簡易檢索 / 詳目顯示

研究生: 顏銘暐
Yan, Ming-Wei
論文名稱: 雷射紋理技術對活塞汽缸套件之摩擦性能優化
Optimization of piston cylinder friction performance using laser texture technique
指導教授: 張金龍
Chang, Chin-Lung
學位類別: 碩士
Master
系所名稱: 工學院 - 車輛工程系所
Department of Vehicle Engineering
畢業學年度: 108
語文別: 中文
論文頁數: 79
中文關鍵詞: 汽缸套件雷射雕刻磨耗實驗流場分析摩擦潤滑田口實驗法
外文關鍵詞: Cylinder kit, Laser engraving, Abrasion test, Flow field analysis, Friction lubrication, Taguchi test method
DOI URL: http://doi.org/10.6346/NPUST202000146
相關次數: 點閱:14下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統
  • 本論文主要建立一活塞環與汽缸壁之摩擦潤滑性能分析及參數研究之流程,主要使用50W雷射雕刻機對試件進行紋理技術,針對雕刻參數設計進行探討,分別為加工次數及線間距,並且測量其粗糙度、表面微觀、磨耗率及硬度值,分別得出最佳之加工次數4次及線間距0.01mm,並且使用此兩種參數進行雷射紋理設計。
    文中以雷射雕刻機對不鏽鋼304之試件表面進行雷射紋理技術,主要探討陰陽刻雕刻手法及各參數對摩擦潤滑之影響。表面紋理技術使試件表面產生不同的紋理,搭配撞擊實驗量測滑行距離及使用數值分析軟體進行流場分析。依照所建立之流程,本研究提出四種不同參數分別為深度、大小、形狀及密度,最後使用田口實驗法搭配各參數組合進行分析及實驗,經田口優化法結果顯示,不論是陰刻或陽刻,圖形深度及圖形分佈密度影響皆最為顯著,陽刻之摩擦係數優於無紋理約79.01%,陰刻則為32.38%;實驗方面,陽刻優於無紋理88.45%,陰刻則為59.9%。從以上優化結果可得知,經表面紋理及搭配正確參數後,皆能有效提升摩擦潤滑性能。

    This thesis is mainly to establish a process of friction lubricating performance analysis and parameter research of a piston ring and cylinder wall, mainly using 50W laser engraving machine to texture the test piece. Carrying out research on the design of engraving parameters, respectively engraving times and line spacing, and measuring the roughness, surface microscopic , abrasion rate and hardness value respectively get the best engraving times 4 times and line spacing 0.01mm, and use these two parameters for laser texture design.
    In this research, laser engraving technology is applied to the surface of the stainless steel 304 specimen by laser engraving machine, mainly to discuss the effect of Yin and Yan carving and various parameters on the friction and lubrication. The surface texture technology produces different textures on the surface of the specimen, measures the sliding distance with the impact test and uses numerical analysis software to analyze the flow field.
    According to the established process, this study proposes four different parameters for depth, size, shape and density. Finally, the Taguchi experiment method is used to analyze and experiment with each parameter combination. The results of the Taguchi optimization method show that whether it is Yin carving or Yang carving, the influence of density and area density is the most significant. The friction coefficient of Yan carving is about 79.01% better than that of non-textured, while Yin carving is better than 32.38%. In terms of experiment, the Yan carving is 88.45% better than that non-textured, while Yin carving is better than 59.9%. It can be seen from the above optimization results that after the surface texture and the correct parameters are matched, the friction and lubrication performance can be effectively improved.

    摘要…………………………………………………………I
    Abstract…………………………………………………………II
    謝誌…………………………………………………………IV
    表目錄…………………………………………………………X
    圖目錄…………………………………………………………XII
    符號索引…………………………………………………………XIV
    第 1 章 緒論…………………………………………………………1
    1.1前言…………………………………………………………1
    1.2文獻回顧…………………………………………………………2
    1.3研究動機與目的…………………………………………………………4
    1.4研究背景…………………………………………………………4
    1.4.1雷射原理…………………………………………………………4
    1.4.2雷射特性…………………………………………………………5
    1.4.3雷射結構…………………………………………………………6
    1.4.4重要雷射種類…………………………………………………………7
    1.4.5光纖雷射…………………………………………………………8
    1.4.6光纖雷射優點…………………………………………………………8
    1.4.7雷射雕刻…………………………………………………………8
    1.4.8雷射功率…………………………………………………………8
    1.4.9雷射焦距…………………………………………………………9
    1.4.10雷射速度…………………………………………………………9
    1.4.11線間距…………………………………………………………9
    1.4.12雷射雕刻方式…………………………………………………………10
    第2章 理論基礎…………………………………………………………11
    2.1內燃機簡介…………………………………………………………11
    2.1.1內燃機運作原理及介紹…………………………………………………………11
    2.1.2活塞介紹…………………………………………………………11
    2.1.3活塞環介紹…………………………………………………………11
    2.1.4活塞環之磨損及減少磨損處理…………………………………………………………12
    2.2田口方法…………………………………………………………12
    2.2.1田口法特點…………………………………………………………12
    2.2.2田口式直交表實驗法…………………………………………………………13
    2.2.3 S/N比…………………………………………………………14
    2.3力學理論…………………………………………………………16
    2.3.1功…………………………………………………………16
    2.3.2動能與位能…………………………………………………………16
    2.3.3單擺的能量轉換…………………………………………………………17
    2.3.4彈性碰撞…………………………………………………………18
    2.3.5摩擦力…………………………………………………………19
    2.3.6摩擦係數…………………………………………………………19
    2.3.7耐磨性…………………………………………………………20
    2.4流體定義及特性 …………………………………………………………20
    2.4.1柯提流(Couette Flow)…………………………………………………………21
    第3章 實驗方法…………………………………………………………22
    3.1實驗步驟…………………………………………………………22
    3.2實驗材料參數…………………………………………………………24
    3.2.1材料試件…………………………………………………………24
    3.2.2機油參數…………………………………………………………25
    3.3 Marking-mate 建立模型…………………………………………………………25
    3.3.1圖形深度…………………………………………………………26
    3.3.2圖形形狀…………………………………………………………27
    3.3.3圖形尺寸…………………………………………………………28
    3.3.4圖形分佈密度…………………………………………………………29
    3.4實驗設備…………………………………………………………30
    3.4.1 50W光纖雷射雕刻機…………………………………………………………30
    3.4.2撞擊試驗機…………………………………………………………31
    3.4.3乾濕式磨耗試驗機…………………………………………………………32
    3.4.4粗糙儀…………………………………………………………33
    3.4.5洛氏硬度試驗機…………………………………………………………35
    3.4.6掃描電子顯微鏡…………………………………………………………36
    第4章 有限元素分析…………………………………………………………37
    4.1分析流程…………………………………………………………37
    4.2幾何模型規劃…………………………………………………………38
    4.3邊界條件moving-wall數值計算…………………………………………………………39
    4.4數學方程式…………………………………………………………42
    第5章 結果與討論…………………………………………………………43
    5.1線間距對表面粗糙度及微觀影響…………………………………………………………43
    5.2加工次數對表面粗糙度及微觀影響…………………………………………………………46
    5.3磨耗試驗…………………………………………………………48
    5.4陰陽刻在不同參數下之實驗與分析…………………………………………………………53
    5.4.1陰陽刻-不同深度下對摩擦係數與滑行距離之影響…………………………………………………………53
    5.4.2不同深度對於Couette Flow流動之影響…………………………………………………………57
    5.4.3陰陽刻-不同圖形下對摩擦係數與滑行距離之影響…………………………………………………………58
    5.4.4陰陽刻-不同尺寸下對摩擦係數與滑行距離之影響…………………………………………………………61
    5.4.5陰陽刻-不同分佈密度下對摩擦係數與滑行距離之影響…………………………………………………………64
    5.5陰陽刻田口直交表實驗法…………………………………………………………68
    5.6田口最佳參數分析…………………………………………………………75
    第6章 結論…………………………………………………………76
    參考文獻…………………………………………………………77
    作者簡介…………………………………………………………79

    1.張寶成、蘇鐵雄,2009,內燃機動力學,國防工業出版,北京市。
    2.Grabon, W., Koszela, W, Pawlus, P., Ochwat, S., 2013, “Improving tribological behaviour of piston ring–cylinder liner frictional pair by liner surface texturing,” Tribology International, Vol. 61, pp. 102-108.
    3.Zhang, H., Hua, M., Dong, G., Zhang, D., Chen, W., Dong, U., 2017, ‘‘Optimization of texture shape based on Genetic Algorithm under unidirectional sliding,’’ Tribology International, Vol. 115, pp. 222-232.
    4.Zhou, Y., Zhu, H., Tang, W., Ma, C., Zhang, W., 2012, ‘‘Development of the theoretical model for the optimal design of surface texturing on cylinder liner,’’ Tribology International, Vol. 52, pp. 1-6.
    5.Hua, X., Sun, J., Zhang, P., Ge, H., Fu, Y., Ji, J., Yin, B., 2016, ‘‘Research on discriminating partition laser surface micro-texturing technology of engine cylinder,’’ Tribology International, Vol. 98, pp. 190-196.
    6.Vladescu, S., Olver, A. V., Pegg, L. G., Reddyhoff, T., 2016, ‘‘Combined friction and wear reduction in a reciprocating contact through laser surface texturing,’’ Wear, Vol. 358–359, pp. 51-61.
    7.Sher, E., Etsion, I., 2009, ‘‘Improving fuel efficiency with laser surface textured piston rings,’’ Tribology International, Vol. 42, pp. 542-547.
    8.Ezhilmaran, V., Vasa, N. J., Vijayaraghavan, L., 2018, “Investigation on generation of laser assisted dimples on piston ring surface and influence of dimple parameters on friction,” Surface and Coatings Technology, Vol. 335, pp. 314-326 .
    9.Fu, Y., Lu, H., Hua, X., Yin, B., Tao, G., 2004, ‘‘Theoretical Analysis on Lubrication and Wear-Resisting of the Honed Cylinder Liner,’’ SAE Technical Papers, pp. 559-564.
    10.林三寶,2009,雷射原理與應用,全華圖書,台北縣土城市。
    11.陳彥賓,2005,現代激光焊接技術,科學出版社,北京。
    12.維基百科,https://en.wikipedia.org/wiki/Piston,活塞。
    13.李輝煌,2010,田口方法-品質設計的原理與實務,高立圖書有限公司,台北縣。
    14.Hibbeler,2015,應用力學動力學,台灣培生教育出版股份有限公司,新北市。
    15.廖慶聰、周德明,2018,流體力學,歐亞書局有限公司,新北市。
    16.李祥,2001,流體力學觀念剖析(下),鼎茂圖書出版股份有限公司,台北市。
    17.Grabon, W., Koszela, W., Pawlus, P., Ochwat, S., 2013, ‘‘Improving tribological behaviour of piston ring–cylinder liner frictional pair by liner surface texturing,’’ Tribology International, Vol. 61, pp. 102-108.
    18.Wang, X., Adachi, K., Otsuka, K., Kato, K., 2006, ‘‘Optimization of the surface texture for silicon carbide sliding in water,’’ Applied Surface Science, Vol. 253, pp. 1282-1286.
    19.Etsion, I., 2005, ‘‘ State of the Art in Laser Surface Texturing,’’ Journal of Tribology 127(1).
    20.謝之駿,金屬材料-不鏽鋼材料,國立中興大學,台中市。
    21.蕭亦夆,2018,「雷射紋理技術應用於活塞環表面之活塞摩擦特性探討」,國立屏東科技大學,車輛工程系,屏東。
    22.陳家慶,俞接成與劉美麗,2014,ANSYS FLUENT 技術基礎與工程應用,中國石化出版社,北京。

    無法下載圖示 校外公開
    2025/07/02
    QR CODE