簡易檢索 / 詳目顯示

研究生: 鍾孟靜
Meng-Ching Chung
論文名稱: 使用野生型秀麗線蟲-動物模式探討PM2.5之不良效應
Adverse toxicity of PM2.5 in a wild-type Caenorhabditis elegans
指導教授: 黃國林
Huang, Kuo-lin
學位類別: 博士
Doctor
系所名稱: 工學院 - 環境工程與科學系所
Department of Environmental Science and Engineering
畢業學年度: 108
語文別: 英文
論文頁數: 65
中文關鍵詞: 秀麗線蟲細懸浮微粒(PM2.5)交通排放之空氣污染物壽命分析運動行為評估生殖毒性試驗與老化現象
外文關鍵詞: C. elegans, traffic related pollutant (TRP), lifespan, ageing
DOI URL: http://doi.org/10.6346/NPUST202000161
相關次數: 點閱:13下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統
  • 近幾年來細懸浮微粒與PM2.5污染問題日益嚴重,對於人體的毒性危害也越來越受到重視,目前研究已證實暴露於PM2.5與心血管疾病、中風、心臟病與高血壓有關。而現今科學家長期關心在探討PM2.5有害空氣污染物(hazardous air pollutants, HAPs)對於人體健康所帶來之危害。本研究為使用動物模型-野生型秀麗線蟲(Caenorhabditis elegans , C. elegans)探討暴露PM2.5後所造成之不良效應,採集地點選自屏東縣-國立屏東科技大學(NPUST)、麟洛國中(LJSH)與台中市(traffic-related-air-pollutant, TRP)的交通要道與鄉村地區,同時進行多種毒性試驗,如:致死率(存活率試驗與壽命分析)、運動行為評估(頭部擺動與身體彎曲)與生殖毒性試驗(繁殖後代數量),來觀察不同地區之PM2.5對於秀麗線蟲之影響。根據2個地區採集之PM2.5濃度顯示,屏東縣2所學校皆符合標準,反之台中市採集之PM2.5濃度超過世界衛生組織與行政院環境保護署的法規標準值。在秀麗線蟲暴露實驗中的第一項研究結果顯示,暴露NPUST與LJSH的PM2.5皆對於存活率沒有顯著影響,但相對在壽命分析、運動行為評估與生殖毒性試驗方面,NPSUT所造成之毒性高於LJSH,因此PM2.5暴露濃度高低與線蟲之不良效應有顯著關係,另外長時間暴露所造成之毒性影響比急性暴露更加嚴重,透過這次實驗表明,雖然採集PM2.5濃度較低,但長期下來然仍可能會對周遭環境生物造成毒影響。
    實驗結果亦顯示,急性暴露後並未對秀麗線蟲造成顯著致死影響在生殖毒性試驗方面,雖然Day A與Day C並未減少線蟲產生後代數量,但透過統計發現線蟲對於PM2.5劑量依賴性有顯著降低趨勢。根據運動行為評估(神經系統)與壽命分析,實驗結果發現 PM2.5濃度越高,對於線蟲神經毒性(頭部擺動與身體彎曲)與壽命影響也越顯著。與生殖毒性試驗結果相比,特定實驗對線蟲歲造成的毒性影響,如壽命分析與運動行為評估(神經行為)會更加嚴重。

    關鍵詞:秀麗線蟲、細懸浮微粒(PM2.5)、交通排放之空氣污染物、壽命分析、運動行為評估、生殖毒性試驗與老化現象。

    Fine particulate or PM2.5 has raised the public concern due to its toxicity to human. PM2.5 pollution is linked into cardiovascular disease, stroke, heart attack, and hypertension in science. Many environmental scientists have focused on PM2.5-bounded hazardous air pollutants (HAPs) and their toxic effects correlated to human health. In the present study, an in-vivo wild-type Caenorhabditis elegans (C. elegans) was used to examine the induced toxicity after C. elegans was exposed to PM2.5. Many PM2.5 toxicity assessments using in vitro nematodes’ models have focused on PM2.5-bounded hazardous pollutants. The study design of the in-vivo models were addressed to PM2.5 toxicity in the rural and traffic areas in Pingtung and Taichung, respectively. Firstly, the toxic effects of outdoor PM2.5, collected from National Pingtung University of Science and Technology (NPUST) and Linluo Junior High School (LJHS), Pingtung, Taiwan, on nematode C. elegans were investigated. PM2.5 from NPUST and LJHS, which did not meet the standard. Secondly, the toxicity of traffic-related-pollutant (TRP) PM2.5 was evaluated in the animal model C. elegans using different toxicological endpoints such as lethality, survivability (lifespan or ageing), behavioral (head thrashing and body bending), and reproduction (brood size). Most TRP PM2.5 concentrations collected in Taichung were exceeded the standards of Taiwanese Environmental Protrction Adminstration and World Health Organzation guidline.
    No significant PM2.5 lethality on C. elegans was observed for the NPUST and LJHS samples in acute toxicity tests. The PM2.5 from NPUST exhibited higher toxicity to lifespan, locomotion, and reproduction in the C. elegans animal models than that from LJHS; therefore, adverse effects could be correlated with PM2.5 concentrations. Prolonged exposure to PM2.5 led to more severe toxicity in nematodes as compared to acute exposure.Therefore the long-term adverse effects of ambient PM2.5 on environmental organisms should be carefully considered even when PM2.5 is at low levels.
    No immediate lethality was observed after acute exposure of the nematodes. On the other hand, sublethal endpoints of reproduction exhibited statistically significant dose-dependent reduction, although Day A and Day C did not decrease the egg-laying capability of the worms. For the neurological toxicity, it is inferred that the higher the PM2.5 concentrations, the more the adverse effects of neurobehavior (head trashing and body bending) it poses on the C. elegans. The lifespans of nematodes exposed to heavily TRP PM2.5 were significantly shortened compared with those of untreated ones based on survival rate. The nematodes exposed PM2.5 models not only posed potentially adverse health effects on human but also represented ecotoxic impacts on the ecosystem. Accordingly heavy concentrations of TRP PM2.5 significantly and severely disrupted toxicological endpoints of neurology and reproduction to C. elegans. TRP PM2.5 significantly shortened the lifespan of the nematodes compared with the control. TRP PM2.5 might more severely influenced the specific toxic endpoints, such as lifespan and neurobehavira, in this in-vivo models compared with the reproductive endpoints. C. elegans animals model is a sensitive one for the evaluation of PM2.5 ecotoxicity.

    Keywords: C. elegans; PM2.5; traffic related pollutant (TRP); lifespan; locomotion; reproduction; ageing.

    Content
    中文摘要 I
    Abstract III
    Acknowledgments VI
    Content VII
    Figure List IX
    Table List X
    Chapter 1 Introduction 1
    Chapter 2 Literature Review 3
    2.1 PM2.5 and its sources 3
    2.2 PM2.5 and its health adverse effects 4
    2.3 C. elegans models 6
    2.4. The toxicity of PM2.5 in C. elegans models 10
    Chapter 3 Materials and Methods 11
    3.1 Chemical Reagents 11
    3.2 Sample collection 12
    3.2.1 Traffic pollution sources in schools in southern Taiwan : 13
    3.2.2 Sources of traffic and road pollution in the Taiwan Tunghai : 14
    3.3 Extraction, purification, and sample preparation 15
    3.4 C. elegans age synchronization for exposure experiments 16
    3.5 Acute Exposure 18
    3.6 Lethality Assay 18
    3.7 Lifespan Assay (Ageing Assay) 18
    3.8 Reproductive or Brood Size Assay 19
    3.9 Growth Measurement Assay 19
    3.10 Locomotion Assay (Head Thrash and Body Bend Assay) 20
    3.11 Statistical analysis 20
    Chapter 4 Results and discussion 21
    4.1 Investigation of PM2.5 in a wild-type C. elegans model in the rural areas 21
    4.1.1 Lethality effects of PM2.5 on C. elegans 21
    4.2 Lifespan of C. elegans after PM2.5 exposure 23
    4.3 Growth measurement assay 26
    4.4 Effect of outdoor air PM2.5 levels on the reproductive system of C. elegans 28
    4.5 Effects of ambient PM2.5 on locomotion behavior of C. elegans 31
    4.2 Investigation of TRP PM2.5 of C. elegans in the heavily traffic areas in the spring season 34
    4.1 Air pollution in the highly heavy traffic area 34
    4.2 Lethal Effects of PM2.5 to C. elegans 37
    4.3 Effects of TRP PM2.5 on the Brood size of C. elegans 39
    4.4 Effects of TRP PM2.5 on the Locomotion behavior of C. elegans 42
    4.5 Effects of TRP PM2.5 on the Life Span of C. elegans 45
    Chapter 5 Conclusions and Suggestion 50
    5.1 Conclusions 50
    5.1.1 Low levels of PM2.5 in the rural areas 50
    5.1.2 The high levels of PM2.5 in the traffic areas 51
    5.2 Limitations and suggestions 51
    5.2.1 Limitations 51
    5.2.2 Suggestions 52
    Reference 53
    附錄 62
    作者簡介 62


    Figure List
    Fig. 2.1 The temperature effects on molting (A) and the life cycle of C. elegans(B). (Gonzalez-Moragas et al. 2015) 9
    Fig. 3.1 The PM2.5 air sampling device of SIBATA HV-1000R 12
    Fig. 3.2 (a) The sampling locations in Pingtung. NPUST Latitude and longitude:(22°38'49.8"N 120°36'32.6"E)and LJSH Latitude and longitude:(22°38'29.1"N 120°32'11.2"E) 13
    Fig. 3.2 (b) The sampling locations in Taichung. THU Latitude and longitude:(24.18182, 120.59595) 14
    Fig. 3.3 The PM2.5 air Extraction device of Soxhlet extractor 15
    Fig. 3.4 The incubation procedure of C. elegans 16
    Fig. 3.5 The flow chart of examining procedure in C. elegans models 17
    Fig. 4.1 Dose-dependent lethality of PM2.5 from (Left) NPUST and LJHS after 24-hour exposure. 23
    Fig. 4.2 Effects of PM2.5 from NPUST and (Bottom) LJHS on C. elegans lifespan after 24-hour exposure. 26
    Fig. 4.3 Effects of PM2.5 from (Left) NPUST and LJHS on C. elegans growth, observed as changes in body length, after 24-hour exposure. 28
    Fig. 4.4 Effects of PM2.5 from NPUST and (Bottom) LJHS on C. elegans brood size, observed (A and C) two days and (B and D) four days after 24-hour acute exposure. 31
    Fig. 4.5 Effects of PM2.5 from NPUST and (Bottom) LJHS on C. elegans locomotion and movement after 24-hour acute exposure. A and C for head thrashing and B and D for body bending. 34
    Fig. 4.8 Survival rates of C. elegans after 24 h exposure to heavily TRP PM2.5 obtained by selected three days (Days A (a), B (b), and C (c)). 39
    Fig. 4.9 Reproductive effects of brood sizes in the C. elegans models after 24-hr exposure to heavily TRP PM2.5 obtained by selected three days (Days A (a), B (b), and C (c)). 42
    Fig. 4.10 Dose-dependent reductions of locomotion (head thrashing (1) and body bending (2)) in the C. elegans models after 24-hr exposure to heavily TRP PM2.5 obtained in selected three days (Days A (a1 and a2), B (b1 and b2), and C (c1 and c2)). 45
    Fig. 4.16. Survival rates (%) (a), mean lifespans (b), 50th percentile death days (c), 75th percentile death days (d), and 95th percentile death days (e) of C. elegans after 24-hr exposure to heavily TRP PM2.5 obtained by selected three days (a mixture of Days A, B,and C). 50

    Table List
    Table. 2.1 Summary of the advantages and disadvantages of C. elegans as a tool for in vivo evaluation of nanotoxicity. (Gonzalez-Moragas et al. 2015) 9

    Reference
    Aoki, I. and Mori, I. (2015). Molecular Biology of Thermosensory Transduction in C. Elegans. Curr. Opin. Neurobiol. 34: 117-124.
    Altun, Z., L. Herndon, C. Wolkow, C. Crocker, R. Lints and D. Hall (2002). "DiI and DiO Staining in C. elegans." Wormatlas.
    Brenner, S. (1974). The Genetics of Caenorhabditis Elegans. Genetics 77: 71-94.
    Brook, R.D. and Rajagopalan, S. (2010). Particulate Matter Air Pollution and Atherosclerosis. Curr Atheroscler Rep 12: 291-300.
    Brown, S.G., Penfold, B., Mukherjee, A., Landsberg, K. and Eisinger, D.S. (2019). Conditions Leading to Elevated Pm2. 5 at near-Road Monitoring Sites: Case Studies in Denver and Indianapolis. Int. J. Environ. Res. Public Health 16: 1634.
    Burnett, R.T., Pope III, C.A., Ezzati, M., Olives, C., Lim, S.S., Mehta, S., Shin, H.H., Singh, G., Hubbell, B. and Brauer, M. (2014). An Integrated Risk Function for Estimating the Global Burden of Disease Attributable to Ambient Fine Particulate Matter Exposure. Environ. Health Perspect. 122: 397-403.
    Chao, H.R., Que, D.E., Gou, Y.Y., Chuang, C.Y., Chang, T.Y. and Hsu, Y.C. (2016). Indoor and Outdoor Concentrations of Polybrominated Diphenyl Ethers on Respirable Particulate in Central and Southern Taiwan. Aerosol Air Qual. Res. 16: 3187-3197.
    Chao, H.R., Hsu, J.W., Ku, H.Y., Wang, S.L., Huang, H.B., Liou, S.H. and Tsou, T.C. (2018). Inflammatory Response and Pm2.5 Exposure of Urban Traffic Conductors. Aerosol Air Qual. Res. 18: 2633-2642.
    Clavijo, A., Kronberg, M.F., Rossen, A., Moya, A., Calvo, D., Salatino, S.E., Pagano, E.A., Morábito, J.A. and Munarriz, E.R. (2016). The Nematode Caenorhabditis Elegans as an Integrated Toxicological Tool to Assess Water Quality and Pollution. Sci. Total Environ. 569-570: 252-261.
    Crouse, D.L., Peters, P.A., van Donkelaar, A., Goldberg, M.S., Villeneuve, P.J., Brion, O., Khan, S., Atari, D.O., Jerrett, M. and Pope III, C.A. (2012). Risk of Nonaccidental and Cardiovascular Mortality in Relation to Long-Term Exposure to Low Concentrations of Fine Particulate Matter: A Canadian National-Level Cohort Study. Environ. Health Perspect. 120: 708-714.
    Dodla, V.B.R., Gubbala, C.S. and Desamsetti, S. (2017). Atmospheric Dispersion of Pm2.5 Precursor Gases from Two Major Thermal Power Plants in Andhra Pradesh, India. Aerosol Air Qual. Res. 17: 381-393.
    Feng, S., Gao, D., Liao, F., Zhou, F. and Wang, X. (2016). The Health Effects of Ambient Pm2.5 and Potential Mechanisms. Ecotoxicol. Environ. Saf. 128: 67-74
    Fu, P., Guo, X., Cheung, F.M.H. and Yung, K.K.L. (2019). The Association between Pm2.5 Exposure and Neurological Disorders: A Systematic Review and Meta-Analysis. Sci. Total Environ. 655: 1240-1248.
    Fujitani, Y., A. Furuyama, K. Tanabe and S. Hirano (2016). "Comparison of oxidative abilities of PM2. 5 collected at traffic and residential sites in Japan. Contribution of transition metals and primary and secondary aerosols." Aerosol and Air Quality Research 17(2): 574-587.
    Gibson, M.D., Kundu, S. and Satish, M. (2013). Dispersion Model Evaluation of Pm2.5, Nox and So2 from Point and Major Line Sources in Nova Scotia, Canada Using Aermod Gaussian Plume Air Dispersion Model. Atmos Pollut Res 4: 157-167.
    Gonzalez-Moragas, L., Roig, A. and Laromaine, A. (2015). C. Elegans as a Tool for in Vivo Nanoparticle Assessment. Adv Colloid Interface Sci 219: 10-26.
    Hayes, R.B., Lim, C., Zhang, Y., Cromar, K., Shao, Y., Reynolds, H.R., Silverman, D.T., Jones, R.R., Park, Y. and Jerrett, M. (2020). Pm2. 5 Air Pollution and Cause-Specific Cardiovascular Disease Mortality. Int J Epidemiol 49: 25-35.
    Hall, D. and Z. Altun (2008). Introduction to C. elegans anatomy. C. elegans Atlas, Cold Spring Harbor Laboratory Press: Cold Spring Harbor, New York, NY, USA.
    HEI (2018). State of Global Air Last Accessed From: Https://Www.Stateofglobalair.Org/Sites/Default/Files/Soga-2018-Report.Pdf.
    Hopke, P.K., Harrison, R.M., de Leeuw, F. and Querol, X. (2018). Chapter 1 - Current State of Particulate Air Quality, In Non-Exhaust Emissions, Amato, F. (Ed.), Academic Press, pp. 1-19
    Hu, Z. (2009). Spatial Analysis of Modis Aerosol Optical Depth, Pm 2.5, and Chronic Coronary Heart Disease. Int. J. Health Geogr. 8: 27..
    Hu, C.-Y., Fang, Y., Li, F.-L., Dong, B., Hua, X.-G., Jiang, W., Zhang, H., Lyu, Y. and Zhang, X.-J. (2019). Association between Ambient Air Pollution and Parkinson's Disease: Systematic Review and Meta-Analysis. Environ. Res. 168: 448-459.
    Hu, Y., Wang, L.-S., Li, Y., Li, Q.-H., Li, C.-L., Chen, J.-M., Weng, D. and Li, H.-P. (2017). Effects of Particulate Matter from Straw Burning on Lung Fibrosis in Mice. Environ. Toxicol. Pharmacol. 56: 249-258.
    Huang, C.-c., Chen, B.-y., Pan, S.-c., Ho, Y.-l. and Guo, Y.L. (2019). Prenatal Exposure to Pm2.5 and Congenital Heart Diseases in Taiwan. Sci. Total Environ. 655: 880-886.
    Jun, X., Jin, G., Fu, C., Jinxuan, Z., Xuelin, L., Jiaxin, H., Shuaihua, Q., Anqi, S., Jianzhou, C., Lian, Z., Xiwen, Z., Baoli, Z. and Biao, X. (2018). Pm2.5 Promotes Abdominal Aortic Aneurysm Formation in Angiotensin Ⅱ-Infused Apoe-/- Mice. Biomed. Pharmacother. 104: 550-557.
    Kaletta, T. and Hengartner, M.O. (2006). Finding Function in Novel Targets: C. Elegans as a Model Organism. Nat Rev Drug Discov 5: 387.
    Karimi, B., shokrinezhad, B. and Samadi, S. (2019). Mortality and Hospitalizations Due to Cardiovascular and Respiratory Diseases Associated with Air Pollution in Iran: A Systematic Review and Meta-Analysis. Atmos. Environ. 198: 438-447.
    Kiesewetter, G., Schoepp, W., Heyes, C. and Amann, M. (2015). Modelling Pm2.5 Impact Indicators in Europe: Health Effects and Legal Compliance. Environ Model Softw 74: 201-211.
    Kim, T.-Y., Ho Kim, H., Yi, S.-M., Cheong, J.-P., Heo, J. (2015) Short-term Effects of Ambient PM2.5 and PM2.5-10 on Mortality in Major Cities of Korea. Aerosol Air Qual. Res. 18: 1853–1862.
    Kloog, I., Melly, S.J., Ridgway, W.L., Coull, B.A. and Schwartz, J. (2012). Using New Satellite Based Exposure Methods to Study the Association between Pregnancy Pm 2.5 Exposure, Premature Birth and Birth Weight in Massachusetts. Environ. Health Perspect. 11: 40.
    Labrada-Delgado, G., Aragon-Pina, A., Campos-Ramos, A., Castro-Romero, T., Amador-Munoz, O. and Villalobos-Pietrini, R. (2012). Chemical and Morphological Characterization of Pm2. 5 Collected During Milagro Campaign Using Scanning Electron Microscopy. Atmospheric Pollut. Res. 3: 289-300.
    Leung, M.C.K., Williams, P.L., Benedetto, A., Au, C., Helmcke, K.J., Aschner, M. and Meyer, J.N. (2008). Caenorhabditis Elegans: An Emerging Model in Biomedical and Environmental Toxicology. Toxicol. Sci. 106: 5-28.
    Li, M., Hu, M., Guo, Q., Tan, T., Du, B., Huang, X., He, L., Song Guo, S., Wang, W., Fan, Y., Xu, D. (2018a) Seasonal Source Apportionment of PM2.5 in Ningbo, a Coastal City in Southeast China. Aerosol Air Qual. Res. 18: 2741-2752.
    Li, T., Zhang, Y., Wang, J., Xu, D., Yin, Z., Chen, H., Lv, Y., Luo, J., Zeng, Y., Liu, Y., Kinney, P.L., Shi, X. (2018b). All-cause mortality risk associated with long-term exposure to ambient PM2·5 in China: a cohort study. Lancet Public Health. 3(10): e470-e477.
    Lin, Z., Niu, Y., Chen, R., Xu, W., Li, H., Liu, C., Cai, J., Zhao, Z., Kan, H. and Qiao, L. (2017). Fine Particulate Matter Constituents and Blood Pressure in Patients with Chronic Obstructive Pulmonary Disease: A Panel Study in Shanghai, China. Environ. Res. 159: 291-296.
    Lee, Y.-Y., Wang, L.-C., Zhu, J., Wu, J.-L., Lee, K.-L. (2018) Atmospheric PM2.5 and Polychlorinated Dibenzo-p-dioxins and Dibenzofurans in Taiwan. Aerosol Air Qual. Res. 18: 762-779.
    Löndahl, J., J. Pagels, E. Swietlicki, J. Zhou, M. Ketzel, A. Massling and M. Bohgard (2006). "A set-up for field studies of respiratory tract deposition of fine and ultrafine particles in humans." Journal of Aerosol Science 37(9): 1152-1163.
    Lo, W.C., Shie, R.H., Chan, C.C. and Lin, H.H. (2017). Burden of Disease Attributable to Ambient Fine Particulate Matter Exposure in Taiwan. J. Formos. Med. Assoc. 116: 32-40.
    Lung, C.-C., Chen, S.-C., Yang, C.-H., Chen, Y.-C., Chang, S.-Y., Tseng, W.-C. and Liu, S.-C. (2016). Using Atmospheric Visibility to Assess the Effects of Air Pollution on Hospital Admissions for Respiratory Diseases. Aerosol Air Qual. Res. 16: 2237-2244.
    Matawle, J. L., S. Pervez, S. Dewangan, A. Shrivastava, S. Tiwari, P. Pant, M. K. Deb and Y. Pervez (2015). "Characterization of PM2. 5 source profiles for traffic and dust sources in Raipur, India." Aerosol and Air Quality Research 15(7): 2537-2548.
    Maciejczyk, P., Jin, L., Hwang, J.-S., Guo, X., Zhong, M., Thurston, G., Qu, Q., Zhang, J., Sun, Q., Chen, L.-C. (2018) Association of Cardiovascular Responses in Mice with Source-apportioned PM2.5 Air Pollution in Beijing. Aerosol Air Qual. Res. 18: 1839–1852.
    Mari, M., Sánchez-Soberón, F., Audí-Miró, C., van Drooge, B.L., Soler, A., Grimalt, J.O. and Schuhmacher, M. (2016). Source Apportionment of Inorganic and Organic Pm in the Ambient Air around a Cement Plant: Assessment of Complementary Tools. Aerosol Air Qual. Res. 16: 3230-3242.
    Martins, N.R. and Carrilho da Graça, G. (2018). Impact of Pm2.5 in Indoor Urban Environments: A Review. Sustain Cities Soc 42: 259-275.
    Miri, M., Nazarzadeh, M., Alahabadi, A., Ehrampoush, M.H., Rad, A., Lotfi, M.H., Sheikhha, M.H., Sakhvidi, M.J.Z., Nawrot, T.S. and Dadvand, P. (2019). Air Pollution and Telomere Length in Adults: A Systematic Review and Meta-Analysis of Observational Studies. Environ. Pollut. 244: 636-647.
    Mohammadyan, M., Alizadeh-Larimi, A., Etemadinejad, S., Latif, M.T., Heibati, B., Yetilmezsoy, K., Abdul-Wahab, S.A. and Dadvand, P. (2017). Particulate Air Pollution at Schools: Indoor-Outdoor Relationship and Determinants of Indoor Concentrations. Aerosol Air Qual. Res. 17: 857-864.
    Nass, R. and I. Hamza (2007). "The nematode C. elegans as an animal model to explore toxicology in vivo: solid and axenic growth culture conditions and compound exposure parameters." Current Protocols in Toxicology 31(1): 1.9. 1-1.9. 18.
    Organization, W.H. (2006). Air Quality Guidelines: Global Update 2005: Particulate Matter, Ozone, Nitrogen Dioxide, and Sulfur Dioxide.
    Organization, W.H. (2016). Ambient Air Pollution: A Global Assessment of Exposure and Burden of Disease.
    Orru, H., Maasikmets, M., Lai, T., Tamm, T., Kaasik, M., Kimmel, V., Orru, K., Merisalu, E. and Forsberg, B. (2011). Health Impacts of Particulate Matter in Five Major Estonian Towns: Main Sources of Exposure and Local Differences. Air Qual Atmos Health 4: 247-258.
    Owoade, K.O., Hopke, P.K., Olise, F.S., Ogundele, L.T., Fawole, O.G., Olaniyi, B.H., Jegede, O.O., Ayoola, M.A. and Bashiru, M.I. (2015). Chemical Compositions and Source Identification of Particulate Matter (Pm2.5 and Pm2.5–10) from a Scrap Iron and Steel Smelting Industry Along the Ife–Ibadan Highway, Nigeria. Atmos Pollut Res 6: 107-119.
    Pandey, P., Patel, D.K., Khan, A.H., Barman, S.C., Murthy, R.C. and Kisku, G.C. (2013). Temporal Distribution of Fine Particulates (Pm 2.5, Pm 10 ), Potentially Toxic Metals, Pahs and Metal- Bound Carcinogenic Risk in the Population of Lucknow City, India Temporal Distribution of Fine Particulates (Pm 2.5, Pm 10 ), Potentially Toxic Metals, Pahs and Metal-Bound Carcinogenic Risk in the Population of Lucknow City, India. Journal of Environmental Science and Health, Part A 487: 730-745.
    Pinkerton, K.E., Green, F.H.Y., Saiki, C., Vallyathan, V., Plopper, C.G., Gopal, V., Hung, D., Bahne, E.B., Lin, S.S., Ménache, M.G. and Schenker, M.B. (2000). Distribution of Particulate Matter and Tissue Remodeling in the Human Lung. Environmental Health Perspectives 108.
    Polezer, G., Tadano, Y.S., Siqueira, H.V., Godoi, A.F.L., Yamamoto, C.I., de André, P.A., Pauliquevis, T., Andrade, M.d.F., Oliveira, A., Saldiva, P.H.N., Taylor, P.E. and Godoi, R.H.M. (2018). Assessing the Impact of Pm2.5 on Respiratory Disease Using Artificial Neural Networks. Environmental Pollution 235: 394-403.
    Riddle, D. L., T. Blumenthal, B. J. Meyer and J. R. Priess (1997). Introduction to C. elegans. C. elegans II. D. L. Riddle, T. Blumenthal, B. J. Meyer and J. R. Priess. Cold Spring Harbor (NY), Cold Spring Harbor Laboratory PressCopyright © 1997, Cold Spring Harbor Laboratory Press. Shaye, D. D. and I. Greenwald (2011). "OrthoList: a compendium of C. elegans genes with human orthologs." PloS one 6(5): e20085.
    Rai, N., Sjöberg, V., Forsberg, G., Karlsson, S., Olsson, P.E. and Jass, J. (2019). Metal Contaminated Soil Leachates from an Art Glass Factory Elicit Stress Response, Alter Fatty Acid Metabolism and Reduce Lifespan in Caenorhabditis Elegans. Sci. Total Environ. 651: 2218-2227.
    Salako, G.O., Hopke, P.K., Cohen, D.D., Begum, B.A., Biswas, S.K., Pandit, G.G., Chung, Y.-S., Rahman, S.A., Hamzah, M.S., Davy, P., Markwitz, A., Shagjjamba, D., Lodoysamba, S., Wimolwattanapun, W. and Bunprapob, S. (2012). Exploring the Variation between Ec and Bc in a Variety of Locations. Aerosol Air Qual. Res. 12: 1-7.
    Seneviratne, S., Handagiripathira, L., Sanjeevani, S., Madusha, D., Waduge, V.A.A., Attanayake, T., Bandara, D. and Hopke, P.K. (2017). Identification of Sources of Fine Particulate Matter in Kandy, Sri Lanka. Aerosol Air Qual. Res. 17: 476-484.
    Sun, L., Lin, Z., Liao, K., Xi, Z. and Wang, D. (2015). Adverse Effects of Coal Combustion Related Fine Particulate Matter (Pm2.5) on Nematode Caenorhabditis Elegans. Sci. Total Environ. 512-513: 251-260.
    Sun L, Wu Q, Liao K, Yu P, Cui Q, Rui Q, Wang D. (2016) Contribution of Heavy Metals to Toxicity of Coal Combustion Related Fine Particulate Matter (PM2.5) in Caenorhabditis Elegans with Wild-Type or Susceptible Genetic Background. Chemosphere 144: 2392-2400.
    Tseng, C.-Y., S.-L. Lin, J. K. Mwangi, C.-S. Yuan and Y.-L. Wu (2016). "Characteristics of atmospheric PM2. 5 in a densely populated city with multi-emission sources." Aerosol and Air Quality Research 16(9): 2145-2158.
    Wang, M., Nie, Y., Liu, Y., Dai, H., Wang, J., Si, B., Yang, Z., Cheng, L., Liu, Y., Chen, S. and Xu, A. (2019). Transgenerational Effects of Diesel Particulate Matter on Caenorhabditis Elegans through Maternal and Multigenerational Exposure. Ecotoxicol. Environ. Saf. 170: 635-643.
    Williams, A.M., Phaneuf, D.J., Barrett, M.A. and Su, J.G. (2019). Short-Term Impact of Pm2. 5 on Contemporaneous Asthma Medication Use: Behavior and the Value of Pollution Reductions. Proc. Natl. Acad. Sci. U.S.A. 116: 5246-5253.
    Xu, M.-X., Ge, C.-X., Qin, Y.-T., Gu, T.-T., Lou, D.-S., Li, Q., Hu, L.-F., Feng, J., Huang, P. and Tan, J. (2019). Prolonged Pm2.5 Exposure Elevates Risk of Oxidative Stress-Driven Nonalcoholic Fatty Liver Disease by Triggering Increase of Dyslipidemia. Free Radic. Biol. Med. 130: 542-556.
    Yan, F., Zhu, F., Wang, Q. and Xiong, Y. (2016). Preliminary Study of Pm2.5 Formation During Municipal Solid Waste Incineration. Procedia Environ Sci 31: 475-481.
    Yang, B. and Xiao, C. (2018). Pm2.5 Exposure Significantly Improves the Exacerbation of A549 Tumor-Bearing Cb17-Scid Mice. Environ. Toxicol. Pharmacol. 60: 169-175.
    Yue, W., Li, X., Liu, J., Li, Y., Yu, X., Deng, B., Wan, T., Zhang, G., Huang, Y. and He, W. (2006). Characterization of Pm2. 5 in the Ambient Air of Shanghai City by Analyzing Individual Particles. Sci. Total Environ. 368: 916-925.
    Zanobetti, A., Dominici, F., Wang, Y. and Schwartz, J.D. (2014). A National Case-Crossover Analysis of the Short-Term Effect of Pm2.5 on Hospitalizations and Mortality in Subjects with Diabetes and Neurological Disorders. J Toxicol Environ Health B Crit Rev 13: 38.
    Zeng, X., X. Xu, X. Zheng, T. Reponen, A. Chen and X. Huo (2016). "Heavy metals in PM2. 5 and in blood, and children's respiratory symptoms and asthma from an e-waste recycling area." Environmental pollution 210: 346-353.
    Zhao, Y., Lin, Z., Jia, R., Li, G., Xi, Z. and Wang, D. (2014). Transgenerational Effects of Traffic-Related Fine Particulate Matter (Pm2.5) on Nematode Caenorhabditis Elegans. J. Hazard. Mater. 274: 106-114.
    Zhou, Z., Shao, T., Qin, M., Miao, X., Chang, Y., Sheng, W., Wu, F. and Yu, Y. (2018). The Effects of Autophagy on Vascular Endothelial Cells Induced by Airborne Pm2.5. J Environ Sci 66: 182-187.
    Zuo, Y.-T., Hu, Y., Lu, W.-W., Cao, J.-J., Wang, F., Han, X., Lu, W.-Q. and Liu, A.-L. (2017). Toxicity of 2,6-Dichloro-1,4-Benzoquinone and Five Regulated Drinking Water Disinfection by-Products for the Caenorhabditis Elegans Nematode. J. Hazard. Mater. 321: 456-463.

    無法下載圖示 校外公開
    2025/07/05
    QR CODE