地形土壤之化育作用與分類」,土壤與環境,第5卷,第4期,第323-329頁。
    19. 許靖男,2013,以枯枝落葉製成之生物炭對土壤改良之研究,碩士論文,國立中興大學,水土保持系,臺中。
    20. 陳仁炫,林正錺,郭惠千,1992,土壤肥力因子之分級標準彙集,國立中興大學土壤研究所,第49-55頁。
    21. 陳宏達,2002,溶出參數對夯實泥岩襯裡回脹集滲透行為之影響,碩士論文,國立成功大學,環境工程學系,臺南。
    22. 陳時祖,1994,「臺灣西南部地區泥(頁)岩之工程地質特性」,地工技術,第48期,第25-33頁。
    23. 陳時祖,2000a,「臺灣西南部地區泥(頁)岩之物化地質特性」,臺灣泥岩生態研討會,第1-12頁。
    24. 陳時祖,2000b,「臺灣西南部泥岩地區環境地質災害之調查分析」集水區土砂災害防治與資料庫技術應用推廣研討會論文集,第128-142頁。
    25. 陳時祖,2000c,「環境地質災害之調查集評估方法-以高雄地區山坡地為例」地質災害研討會論文集,第51-72頁。
    26. 陳時祖,2002,「臺灣西南部地區泥岩之地質災害及防治方法」,臺灣西南地區地質災害研討會論文集,第7-1-7-9頁。
    27. 陳時祖,李元富,劉裕聰,1984,「臺灣西南部泥岩坡地沖蝕特性之研究(1)」,國科會防災報告,編號:73-07號。
    28. 黃俊義,1986,「臺灣坡地土壤沖蝕性及流失量之推估」,水土保持學報,第17卷,第2期,第139-154頁。
    29. 黃俊義,萬鑫森,1981,「臺灣西北部土壤沖蝕及流失量之估算」,水土保持學報,第1卷,第12期,第57-67頁。
    30. 黃俊義,萬鑫森,1989,「臺灣坡地土壤沖蝕」,水土保持學報,第20卷,第2期,第17-45頁。
    31. 萬鑫森,黃俊義,1983,「臺灣南部土壤沖蝕性及流失量之估算」,中華水土保持學報,第14卷,第1期,第21-28頁。
    32. 萬鑫森,黃俊銘,1992,「熱帶土壤改良原理與方法之研究」,水土保持學報,第24卷,第2期,第1-9頁。
    33. 葉昆麟,2010,臺南臺地基盤泥岩物性及遇水弱化行為之研究,碩士論文,國立成功大學,土木工程研究所,臺南。
    34. 劉彥均,2011,土壤與堆肥摻合比對綠屋頂植物之影響,碩士論文,國立交通大學,環境工程研究所,新竹。
    35. 蔡佳儒,吳耿東,2013,「木質材料製備之生物炭應用對植物生長機制之探討」,林產工業,第32卷,第3期,第169-178頁。
    36. 蔡佳勳,2018,應用無人飛行載具進行泥岩邊坡地形分析及沖蝕評估之研究,碩士論文,正修科技大學,營建工程研究所,高雄。
    37. 鄧屬予,1997,臺灣的沉積岩-臺灣地質之九,經濟部中央地質調查所編印,第235頁
    38. 簡士濠,江介倫,王建昇,張庠睿,2012,「添加生物炭對酸性紅壤肥力之影響」,農業工程學報,第58卷,第4期,第15-22頁。
    39. 簡士濠,陳俊元,簡廷澍,2015,「生物炭添加對泥岩地區非點源污染之改善」,土壤及地下水污染整治,第2卷,第4期,第317-327頁。
    40. 簡維信,2013,添加稻殼炭對泥岩土壤沖蝕潛勢及百慕達草萌芽之影響,碩士論文,國立屏東科技大學,水土保持系,屏東。
    41. Abrol, V., Ben-Hur, M., Verheijen, F., Keizer, J., Martins, M., Tenaw, H., Tchehansky, L., and Graber, E., 2016, “Biochar effects on soil water infiltration and erosion under seal formation conditions: rainfall simulation experiment,” Journal of Soils and Sediments, Vol. 16, No. 12, pp. 2709-2719.
    42. Andreas, S., Vanja, A., Rolf, D. V., Tone, C. G., Jan, M., Gerard, C., and Sarah, E. H., 2016, “Biochar amendment to soil changes dissolved organic matter contentand composition,” Chemosphere, Vol. 142, pp.100-105.
    43. Antal, M. J., and Morten, G., 2003, “The Art, Science, and Tech- nology of Charcoal Production,” Industrial & Engineering Chemistry Research, Vol. 42, No. 8, pp.1619-1640.
    44. Artiola, J. F., Rasmussen, C., and Freitas, R., 2012, “Effects of a biochar amended alkaline soil on the growth of romaine lettuce and bermudagrass,” Soil Science, Vol. 177, No. 9, pp.561 -570.
    45. Ayodele, A., Oguntunde, P., Joseph, A., and Dias junior, M. S., 2009, “Numerical analysis of the impact of charcoal production on soil hydrological behavior, runoff response and erosion susceptibility,” Revista Brasileira de Ciência do Solo, Vol. 33, No. 1, pp. 137-146.
    46. Baldock, J. A., and Smernik R. J., 2002, “Chemical composition and bioavailability of thermallyalteredPinus resinosa(Red pine) wood,” Organic Geochemistry, Vol. 33, pp. 1093-1109.
    47. Bista, P., Ghimire, R., Machado, S., and Pritchett, L., 2019, “Biochar Effects on Soil Properties and Wheat Biomass vary with Fertility Management,” Agronomy, Vol. 9, No. 10, pp.1-10.
    48. Blake, G. R., and Hartge, K. H., 1986, “Bulk density,” In Methods of Soil Analysis, pp. 363-382, Physical and Mineralogical Methods, 2nd Edition, Agronomy Monograph, ASA and SSSA, Madison.
    49. Bremner, J. M., 1996, “Nitrogen Total,” In Methods of Soil Analysis, pp. 1085-1122, Chemical and Microbiological Properties, ASA and SSSA, Madison, Wisconsin, USA.
    50. Cai, Y., Qi, H., Liu, Y., and He, X., 2016, “Sorption/Desorption Behavior and Mechanism of NH4+ by Biochar as a Nitrogen Fertilizer Sustained-Release Material,” Journal of Agricultural and Food Chemistry, Vol. 64, No. 24, pp. 4958-4964.
    51. Chan, K. Y., VanZwieten, L., Meszaros I., Downie A., and Joseph S., 2007, “Agronomic values of greenwaste biochar as a soil amendment,” Australian Journal of Soil Research, Vol. 45, pp. 629-634.
    52. Da Silva, A. P., Kay, B. D., and Perfect, E., 1994, “Characterization of the Least Limiting Water Range of Soils,” Soil Science Society of America Journal, Vol. 58, No. 6, pp. 1775-1781.
    53. De Oña, J., Osorioa, F., and Garcia, P. A., 2009, “Assessing the effects of using compost-sludge mixtures to reduce erosion in road emba- nkments,” Journal of Hazardous Materials, Vol. 164, pp. 1257-1265.
    54. Dharmakeerthi, R. S., Chandrasiri, J. A. S., and Edirimanne, V. U., 2012,“ Effect of rubber wood biochar on nutrition and growth of nursery plants of Hevea brasiliensis established in an Ultisol,” SpringerPlus, Vol. 1, No. 1., Article number:84.
    55. Fortun, A., Fortun, C., and Ortega, C., 1989, “Effect of farmyard manure and its humic fractions on the aggregate stability of a sandy–loam soil,” Journal of Soil Science, Vol.40, No. 2, pp. 293-298.
    56. Gai, X., Wang, H., Liu, J., Zhai, L., Liu, S., Ren, T., and Liu, H., 2014, “Effects of Feedstock and Pyrolysis Temperature on Biochar Adsorption of Ammonium and Nitrate,” PloS one, Vol. 9, No. 12, pp. 1-19.
    57. Gardner, W. H., 1986, “Water content,” In Methods of soil analysis, pp. 493-544, Physical and mineralogical method, 2nd Edition, Agronomy monograph, ASA and SSSA, Madison, Wisconsin, USA.
    58. Gee, G. W., and Bauder, J. W., 1986, “Particle-size analysis,” In Methods of soil analysis, pp. 383-411, Physical and Mineralogical Methods, 2nd Edition, Agronomy Monograph, ASA and SSSA, Madison.
    59. Glaser, B., Balashov, E., Haumaier, L., Guggenberger, G., and Zech, W., 2000, “Black carbon in density fractions of anthropogenic soils of the Brazilian Amazon region,” Organic Geochemistry, Vol. 31, No. 7-8, pp. 669-678.
    60. Glaser, B., Lehmann, J., and Zech, W., 2002, “Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal - a review,” Biology and Fertility of Soils, Vol. 35, No. 4, pp. 219-230.
    61. Glaser, B., Lehr, V., 2019, “Biochar effects on phosphorus availability in agricultural soils: A meta-analysis,” Scientific Reports, Vol. 9, No. 9338.
    62. Gomez-Eyles, J., Beesley, L., Moreno-Jimenez, E., Ghosh, U. and Sizmur, T., 2013, “The potential of biochar amendments to remediate contaminated soils,” Biochar and Soil Biota, pp. 100-133.
    63. Gul, S., Whalen, J. K., Thomas, B. W., Sachdeva, V., and Deng, H., 2015, “Physico chemical properties and microbial responses in biochar amended soils: Mechanisms and future directions,” Agriculture, Ecosystems & Environment, Vol. 206, pp. 46-59.
    64. Herath, H. M. S. K., Camps-Arbestain, M., and Hedley, M., 2013, “Effect of biochar on soil physical properties in two contrasting soils: An Alfisol and an Andisol,” Geoderma, Vol. 209-210, pp. 188-197.
    65. Hua, L., Lu, Z., Ma, H., and Jin, S., 2014, “Effect of biochar on carbon dioxide release, organic carbon accumulation, and aggregation of soil Environ,” Prog. Sustainable Energy, Vol. 33, No. 3, pp. 941-946.
    66. Jien, S. H., Wang, C. S., 2013, “Effects of biochar on soil properties and erosion potential in a highly weathered soil,” Catena, Vol. 110, pp. 225-233.
    67. Kuo, S., 1996, “Phosphorus,” In Methods of Soil Analysis, pp. 869-919, Chemical and Microbiological Properties, ASA and SSSA, Madison, Wisconsin, USA.
    68. Laird, D. A., Brown, R. C., Amonette, J. E., and Lehmann, J., 2009, “Review of the pyrolysis platform for coproducing bio-oil and biochar,” Bioproducts and Biorefining, Vol. 3, No. 5, pp. 547-562.
    69. Laird, D., Fleming, P., Wang, B., Horton, R., and Karlen, D., 2010, “Biochar impact on nutrient leaching from a Midwestern agricultural soil,” Journal of Geoderma, Vol. 158, pp.436-442.
    70. Lehmann, J., Steiner, C., Nehls, T., Zech, W., Glaser, B., and Jr, J., 2003, “Nutrient availability and leaching in an archaeological Anthrosol and a Ferralsol of the Central Amazon basin: fertilizer, manure and charcoal amendments,” Plant and Soil, Vol. 249, No. 2, pp. 343-357.
    71. Li, Z. G., Gu, C. M., Zhang, R. H., Ibrahim, M., Zhang, G. S., Wang, L., Zhang, R. Q., Chen, F., and Liu, Y., 2017, “The benefic effect induced by biochar on soil erosion and nutrient loss of slopping land under natural rainfall conditions in central China,” Agricultural Water Management, Vol. 185, pp. 145-150.
    72. Liu, X. H., Han, F. P., Zhang, X. C., 2012, “Effect of Biochar on Soil Aggregates in the Loess Plateau: Results from Incubation Experiments,” International Journal of Agriculture and Biology, Vol. 14, No. 6, pp. 975-979.
    73. Mankasingh, U., Choi, P. C., and Ragnarsdottir, V., 2011, “Biochar application in a tropical, agricultural region: A plot scale study in Tamil Nadu, India,” Applied Geochemistry, Vol. 26, pp. 218-221.
    74. Mclean, E. O., 1982, “Soil pH and Lime Requirement,” In Methods of Soil Analysis, pp.199-224, Chemical and Microbiological Properties, American Society of Agronomy, ASA and SSSA, Madison, Wisconsin, USA.
    75. Milla, O. V., Rivera, E. B., Huang, W. J., Chien, C. C., and Wang, Y. M., 2013, “Agronomic properties and characterization of rice husk and wood biochars and their effect on the growth of water spinach in a field test,” Journal of Soil Science & Plant Nutrition, Vol. 13, No. 2, pp.251-266.
    76. Morgan, R. P. C., and Duzant, J. H., 2008, “Modified MMF (Morgan–Morgan–Finney) model for evaluating effects of crops and vegetation cover on soil erosion,” Earth Surface Processes and Landforms, Vol. 33, No. 1, pp. 90-106.
    77. Moutier, M., Shainberg, I., and Levy, G., 2000, “Hydraulic Gradient and Wetting Rate Effects on the Hydraulic Conductivity of Two Calcium Vertisols,” Soil Science Society of America Journal, Vol. 64, No. 4, pp. 1211-1219.
    78. Mulvaney, R. L., 1996, “Nitrogen Inorganic Forms,” In Methods of Soil Analysis, pp. 1123-1184, Chemical and Microbiological Properties, ASA and SSSA, Madison, Wisconsin, USA.
    79. Myers, N., 1993, Gaia: an atlas of planet management, Garden City, New York.
    80. Naisse, C., Girardin, C., Lefevre, R., Pozzi, A., Maas, R., Stark, A., and Rumpel, C., 2015, “Effect of physical weathering on the carbon sequestration potential of biochars and hydrochars in soil,” Global Change Biology, Vol.7, No. 3, pp. 488-496.
    81. Nelson, D. W., and Sommers, L. E., 1982, “Total carbon, organic carbon and organic matter,” In Methods of soil analysis, pp. 539-579, Chemical and Microbiological Properties. ASA and SSSA, Madison.
    82. Nguyen, T. H., Brown, R. A., and Ball, W. P., 2004, “An evaluation of thermal resistance as a measure of blackcarbon content in diesel soot, wood char, and sediment,” Organic Geochemistry, Vol. 35, pp. 217-234.
    83. Obia, A., Mulder, J., Martinsen, V., Cornelissen, G., and Børresen, T., 2016, “In situ effects of biochar on aggregation, water retention and porosity in light-textured tropical soils,” Soil and Tillage Research, Vol. 33, pp. 35-44.
    84. Oguntunde, P., Abiodun, B., Ajayi, A., and Giesen, N., 2008, “Effects of charcoal production on soil physical properties in Ghana,” Journal of Plant Nutrition and Soil Science, Vol. 171, No. 4, pp. 591-596.
    85. Parvage, M. M., Ulén, B., Eriksson, J., Strock, J. S., and Kirchmann, H., 2013, “Phosphorus availability in soils amended with wheat residue char,” Biology and Fertility of Soils, Vol. 49, No. 2, pp. 245-250.
    86. Rhoades, J. D., 1982a, “Cation exchange capacity,” In Methods of soil and analysis, pp. 149-158, Chemical and microbiological properties, Agronomy monograph, ASA and SSSA, Madison, Wisconsin, USA.
    87. Rhoades,J. D., 1982b, “soluble salts,” In Methods of soil and analysis, pp. 149-158 Part 2. Chemical and microbiological properties,” Agronomy monograph, ASA and SSSA, Madison, Wisconsin, USA.
    88. Rillig, M. C., and Mummey, D. L., 2006, “Mycorrhizas and soil structure,” New Phytologist, Vol. 171, No. 1, pp. 41-53.
    89. Salem, T., Refaie, K., and Sherif, A. E., 2019, “Biochar application in alkaline soil and its effect on soil and plant,” Acta agriculturae Slovenica, Vol. 114, No. 1, pp. 85-96.
    90. Sanford, J. R., Larson, R. A., and Runge, T., 2019, “Nitrate sorption to biochar following chemical oxidation,” Sci Total Environ, Vol. 669, pp. 938‐947.
    91. Shah, T., Khan, S., and Shah, Z., 2017, “Soil respiration, pH and EC as influenced by biochar,” Soil Environ, Vol. 36, No. 1, pp. 73-83.
    92. Speratti, A. B., Romanyà, J., Garcia-Pausas, J., and Johnson, M. S., 2018, “Determining the Stability of Sugarcane Filtercake Biochar in Soils with Contrasting Levels of Organic Matter,” Agriculture, Vol. 8, No. 6, pp. 1-14.
    93. Steiner, C., Teixeira, W., Lehmann, J., Nehls, T., Macêdo, J., Blum, W., and Zech, W., 2007, “Long term effects of manure, charcoal and mineral fertilization on crop production and fertility on a highly weathered Central Amazonian upland soil,” Plant and Soil, Vol. 291, pp. 275-290.
    94. Tejada, M., and Gonzalez, J. L., 2007, “Influence of organic amendments on soil structure and soil loss under simulated rain,” Soil and Tillage Research, Vol. 93, No. 1, pp. 197-205.
    95. Tryon, E. H., 1948, “Effects of the addition of rice-straw-based biocharon leaching and retention of fertilizer N in highly fertilized cropland soils,” Ecological Monographs, Vol. 18, No. 1, pp. 81-115.
    96. Vaccari, F., Maienza, A., Miglietta, F., Baronti, S., Di Lonardo, S., Giagnoni, L., Lagomarsino, A., Pozzi, A., Pusceddu, E., Ranieri, R., Valboa, G., and Genesio, L., 2015, “Biochar stimulates plant growth but not fruit yield of processing tomato in a fertile soil,” Agriculture, ecosystems & environment, Vol. 207, pp. 163-170.
    97. Van Zwieten, L., Kimber, S., Morris, S., Chan, K. Y., Downie, A., Rust, J., Joseph, S., and Cowie, A., 2010, “Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility,” Plant and Soil, Vol. 327, pp. 235-246.
    98. Wei, X., Liu, D., Li, W., Liao, L., Wang, Z., Huang, W., and Huang, W, 2018, “Biochar addition for accelerating bioleaching of heavy metals from swine manure and reserving the nutrients,” The Science of the total environment, Vol. 631-632, pp. 1553-1559.
    99. Whalen, J. K., Hu, Q., and Liu, A., 2003, “Compost Applications Increase Water‐Stable Aggregates in Conventional and No‐Tillage Systems,” Soil Science Society of America Journal, Vol. 67, No. 6, pp. 1842-1847.
    100. Wischmeier, W. H., Smith, D. D., 1978, “ Predicting rainfall erosion losses:A guide to conservation planning,” USDA-SEA Agriculture Handbook, U.S. Department of agricuture., pp. 58.
    101. Wuddivira, M. N., Stone, R. J., and Ekwue, E. I., 2009, “Structural Stability of Humid Tropical Soils as Influenced by Manure Incorporation and Incubation Duration,” Soil Science Society of America journal, Vol. 73, No. 4, pp. 1353-1360.
    102. Xu, G., Sun, J. N., Shao, H. B., Chang, S. X., 2014, “Biochar had effects on phosphorus sorption and desorption in three soils with differing acidity,” Ecological Engineering, Vol. 62, pp. 54-60.
    103. Yamato, M. Y., Okimori, I. F., Wibowo, S.A., and M. Ogawa., 2006, “Effect of the application of charred bark of Acacia mangium on the yield of maize, cowpea and peanut, and soil chemical properties in South Sumatra,Indonesia,” Soil Science & Plant Nutrition, Vol. 52, No. 4, pp.489-495.
    104. Yang, H. I., Lou, K., Rajapaksha, A. U., Ok, Y. S., Anyia, A. O., and Chang, S. X., 2018, “Adsorption of ammonium in aqueous solutions by pine sawdust and wheat straw biochars,” Environ Sci Pollut Res, Vol. 25, No. 26, pp. 25638‐25647.
    105. Zhao, X., Wang, S., and Xing, G., 2014, “Nitrification, acidification, and nitrogen leaching from subtropical cropland soils as affected by rice straw-based biochar: laboratory incubation and column leaching studies,” Journal of Soils and Sediments, Vol. 14, pp. 471-482.

    無法下載圖示 校外公開
    2025/06/30
    QR CODE