簡易檢索 / 詳目顯示

研究生: 曾耀寬
Tseng, Yao-Kuan
論文名稱: 擺線銑削SKD11工具鋼之切削參數特性探討
An Investigation on the Characteristics of Machining Parameters in Trochoidal Milling SKD11 Tool Steel
指導教授: 簡文通
Chien, Wen-Tung
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程系所
Department of Mechanical Engineering
畢業學年度: 108
語文別: 中文
論文頁數: 90
中文關鍵詞: 擺線銑削田口法TOPSIS表面粗糙度材料移除率刀具磨耗
外文關鍵詞: Trochoidal Milling, Taguchi Method, TOPSIS, Surface Roughness, Material Removal Rate, Tool Wear
DOI URL: http://doi.org/10.6346/NPUST202000155
相關次數: 點閱:35下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統
  • 本研究之目的為利用擺線銑削所具有減低切削力的特性,探討大深度銑削SKD11工具鋼的影響。首先以Ø3.0mm的端銑刀與7.5mm的切削深度做為固定條件,使用田口法L9(34)直交表規劃實驗參數,以銑削後的底面、側壁表面粗糙度及材料移除率做為品質特性,再藉由變異數分析與TOPSIS評選同時考量多項品質的最佳參數組合,並與一般銑削方式比較討論。實驗結果經反應分析分別得到三種不同的最佳參數組合,各自進行確認實驗,得到的S/N比均落在預測值信賴區間內。再以TOPSIS評選的共同參數組合進行實驗,得到底面粗糙度為0.259μm、側壁粗糙度為0.328μm及材料移除率為489.75mm3/min,結果顯示可滿足精切削表面粗糙度為Ra0.4μm之限制,並可提升材料移除率。最後,以相同的材料移除體積與切削速度的條件下,比較一般銑削與擺線銑削的刀具磨耗與材料移除率。一般銑削時刀具的軸向離隙面磨耗平均值為70.64μm,刀腹磨耗平均值為62.2μm,材料移除率為429.03mm3/min;擺線銑削時刀具的軸向離隙面磨耗平均值為46.54μm,刀腹磨耗平均值為22.73μm,材料移除率為489.75mm3/min,結果顯示利用擺線銑削方式有利於減少刀具的磨損,並且當進行大深度銑削時,材料移除率可獲得更佳效果。本研究分析結果可做為切削工業選擇工法或調控參數達成品質改善與提升生產效率之參考。

    The objective of this study was to employ the characteristics of reducing the cutting force by the trochoidal milling and explore the impact of deep milling of SKD11 steel in tools. First, by adopting a fixed condition of Ø3.0mm end mill and 7.5mm cutting depth, while planning with the Taguchi’s L9(34) orthogonal method for the experimental parameters, the roughness of the bottom and side wall of milled surfaces, as well as the material removal rate, were used to describe the quality of milling. Then, through the analysis of variance and TOPSIS selection to consider the optimal combination of multiple quality parameters, the method would be compared with the general milling approach. The results yielded three different optimal parameter combinations through response analysis, and each was confirmed with experimentation with S/N ratios all fell within the confidence interval of the predicted value. Then, an experiment was carried out with the common parameter combination selected by TOPSIS, resulting in a bottom roughness of 0.259μm and a side wall roughness of 0.328μm, and the material removal rate was 489.75mm3/min, which showed that it could satisfy the limit of fine cutting surface roughness of Ra 0.4μm, not to mention an increase in the material removal rate. Lastly, under the same condition of material removal volume and cutting speed, the tool wear and the material removal rate of a trochoidal milling would be compared with those values of the general milling method. The average wear of the axial relief surface of the tool during general milling is 70.64μm, the average wear of the flank is 62.2μm, and the material removal rate is 429.03mm3/min. As for the trochoidal milling, the average wear of the axial relief surface was 46.54μm, the average flank wear was 22.73μm and the material removal rate was 489.75mm3/min, since the results showed that trochoidal milling was better in resistance to tool wear and more material removal rate when performing deep milling. The analysis results of this study could be referenced for the milling industry to choose construction method or control parameters to achieve quality improvement and increase production efficiency.

    摘 要 I
    Abstract II
    謝 誌 IV
    目 錄 V
    表目錄 VIII
    圖目錄 X
    第一章 緒論 1
    1.1前言 1
    1.2文獻回顧 2
    1.2.1擺線銑削 2
    1.2.2工具鋼切削性質 4
    1.2.3 TOPSIS方法應用 5
    1.3研究動機與目的 6
    1.4本文架構 7
    第二章 背景理論 8
    2.1擺線銑削 8
    2.2表面粗糙度 10
    2.2.1表面粗糙度量測名詞 10
    2.2.2中心線平均粗糙度 11
    2.3刀具磨耗 11
    2.3.1刀具磨耗種類 12
    2.3.2刀具磨耗過程 12
    2.4田口法 13
    2.4.1田口法之實驗建構 14
    2.4.2田口法之數據分析 15
    2.5 TOPSIS 20
    第三章 實驗規劃與實驗設備 22
    3.1實驗流程 22
    3.2切削刀具與夾持刀把 24
    3.3實驗材料 25
    3.4實驗設備 26
    3.4.1電腦數控工具機 26
    3.4.2表面粗糙度儀 27
    3.4.3雷射顯微鏡 28
    3.5參數設計 29
    3.6切削模型 30
    3.7程式與路徑規劃 31
    3.8量測方式 33
    3.8.1底面表面粗糙度 33
    3.8.2側壁表面粗糙度 34
    3.8.3材料移除率 35
    3.8.4刀具磨耗 35
    第四章 實驗結果與討論 37
    4.1底面表面粗糙度 37
    4.1.1底面粗糙度因子效應分析 39
    4.1.2底面粗糙度變異數分析 41
    4.1.3底面粗糙度確認實驗 42
    4.2側壁表面粗糙度 44
    4.2.1側壁粗糙度因子效應分析 45
    4.2.2側壁粗糙度變異數分析 47
    4.2.3側壁粗糙度確認實驗 49
    4.3材料移除率 51
    4.3.1材料移除率因子效應分析 52
    4.3.2材料移除率變異數分析 55
    4.3.3材料移除率確認實驗 56
    4.4 TOPSIS方法評選共同參數組合 58
    4.5擺線銑削與一般銑削的特性比較 62
    4.5.1表面粗糙度與材料移除率 62
    4.5.2刀具磨耗 64
    4.6擺線銑削底面與側壁表面粗糙度比較 70
    第五章 結論與建議 73
    5.1結論 73
    5.2建議 74
    參考文獻 75
    附錄A 底面粗糙度輪廓曲線 78
    附錄B 側壁粗糙度輪廓曲線 82
    作者簡介 90

    [1] Waszczuk, K., Karolczak, P., Wiśniewska, M., Kowalski, M., 2017, “Influence of the Path Type on Selected Technological Effects in the Trochoidal Milling,” Advances in Science and Technology Research Journal, Vol. 11, No. 1, pp. 147-153.
    [2] Szalóki, I, Csuka, S., Csesznok, S., Sipos, S., 2012, “Can Trochoidal Milling Be Ideal?,” Conference of GTE on Manufacturing and related technologies, Vol. 5, pp. 1-10.
    [3] 劉胤,劉軍,楊芸,焦剛,胡小秋,2010,「次擺線走刀在高速銑削窄槽結構中的應用」,宇航材料工藝,第40卷,第1期,第64-68頁。
    [4] 陳晉昇,2015,以田口法運用於SCM415材料擺線銑削加工參數優化探討,碩士論文,龍華科技大學,機械工程系碩士班,桃園。
    [5] 黃子浩,2018,以擺線工法切削Ti-10V-2Fe-3Al之分析研究,碩士論文,國立台灣科技大學,機械工程系,台北。
    [6] Patil, P., Polishetty, A., Goldberg, M., Littlefair, G., Nomani, J., 2014, “Slot Machining of Ti6Al4V with Trochoidal Milling Technique,” Journal of Machine Engineering, Vol. 14, No. 4, pp. 42-54.
    [7] Wu, S. X., Ma, W., Li, B., Wang, C. Y., 2016, “Trochoidal Machining for the High-Speed Milling of Pocket,” Journal of Materials Processing Technology, Vol. 233, pp. 29-43.
    [8] Pleta, A., Mears, L., 2016, “Cutting Force Investigation of Trochoidal Milling in Nickel-Based Superalloy,” Procedia Manufacturing, Vol. 5, pp. 1348-1356.
    [9] 柯凱晉,2003,不同硬度與切速對模具鋼銑削特性影響之研究,碩士論文,國立成功大學,機械工程研究所,台南。
    [10] 王瀟屹,張曉輝,安慶龍,陳明,許輝,劉鋼,2009,「新型塗層刀具乾式銑削加工SKD11切削性能研究」,工具技術,第43卷,第2期,第8-11頁。
    [11] Oishi, K., 1995, “Built-up Edge Elimination in Mirror Cutting of Hardened Steel,” Journal of Manufacturing Science and Engineering, Vol. 117, No. 1, pp. 62-66.
    [12] Dureja, J. S., Singh, R., Bhatti, M. S., 2014, “Optimizing flank wear and surface roughness during hard turning of AISI D3 steel by Taguchi and RSM methods,” Production & Manufacturing Research, Vol. 2, No. 1, pp. 767-783.
    [13] Gaitonde, V. N., Karnik, S. R., Maciel, C. H. A., Rubio, J. C. C., Abrão, A. M., 2016, “Machinability Evaluation in Hard Milling of AISI D2 Steel,” Material Research, Vol. 19, No. 2, pp. 360-368.
    [14] 盧昆宏,楊捷允,2013,「關鍵因子選擇與多品質特性田口方法最適參數決策演算法之建構」,品質學報,第20卷,第1期,第63-89頁。
    [15] Khan, A., Maity, K., 2017, “Application of MCDM-based TOPSIS method for the selection of optimal process parameter in turning of pure titanium,” Benchmarking: An International Journal, Vol. 24, No. 7, pp. 2009-2021.
    [16] Oh, N. S., Woo, W. S., Lee, C. M., 2017, “A Study on the Machining Characteristics and Energy Efficient of Ti-6Al-4V in Laser-Assisted Trochoidal Milling,” International Journal of Precision Engineering and Manufacturing-Green Technology, Vol. 5, No. 1, pp. 37-45.
    [17] 楊益綸,2018,酒桶刀應用於五軸工具機加工曲面時最佳化參數之探討,碩士論文,國立屏東科技大學,機械工程系,屏東。
    [18] 楊忠祥,2012,S50C中碳鋼精銑削刀具壽命之研究,碩士論文,國立中興大學,機械工程研究所,台中。
    [19] 王芏凱,2017,探討高速銑削304不鏽鋼對工件表面粗糙度及刀具磨耗之特性,碩士論文,國立屏東科技大學,機械工程系,屏東。
    [20] 李輝煌,2011,田口方法:品質設計的原理與實務,高立圖書有限公司,新北。
    [21] 張紹勳,2012,模糊多準則評估法及統計,五南圖書出版股份有限公司,台北,第144-159頁。
    [22] 張宗翰,史弼中,「以Entropy-Based TOPSIS評估台灣食品公司經營績效」,國立虎尾科技大學學報,第31卷,第2期,第7-25頁。
    [23] 黃振賢,2003,機械材料,新文京開發出版股份有限公司,台北。
    [24] 吳宏達,2015,結合田口與多屬性決策法求解多重品質特性之穩健設計-以鋰電池焊接製程為例,碩士論文,國立成功大學,工程管理系,台南。

    下載圖示
    QR CODE