簡易檢索 / 詳目顯示

研究生: 凃昱芬
Tu, Yu-Fen
論文名稱: 不同添加物對於藻藍蛋白飲品穩定性之影響
Effect of Additives on the Stability of Phycocyanin Solution
指導教授: 蔡碧仁
Tsai, Pi-Jen
學位類別: 碩士
Master
系所名稱: 農學院 - 食品科學系所
Department of Food Science
畢業學年度: 108
語文別: 中文
論文頁數: 82
中文關鍵詞: 藻藍蛋白熱穩定性添加物
外文關鍵詞: Phycocyanin, Thermal stability, Additive
DOI URL: http://doi.org/10.6346/NPUST202000238
相關次數: 點閱:14下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統
  • 藻藍蛋白(phycocyanin, PC)為藍綠藻中輔助光合作用之可食用天然色素,經研究證實藻藍蛋白對人體具提高免疫力、抗癌、保護肝腎等效果,但其結構易受光、熱及環境酸鹼值的影響,因此增加藻藍蛋白穩定性成為一重要課題。本篇研究分成三部分,第一部分觀察藻藍蛋白在不同酸鹼條件下之熱穩定性,第二部分係使用四種添加物如糖類、多元醇、氯化鈉及抗壞血酸,加入藻藍蛋白飲品中,觀察對熱穩定之影響。第三部分則以最佳條件進行動力學和熱力學的分析。第一部分結果顯示,加熱對藻藍蛋白殘留率影響十分明顯,殘留率下降約13-39%,其外觀顏色和沉澱物含量對熱敏感性高,ΔE從26.24增加到52.91。若以pH 4.5-7.5樣品進行比較,則以pH 6.5者較為穩定。另外添加適當的糖類和多元醇可更有效的提升藻藍蛋白穩定性,最高可使藻藍蛋白殘留率達到控制組的2.3倍,其外觀顏色變化也有相似的趨勢。經由前述四大添加物的最適條件,進一步進行熱力學和動力學分析發現,隨著溫度的增加,藻藍蛋白色素裂解的化學反應越容易發生,另外,糖類添加可使色素半衰期延長2倍以上,同時也有較低的降解速率常數,其樣品活化能為80.10,遠高於控制組的60.77。此外,糖類的添加,使吉布士自由能有增加的趨勢,提高了藻藍蛋白裂解反應所需之門檻。綜合上述結果可知,四大類添加物以醣類對於藻藍蛋白穩定效果最為顯著。

    Phycocyanin (PC) is a kind of nature pigment helping photosynthesis reaction in blue-green algae. There are studies confirmed that PC has anti-inflammatory, anti-cancer, nephroprotective, hepatoprotective and other functions to human body. However, its structure is easy to be denatured due to light, heat, pH value or other environment factors. Enhancing the stability of PC becomes an important issue. This research can be separated into three parts. Firstly, the best pH value (pH 4.5-7.5) in PC solution will be investigated with PC retention and L a b. Secondly, the stability of PC with the addition of sugar, polyol, sodium chloride and ascorbic acid were evaluated. In the end, kinetic and thermodynamic study were studied to elucidate the relationship between additive and PC stability. As the results, heat treatment influence PC retention obviously (ρ<0.05), which decreased to 13-39%, and also sensitive in color appearance and precipitation percentage, which ΔE value is about 26.24-52.91. Comparing with pH 4.5-7.5 samples, it may be stabilized in pH 6.5. However, the addition of sugar and polyol can increase the stability of phycocyanin solution, which retention is 2.3 times greater than control group. There is also have the same trend in the appearance of phycocyanin solution. After the discussion of optimum species and concentration in four different additives, using kinetic and thermodynamic study to compare their PC stability. The result shows that the half-life of PC solution can be prolong 2.32-50 times comparing to control group in sugar addition sample, and it also gets lower degradation rate constant. The activation energy of sugar addition and control group are 80.10 and 60.77. The Gibbs free energy also increasing in the same time to enhance the threshold value of phycocyanin denaturation chemical reaction. In summary, sugar is the most effective additive with phycocyanin solution in these four additives.

    中文摘要 I
    Abstract II
    謝誌 III
    圖目錄 VIII
    表目錄 X
    第一章 前言 1
    第二章 文獻回顧 2
    2.1 藻藍蛋白 2
    2.1.1藻藍蛋白保健效果 6
    2.1.2藻藍蛋白結構 6
    2.1.3 藻藍蛋白呈色 12
    2.2添加物對呈色的影響 14
    2.2.1糖類 14
    2.2.2多元醇 18
    2.2.3鹽類 18
    2.2.4抗壞血酸 21
    2.3動力學與熱力學 22
    2.3.1動力學 22
    2.3.2熱力學 25
    第三章 材料與方法 27
    3.1試驗材料 27
    3.2試驗藥品 27
    3.3試驗儀器 27
    3.4實驗設計 28
    3.4.1藻藍蛋白在不同酸鹼條件下之熱穩定性 28
    3.4.2藻藍蛋白對於不同添加物之熱穩定性 28
    3.4.3藻藍蛋白與添加物之熱力學及動力學分析 28
    3.5試驗方法 33
    3.5.1藻藍蛋白熱穩定性分析 33
    3.5.1.1藻藍蛋白殘留率 33
    3.5.1.2藻藍蛋白色澤分析 33
    3.5.1.3沉澱物含量變化 34
    3.5.2動力學 34
    3.5.2.1半衰期 34
    3.5.2.2 降解速率常數 34
    3.5.2.3 自由能 35
    3.5.3熱力學 35
    3.5.3.1吉布士自由能 35
    3.5.4統計分析 36
    第四章 結果與討論 37
    4.1藻藍蛋白在不同酸鹼條件下之熱穩定性 37
    4.1.1不同酸鹼條件加熱後之藻藍蛋白殘留率 37
    4.1.2不同酸鹼條件加熱後之藻藍蛋白顏色變化 37
    4.1.3不同酸鹼條件加熱後之藻藍蛋白沉澱物含量 39
    4.2藻藍蛋白溶液對於不同添加物之熱穩定性 43
    4.2.1藻藍蛋白溶液和糖類相互作用之熱穩定性 43
    4.2.1.1藻藍蛋白溶液和糖類加熱後之藻藍蛋白殘留率 43
    4.2.1.2藻藍蛋白和糖類加熱後之藻藍蛋白顏色變化 44
    4.2.2藻藍蛋白和多元醇溶質相互作用之熱穩定性 49
    4.2.2.1藻藍蛋白和多元醇加熱後之藻藍蛋白殘留率 49
    4.2.2.2藻藍蛋白和多元醇加熱後之藻藍蛋白顏色變化 51
    4.2.3藻藍蛋白和鹽類相互作用之熱穩定性 55
    4.2.3.1藻藍蛋白和鹽類加熱後之藻藍蛋白殘留率 55
    4.2.3.2藻藍蛋白和鹽類加熱後之藻藍蛋白顏色變化 55
    4.2.4藻藍蛋白和抗壞血酸溶質相互作用之熱穩定性 58
    4.2.4.1藻藍蛋白和抗壞血酸加熱後之藻藍蛋白殘留率 58
    4.2.4.2藻藍蛋白和抗壞血酸加熱後之藻藍蛋白顏色變化 58
    4.3藻藍蛋白與添加物之熱力學及動力學分析 61
    4.3.1動力學分析 61
    4.3.1.1半衰期 61
    4.3.1.2降解速率常數 65
    4.3.1.3活化能 65
    4.3.2熱力學分析 70
    4.3.2.1吉布士自由能 70
    第五章 結論 72
    第六章 參考文獻 73
    符號索引 81
    作者簡介 82

    肯佳納, 2012。酒精、pH及有機灣對於台灣藜(Chenopodium Koidz)甜菜色素色澤穩定性影響, 國立屏東科技大學碩士論文。
    施明恒、李鶴立、王素美, 2003。工程熱力學, 東南大學出版社, 221-222。
    施明智、蕭思玉、蔡敏郎, 2006。食品加工學(第二版), 五南圖書出版社, 96-100
    徐武軍、張有義, 2017。化工程序設計(第二版), 五南圖書出版社, 35-52。
    陳宏芳、杜建華, 2002。高等工程動力學, 清華大學出版社, 13-55。
    莊榮輝, 2018。酵素純化與分析, 國立台灣大學, 22-24。
    國立台灣大學, 2009。大學化學實驗一暨實驗二(第三版), 國立臺灣大學出版中心, 137-144。
    Abalde, J., Betancourt, L., Torres, E., Cid, A., & Barwell, C. (1998). Purification and characterization of phycocyanin from the marine cyanobacterium Synechococcus sp. IO9201. Plant Science, 136(1), 109-120.
    Aberoumand, A. (2011). A review article on edible pigments properties and sources as natural biocolorants in foodstuff and food industry. World Jornal Dairy Food Sci, 6(1), 71-78.
    Ajito, S., Hirai, M., Iwase, H., Shimizu, N., Igarashi, N., & Ohta, N. (2018). Protective action of trehalose and glucose on protein hydration shell clarified by using X-ray and neutron scattering. Physica B: Condensed Matter, 551, 249-255.
    Ajito, S., Iwase, H., Takata, S. I., & Hirai, M. (2018). Sugar-mediated stabilization of protein against chemical or thermal denaturation. The Journal of Physical Chemistry B, 122(37), 8685-8697.
    Arakawa, T., & Timasheff, S. N. (1982). Preferential interactions of proteins with salts in concentrated solutions. Biochemistry, 21(25), 6545-6552.
    Arslan, D. (2015). Effects of degradation preventive agents on storage stability of anthocyanins in sour cherry concentrate. Agronomy Research, 14(2), 892-899.
    Back, J. F., Oakenfull, D., & Smith, M. B. (1979). Increased thermal stability of proteins in the presence of sugars. Biochemistry, 18(23), 5191-5196.
    Beuhler, R. J., Pierce, R. C., Friedman, L., & Siegelman, H. W. . (1976). Cleavage of phycocyanobilin from C-phycocyanin. Separation and mass spectral identification of the products. Journal of Biological Chemistry, 251(8), 2405-2411.
    Boussiba, S., & Richmond, A. E. . (1979). Isolation and Characterization of Phycocyanins. Archives of Microbiology, 120(2), 155-159.
    Buchweitz, M. (2016). Natural Solutions for Blue Colors in Food. In Handbook on Natural Pigments in Food and Beverages (pp. 355-384).
    Chaiklahan, R., Chirasuwan, N., & Bunnag, B. (2012). Stability of phycocyanin extracted from Spirulina sp.: Influence of temperature, pH and preservatives. Process Biochemistry, 47(4), 659-664.
    Chung, C., Rojanasasithara, T., Mutilangi, W., & McClements, D. J. (2017). Stability improvement of natural food colors: Impact of amino acid and peptide addition on anthocyanin stability in model beverages. Food Chemistry, 218, 277-284.
    Cohen, E., & Saguy, I. (1983). Effect of Water Activity and Moisture Content on the stability of beet powder pigments. Journal of Food Science, 48(3), 703-707.
    Davis-Searles, P. R., Saunders, A. J., Erie, D. A., Winzor, D. J., & Pielak, G. J. (2001). Interpreting the effects of small uncharged solutes on protein-folding equilibria. Annual Review of Biophysics and Biomolecular Structure, 30(1), 271-306.
    Duangsee, R., Phoopat, N., & Ningsanond, S. (2009). Phycocyanin extraction from Spirulina platensis and extract stability under various pH and temperature. Asian Journal of Food and Agro-Industry, 2(4), 819-826.
    Eriksen, N. T. (2008). Production of phycocyanin--a pigment with applications in biology, biotechnology, foods and medicine. Appl Microbiol Biotechnol, 80(1), 1-14.
    Fairchild, C. D., & Glazer, A. N. (1994). Oligomeric structure, enzyme kinetics, and substrate specificity of the phycocyanin alpha subunit phycocyanobilin lyase. Journal of Biological Chemistry, 269(12), 8686-8694.
    Fernández-Rojas, B., Hernández-Juárez, J., & Pedraza-Chaverri, J. (2014). Nutraceutical properties of phycocyanin. Journal of Functional Foods, 11, 375-392.
    Fincer, R., & Huber, R. . (1993). Refined crystal structure of phycoerythrin from Porphyridium cruentum at 0.23‐nm resolution and localization of the γ subunit. European Journal of Biochemistry, 218(1), 103-106.
    Frank, G., Sidler, W., Widmer, H., Zuber, H. (1978). The complete amino acid sequence of both subunits of C-phycocyanin from the Cyanobacterium Mastigocladus laminosus. Hoppe-Seyler´ s physiology Chemistry, 359(2), 1491-1508.
    Fukui, K. (2004). Relationship between color development and protein conformation in the phycocyanin molecule. Dyes and Pigments, 63(1), 89-94.
    Garcı́a-Viguera, C., & Bridle, P. (1999). Influence of structure on colour stability of anthocyanins and flavylium salts with ascorbic acid. Food Chemistry, 64(1), 21-26.
    Gardner, E. E., Stevens Jr, S. E., & Fox, J. L. . (1980). Purification and characterization of the C-phycocyanin from Agmenellum quadruplicatum. Biochimica et Biophysica Acta (BBA)-Protein Structure, 624(1), 187-195.
    Garrett, J. M., Stairs, R. A., & Annett, R. G. (1988). Thermal denaturation and coagulation of whey proteins effect of sugars. Journal of Dairy Science, 71(1), 10-16.
    Garzón, G. A., & Wrolstad, R. E. (2001). The stability of pelargonidin-based anthocyanins at varying water activity. Food Chemistry, 75(2), 185-196.
    Gekko, K., & Koga, S. (1983). Increased Thermal stability of collagen in the presence of Sugars and polyols. The Journal of Biochemistry, 94(1), 199-205.
    Gekko, K., & Morikawa, T. (1981). Thermodynamics of polyol-induced thermal stabilization of chymotrypsingen. The Journal of Biochemistry, 90(1), 51-60.
    Giusti, M. M., & Wrolstad, R. E. (2001). Characterization and measurement of anthocyanins by UV‐visible spectroscopy. Current Protocols in Food Analytical Chemistry, 1, F1.2.1-F1.2.13.
    Glazer, A. N. (1984). Phycobilisome a macromolecular complex optimized for light energy transfer. Biochimica et Biophysica Acta (BBA)-Reviews on Bioenergetics, 768(1), 29-51.
    Govindjee, & Shevela, D. (2011). Adventures with Cyanobacteria: a personal perspective. Frontiers in Plant Science, 1-17.
    Guiavarc’h, Y., Sila, D., Duvetter, T., Van Loey, A., & Hendrickx, M. (2003). Influence of sugars and polyols on the thermal stability of purified tomato and cucumber pectinmethylesterases: a basis for TTI development. Enzyme and Microbial Technology, 33(5), 544-555.
    Hubbermann, E. M., Heins, A., Stöckmann, H., & Schwarz, K. (2005). Influence of acids, salt, sugars and hydrocolloids on the colour stability of anthocyanin rich black currant and elderberry concentrates. European Food Research and Technology, 223(1), 83-90.
    Iacobucci, G. A., & Sweeny, J. G. (1983). The chemistry of anthocyanins, anthocyanidins and related flavylium salts. Tetrahedron, 39(19), 3005-3038.
    Jespersen, L., D., S. L., Olsen, K., & Skibsted, L. H. (2004). Heat and light stability of three natural blue colorants for use in confectionery and beverages. European Food Research and Technology, 220(3-4), 261-266.
    Kalra, A., Tugcu, N., Cramer, S. M., & Garde, S. (2001). Salting-in and salting-out of hydrophobic solutes in aqueous salt solutions. The Journal of Physical Chemistry B, 105(27), 6380-6386.
    Kechinski, C. P., Guimaraes, P. V., Norena, C. P., Tessaro, I. C., & Marczak, L. D. (2010). Degradation kinetics of anthocyanin in blueberry juice during thermal treatment. Journal of Food Science, 75(2), C173-176.
    Kim, K. S., Kim, S., Yang, H. J., & Kwon, D. Y. (2004). Changes of glycinin conformation due to pH, heat and salt determined by differential scanning calorimetry and circular dichroism. International Journal of Food Science and Technology, 39(4), 385-393.
    Kuddus, M., Singh, P., Thomas, G., & Al-Hazimi, A. (2013). Recent developments in production and biotechnological applications of C-phycocyanin. BioMed Research International, 2013, 742859.
    Liu, J., Zhang, Q.-Y., Yu, L.-M., Liu, B., Li, M.-Y., & Zhu, R.-Z. (2015). Phycocyanobilin accelerates liver regeneration and reduces mortality rate in carbon tetrachloride-induced liver injury mice. World Journal of Gastroenterology: WJG, 21(18), 5465.
    MacColl, R., Berns, D. S., & Gibbons, O. (1976). Characterization of cryptomonad phycoerythrin and phycocyanin. Archives of Biochemistry and Biophysics, 177(1), 265-275.
    Moelbert, S., Normand, B., & De Los Rios, P. (2004). Kosmotropes and chaotropes: modelling preferential exclusion, binding and aggregate stability. Biophysical Chemistry, 112(1), 45-57.
    Nikkhah, E., Khayamy, M., Heidari, R., & Jamee, R. (2007). Effect of sugar treatment on stability of anthocyanin pigments in berries. Journal of Biological Sciences, 7(8), 1412-1417.
    Pandey, V. D., Pandey, A., & Sharma, V. (2013). Biotechnological applications of cyanobacterial phycobiliproteins. International Journal of Current Microbiology and Applied Sciences, 2, 89-97.
    Patel, A., Pawar, R., Mishra, S., Sonawane, S., & Ghosh, P. K. . (2004). Kinetic studies on thermal denaturation of C-phycocyanin. Indian Journal of Biochemistry & Biophysics, 41, 254-257.
    Schoenleber, R. W., Leung, S. L., Lundell, D. J., Glazer, A. N., & Rapoport, H. (1983). Chromopeptides from phycoerythrins. Structure and linkage of a phycoerythrobilin tryptic tripeptide derived from a B-phycoerythrin. Journal of the American Chemical Society, 105(12), 4072-4076.
    Setter, O., & Livney, Y. D. (2015). The effect of sugar stereochemistry on protein self-assembly: the case of beta-casein micellization in different aldohexose solutions. Royal Society of Chemistry, 17(5), 3599-3606.
    Skopińska, A., Szot, D., Starzak, K., Mizrahi, Y., & Wybraniec, S. (2015). The effect of ascorbic acid supplementation on betacyanin stability in purple pitaya (Hylocereus polyrhizus) juice. Challenges of Modern Technology, 6(4).
    Timberlake, K. C. (2011). Selected Solution Manual for Chemistry: An Introduction to General, Organic, and Biological Chemist: Prentice Hall PTR.
    Tsai, P. J., Hsieh, Y. Y., & Huang, T. C. (2004). Effect of sugar on anthocyanin degradation and water mobility in a roselle anthocyanin model system using 17O NMR. Journal of Agricultural and Food Chemistry, 52(10), 3097-3099.
    Wu, H.-L., Wang, G.-H., Xiang, W.-Z., Li, T., & He, H. (2016). Stability and antioxidant activity of food-grade phycocyanin isolated from Spirulina platensis. International Journal of Food Properties, 19(10), 2349-2362.
    Yamasaki, M., Yano, H., & Aoki, K. (1991). Differential scanning calorimetric studies on bovine serum albumin: II. Effects of neutral salts and urea. International Journal of Biological Macromolecules, 13(6), 322-328.
    Zheng, J., Inoguchi, T., Sasaki, S., Maeda, Y., McCarty, M., Fujii, M., Takayanagi, R. (2012). Phycocyanin and phycocyanobilin from Spirulina platensis protect against diabetic nephropathy by inhibiting oxidative stress. American Journal of Physiology-Heart and Circulatory Physiology.

    無法下載圖示 校外公開
    2025/07/20
    QR CODE