簡易檢索 / 詳目顯示

研究生: 夏蘿媞
Charlottee Aloha Okawiong
論文名稱: 不同光濾薄膜下番茄的生長、產量與品質評估
Assessing Growth, Yield and Fruit Quality of Tomato (Solanum lycopersium, var. cerasiforme) Cultivars Established at Different Film Plastics
指導教授: 王裕民
Yu-Min Wang
學位類別: 碩士
Master
系所名稱: 國際學院 - 土壤與水工程國際碩士學位學程
International Master Program in Soil and Water Engineering
畢業學年度: 108
語文別: 英文
論文頁數: 96
中文關鍵詞: 關鍵詞番茄品種生長產量果實品質和彩色塑料薄膜
外文關鍵詞: Tomato cultivars, coloured plastic films.
DOI URL: http://doi.org/10.6346/NPUST202000249
相關次數: 點閱:23下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統
  • 聖女番茄(茄屬植物, 又名櫻桃小番茄)是世界上重要的蔬菜和水果,也是世界上消費量最高的蔬菜。溫室覆蓋用塑料膜進行的受控栽培正成為園藝栽培的有吸引力的選擇。覆蓋的塑料薄膜減少了農作物病害,昆蟲種群並抑制了幾種葉病,然而,它們對農作物生長,產量和果實品質的影響仍需研究。該研究的目的是評估在不同塑料薄膜上建立的番茄品種的生長,產量和果實品質。該實驗是使用三個品種的櫻桃番茄在粉紅色和紫色塑料膜下進行的,未經塑料膜處理,使用隨機完整區組設計和帶有十二個重複的分割圖。分析了塑料膜對植物形態參數,生理參數,產量和果實品質的影響。還監測了氣候參數,土壤分析和光合光子通量密度,以了解它們如何影響塑料膜的種植。最終結果表明,粉紅色和紫色塑料薄膜增加了櫻桃番茄品種的總產量,並且明顯高於對照,但是在塑料薄膜之間沒有發現顯著差異。塑料薄膜的果實重量,果實周長和長度均高於對照。在生長參數,葉綠素(SPAD)含量,果實品質(TSS)和PPFD平均值上均未見明顯差異。 儘管需要進行後續研究,但當前的研究推薦使用粉紅色和紫色塑料膜作為番茄作物免受昆蟲侵害的有效方法,且對產量沒有負面影響。

    關鍵詞:番茄品種,生長,產量,果實品質和彩色塑料薄膜。

    Cherry tomato (Solanum lycopersium, var. cerasiforme.) is an important vegetable and fruit in the world and it’s the world’s most highly consumed vegetable. The controlled cultivation with plastic film for greenhouse covering is becoming an attractive option for horticultural cultivation. The plastic film covering decreases crop diseases, insect population and suppresses several foliar diseases however; their impact on crop growth, yield and fruit quality still needs investigation. The objectives of the study were to assess the growth, yield, and fruit quality of tomato cultivars established at different plastic films. The experiment was conducted with three cultivars of Cherry Tomato under Pink and Purple Plastic Film and without Plastic Film treatments using randomized complete block design plus split-plot with twelve replicates. The effects of plastic films on plant morphological parameters, physiological parameters, and yield and fruit quality were analysed. Climatic parameters, soil analysis and photosynthetic photon flux density were also monitored to see how they influenced the plastic film cultivation. The final results showed that pink and purple plastic films increased the total yield production of cherry tomato cultivars and were significantly higher to control however; no significant differences were seen amongst the plastic films. Fruit weight, fruit circumference and length in plastic films were higher than control. No significant differences were seen on growth parameters, chlorophyll (SPAD) content, and fruit quality (TSS) and PPFD mean values. Although the follow-up research is required the current study recommends both pink and purple plastic films for the effective method in tomato crop protection from insect without negative effects on yield.

    Keywords: Tomato cultivars, growth, yield, fruit quality and coloured plastic films.

    摘 要 I
    Abstract III
    Acknowledgements V
    Acronyms VI
    Table of Contents VII
    List of Tables XII
    List of Figures XIII
    Chapter 1. Introduction 1
    1.1 Research objectives 3
    1.2 Specific objectives 3
    Chapter 2: Literature Review 4
    2.1 Brief Description and Taxonomy of Tomato 4
    2.2 Solanum lycopersicum cerasiforme 5
    2.3 Growth Stages of Solanum lycopersicum 5
    2.4 Tomato in Taiwan 6
    2.5 Coconut Coir and Peat Moss Medium 7
    2.6 Effects of Substrates on Tomato 10
    2.7 Plastic Film 12
    2.8 Effects of Plastic Film on Tomato 12
    2.9 Effects of Light Spectrum on growth and yield of Tomato 12
    2.10 Water Requirement and uptake of Tomato 13
    2.11 Drip Irrigation in Tomato 14
    2.12 Fertilizer/ Nutrient Management of Tomato 14
    2.13 Bacillus Amyloliquefaciens as Bio Fertilizer 17
    2.14 Pest and Disease Management of Tomato 18
    2.15 Chitin (Chitosan) as Bio – Pesticide 19
    Chapter 3. Materials and Methods 22
    3.1 Experimental Site, Climate and Growing Medium 22
    3.2 Plant Material 22
    3.4 Field Preparation 24
    3.5 Growing Media Preparation 25
    3.6 Transplanting and Management 27
    3.7 Irrigation and Water Management 29
    3.8 Pest and Disease Management 30
    3.9 Nutrient/Fertilizer Management 32
    3.10 Agronomic Parameters Assessment 32
    3.11 Plant Height 32
    3.12 Number of Branches 33
    3.13 Number of Leaves 33
    3.14 Chlorophyll Measurement (SPAD) 33
    3.15 Monitoring Electrical Conductivity and pH 35
    3.16 Soil Temperature, Humidity and Light Intensity Measurement 36
    3.17 Tomato Yield Measurement 36
    3.18 Total Soluble Solid Measurement 36
    3.19 Light Spectrum Measurement 37
    3.20 Statistical Analysis 37
    Chapter 4. Results 38
    4.1 Soil Temperature, Relative Humidity and Illuminance (Lux) 38
    4.2 Soil Electrical Conductivity and pH 40
    4.3 Light Spectrum – Photosynthetic photon flux density (PPFD) 41
    4.4 Plant growth Parameters 43
    4.4.1 Plant Height (cm) 43
    4.4.2 Number of Branches 46
    4.4.3 Number of Leaves 48
    4.4.4 Chlorophyll (SPAD) 50
    4.5 Effects of coloured films on the yield of cherry tomato cultivars 53
    4.5.1 Fruit weight per plant (g) 53
    4.5.2 Fruit circumference (cm) 54
    4.5.3 Fruit Length (cm) 55
    4.5.4 Total Yield per Treatment (g) 56
    4.5.5 Fruit Quality - Total Soluble Solids (TSS Brix°) 56
    Chapter 5. Discussions 58
    5.1 Effects of climatic parameters on growth, yield and quality of cherry tomato 58
    5.1.1 Soil Temperature 58
    5.1.2 Relative Humidity 59
    5.1.3 Illuminance (Lux) 60
    5.2 Soil Electrical Conductivity and pH 60
    5.3 Light Spectrum – Photosynthetic Photon Flux Density (PPFD) 61
    5.4 Effects of coloured films on Growth of cherry tomato cultivars 62
    5.4.1 Plant Height (cm) 62
    5.4.2 Number of Branches 63
    5.4.3 Number of Leaves 64
    5.4.4 Chlorophyll (SPAD) 64
    5.5 Effects of coloured films of yield and quality of cherry tomato cultivars 65
    5.5.1 Fruit Weight (g) 65
    5.5.2 Fruit circumference and Length (cm) 65
    5.5.3 Total Yield per Treatment (g) 66
    5.5.5 Total Soluble Solids (°Brix) 67
    Chapter 6. Conclusions 68
    References 71
    Appendices 91
    Biosketch of Author 96

    Aberkain, K., Gosselin, A., Vineberg, S., and Dorais, M. (2006). Effects of insulating foams between double polyethylene films on light transmission, growth and productivity of greenhouse tomato plants grown under supplemental lighting. Acta Horticulturae, 711, 449-454
    Abou-Hadid, A., F., EI-Beltagy, A., S., and EI-saeid, H., M. (1988). Potential evapotranspiration for different regions and water consumptive use patterns under plastic house conditions in Egypt. Horticulture Science. 15.
    Adhikari, P., Oh, Y., and Panthee, D. R. (2017). Current Status of Early Blight Resistance in Tomato: An Update. International Journal of Molecular Sciences, 18(10).
    Adil, W. H., Sunarlim, N., and Roostika, I. (2006). Effect of three types of nitrogen fertilizer on vegetable crops. Biodiversitas, 7(1), 77-80.
    Ajwang, P. O., and Tantau, H. J. (2005). Prediction of the Effect of Insect-Proof Screens on Climate in a Naturally Ventilated Greenhouse in Humid Tropical Climates. Acta Horticulturae (691): 449-456.
    Algam, S., A., Xie, G., L., Li, B., Yu, S., H., Su, T., and Larsen, J. (2010). Effects of Paenibacillus strains and chitosan on plant growth promotion and control of Ralstonia wilt in tomato. Journal of Plant Pathology. 92: 593-600.
    Allen, D., J., Nogue´s S., and Baker, N., R. (1998). Ozone depletion and increased UV-B radiation: is there a real threat to photosynthesis? Journal of Experimental Botany, 1775–1788
    Amagai, H., Onuma, K and Nakagaki, S. (1984). The growth of vegetable crops and establishment of insect and mite pests in a plastic greenhouse treated to exclude near UV radiation. (3) Growth of tomatoes. Bull. Ibaraki-Ken Horticulture Experiment Station. 12, 81-88.
    Ameen, M., Xiaochan, W., Yaseen, M., Umair, M., Yousaf, K., Yang, Z., and Soomro, S. (2018). Performance Evaluation of Root Zone Heating System Developed with Sustainable Materials for Application in Low Temperatures. Sustainability, 10(11).
    Anonymous (1984). Official method of Analysis. Ed. Sioney Williams. Association Official Analytic Inc. Virginia 14th Ed, 423-462.
    Antignus, Y., Lachman, O, Leshem, Y, Matan, E, Yehezkel, H and Messika Y. (1999). Protection efficiency of UV-absorbing films in greenhouses with vertical walls. In Summary of Research Projects and Field Experiments in Tomato Crops, 29-39.
    Arenas, M., Vavrina, C., S., Cornell, J., A., Hanlon, E., A., and Hochmuth, G., J. (2002). Coir as an Alternative to Peat in Media for Tomato Transplant Production. Florida Agricultural Experiment Station Journal Series No. R-08264. Horticulture Science, 37(2).
    Baba, K., Karlberg, A., Schmidt, J., Schrader, J., Hvidsten, T. R., Bako, L., and Bhalerao, R. P. (2011). Activity-dormancy transition in the cambial meristem involves stage-specific modulation of auxin response in hybrid aspen. Proceedings of the National Academic of Science U S A, 108(8), 3418-3423.
    Bantis F., Ouzounis T., and Radoglou, K. (2016). Artificial LED lighting enhances growth characteristics and total phenolic content of Ocimum basilicum, but variably affects transplant success. Scientia Horticulturae, 198: 277-283.
    Basker, M. (1996). Master of Science in Agriculture Thesis, Tamil Nadu Agricultural University, Coimbatore.
    Böhlenius, H., Övergaard, R., and Asp, H. (2016). Growth response of hybrid aspen (Populus× wettsteinii) and Populus trichocarpa to different pH levels and nutrient availabilities. Canadian Journal of Forest Research, 46(11), 1367-1374.
    Borriss, R. (2011). Use of plant-associated Bacillus strains as biofertilizers and biocontrol agents. In: Maheshwari DK (ed) Bacteria in agrobiology: plant growth responses. Springer Heidelberg, Dordrecht, London, New York, pp 41–76
    Borriss, R., Chen, X. H., Rueckert, C., Blom, J., Becker, A., and Baumgarth, B. (2011). Relationship of Bacillus amyloliquefaciens clades associated with strains DSM 7T and Bacillus amyloliquefaciens subsp. plantarum subsp. nov. based on their discriminating complete genome sequences. International Journal of Systematic and Evolutionary Microbiology, 61, 1786–1801.
    Carlile, W. R., Cattivello, C., and Zaccheo, P. (2015). Organic Growing Media: Constituents and Properties. Vadose Zone Journal, 14(6).
    Castro, S., P., M., and Paulín, E., G., L. (2012). Is chitosan a new panacea? Areas of application. In the Complex World of Polysaccharides; Karunaratne, D.N., Ed.; InTech: Rijeka, Croatia Available online: http://www.intechopen.com/books/the-complex-world- (accessed on 25 June 2019)
    Chen, M., Chory, J., and Fankhauser, C. (2004). Light signal transduction in higher plants. Annual Review of Genetics 38:87–117
    Chen, X. H., Koumoutsi, A., Scholz, R., and Borriss, R. (2009c). More than anticipated - production of antibiotics and other secondary metabolites by Bacillus amyloliquefaciens FZB42. Journal of Molecular Microbiology and Biotechnology. 16, 14–24.
    Chen, X. H., Koumoutsi, A., Scholz, R., Eisenreich, A., Schneider, K., and Heinemeyer, I. (2007). Comparative analysis of the complete genome sequence of the plant growth-promoting bacterium Bacillus amyloliquefaciens FZB42. National Biotechnology. 25, 1007–1014.
    Chen, X., L., Yang, Q, C., Song WP, Wang, L., C., Guo, W., Z., and Xue XZ (2017). Growth and nutritional properties of lettuce affected by different alternating intervals of red and blue LED irradiation. Scientia Horticulture, 223: 44-52.
    Chen, Z.C., 2005. Tomato. The guidance of 54 agriculture in Taiwan. Taipei: Harvest Farm Magazine, pp. 517-532. (Only available in Chinese)
    Chowdhury, S. P. Hartmann, A. Gao, X. and Borriss, R. (2015). Biocontrol mechanism by root-associated Bacillus amyloliquefaciens FZB42 - a review. Frontiers in Microbiology, (6), 780.
    Chowdhury, S. P., Uhl, J., Grosch, R., Alquéres, S., Pittroff, S., and Dietel, K., (2015). Cyclic lipopeptides of Bacillus amyloliquefaciens FZB42 subsp. plantarum colonizing the lettuce rhizosphere enhance plant defense responses towards the bottom rot pathogen Rhizoctonia solani. Molecular Plant-Microbe Interactions.
    Chrétien, S., Gosselin, A., and Dorais, M. (2000). High Electrical Conductivity and Radiation-based Water Management Improve Fruit Quality of Greenhouse Tomatoes Grown in Rockwool. Horticulture Science, 35(4), 627-631.
    Cooper, A. J. (1973). Influence of rooting -medium temperature on growth of Lycopersicon esculentum. Annals of Applied Biology, 74, 379-385.
    Coqueiro, D., S., O., Maraschin, M., P, and Robson, M., D. (2011). Chitosan Reduces Bacterial Spot Severity and Acts in Phenylpropanoid Metabolism in Tomato Plants. Journal of Phytopathology, 159 (7-8), 488-494.
    Costa, H.S., Robb, K.L., and Wilen, C.A., (2002). Fields trials measuring the effects of ultraviolet-absorbing greenhouse plastic films on insect populations. Journal fo Economic Entomology. (95): 113–120.
    Cox S.E., Sampson D.A., Stushnoff C., (2003). Relationship of fruit colour and light exposure to lycopene content and antioxidant properties of tomato. Canadian journal of plant science, (83):913-919.
    Cuartero, J. and Fernández-Muñoz, R (1998). Tomato and salinity. Science. Horticulture. (78), 83–125.
    Dai, Z.Y., 2009. The cultivation techniques of tomatoes. The agricultural techniques of Taichung District Agricultural Research and Extension Station. Changhua County: Taichung District Agricultural Research and Extension Station of Council of Agriculture Executive Yuan. (Only available in Chinese)
    Dănilă, E., and Lucache D., D. (2016). Efficient lighting system for greenhouses. In the 2016 International Conference and Exposition on Electrical and Power Engineering, IEEE, Lasi, Romania: 439-444.
    Darwin, S. C., Knapp, S., and Peralta, I. E. (2003). Taxonomy of tomatoes in the Galápagos Islands: Native and introduced species of Solanum section Lycopersicon (Solanaceae). Systematics and Biodiversity, 1(1), 29-53.
    Diouf, I. A., Derivot, L., Bitton, F., Pascual, L., and Causse, M. (2018). Water Deficit and Salinity Stress Reveal Many Specific QTL for Plant Growth and Fruit Quality Traits in Tomato. Frontiers in Plant Science, (9): 279.
    Duggan-Jones, D. (2012). Effect of coir particle size on yield of greenhouse tomatoes (Lycopersicon esculentum Mill). Thesis for MSc in horticultural Science at Massey University New Zealand. Pdf file uploaded online.
    Fahad, S., Bajwa, A. A., Nazir, U., Anjum, S. A., Farooq, A., Zohaib, A., and Huang, J. (2017). Crop Production under Drought and Heat Stress: Plant Responses and Management Options. Frontiers in Plant Science, ( 8): 1147.
    Fan, B., Borriss, R., Bleiss, W., and Wu, X., Q. (2012). Gram-positive rhizobacterium Bacillus amyloliquefaciens FZB42 colonizes three types of plants in different patterns. Journal of Microbiology, 50:38–44.
    Fang X, Zaiqiang Y, and Liyun Z. 2018. Low temperature and weak light affect greenhouse tomato growth and fruit quality. Journal of Plant Science. 6: 16-24.
    FAO (2019) Land and Water.http://www.fao.org/land-water/databases-and-software/crop-information/tomato/en/ (Accessed 5/06/2019).
    FAOSTAT (2019). Available at: http://www.fao.org/faostat/en/#home [Accessed April 15, 2019].
    Fletcher, J., M., A., Tatsiopoulou, F., J., Davis, R., G., Henbest, C., and Hadley, P. (2003). Growth, yield and development of strawberry cv. ‘Elsanta’ under novel photo selective film clad greenhouses. Acta Horticulturae. 633, 99–106
    Franklin, K. A., Larner, V., S., and Whitelam, G., C. (2005). The signal transducing photoreceptors of plants. International Journal of Development Biology, 49(5-6), 653-664.
    Garcia-Alonso, F. J., Bravo, S., Casas, J., Perez-Conesa, D., Jacob, K., and Periago, M. J. (2009). Changes in antioxidant compounds during the shelf life of commercial tomato juices in different packaging materials. Journal of Agricultural and Food Chemistry, 57(15): 6815-6822.
    Garcia-Fraile, P., Menendez, E., and Rivas, R. (2015). Role of bacterial biofertilizers in agriculture and forestry. Aims Bioengineering. 2, 183–205.
    Gharbi, E., Martinez, J. P., Benahmed, H., Lepoint, G., Vanpee, B., Quinet, M., and Lutts, S. (2017). Inhibition of ethylene synthesis reduces salt-tolerance in tomato wild relative species Solanum chilense. Journal of Plant Physiology, (210): 24-37.
    Giuntini, D., Graziani, G., Lercari, B., Fogliano, V., Soldatini, G., F., and Ranieri, A. (2005). Changes in Carotenoid and Ascorbic Acid Contents in Fruits of Different Tomato Genotypes Related to the Depletion of UV-B Radiation. Journal of Agriculture and Food Chemistry. 53, 3174−3181
    Gmizo, G., Alsiņa, I. and Dubova, L. (2012). The effect of colour plastic films on the growth, yield and plant pigment content of tomatoes. Acta horticulturae. 952, 217-224
    Gohel, V., Singh, A., Vimal, M., Ashwini, P., and Chhatpar H., S. (2006). Bioprospecting and antifungal potential of chitinolytic microorganisms. A Review. African Journal of Biotechnology Vol. 5 (2), pp. 54-72.
    González A, García-Alonso Y, Espí E, Fontecha A, and Salmerón A, (2004). Viral diseases control with UV-absorbing films in greenhouses of southern Spain. Acta Horticulturae, (659): 331- 338
    Grafiadellis, M. 1985. A study of greenhouse covering plastic sheets. Acta Horticulturae. 4, 133–142.
    Greaves, G., E., and Wang, Y.-M. (2016). Assessment of FAO AquaCrop Model for Simulating Maize Growth and Productivity under Deficit Irrigation in a Tropical Environment. Water, 8(12), 557.
    Gruda, N., and Schnitzler, W. H. (2004). Suitability of wood fiber substrates for production of vegetable transplants II. Scientia Horticulturae, 100(1-4), 333-340.
    Gruda, N., Caron, J., Prasad, M., and Maher, M., J. (2016). Growing media. In Encyclopaedia of Soil Sciences, 3rd ed.; Lal, R., Ed.; CRC Press Taylor & Francis Group: Boca Raton, FL, USA, 1053–1058.
    Gruda, N., Qaryouti, M., M., and Leonardi, C. (2013). Growing media. In Good Agricultural Practices for Greenhouse Vegetable Crops–Principles for Mediterranean Climate Areas; Plant Production and Protection Paper 217; FAO: Rome, Italy, 2013; pp. 271–302.
    Gruda, N., S. (2019). Increasing Sustainability of Growing Media Constituents and Stand-Alone Substrates in Soilless Culture Systems. Agronomy, 9(6).
    Guilherme, M. R., Aouada, F. A., Fajardo, A. R., Martins, A. F., Paulino, A. T., Davi, M. F. T., and Muniz, E. C. (2015). Superabsorbent hydrogels based on polysaccharides for application in agriculture as soil conditioner and nutrient carrier: A review. European Polymer Journal, 72, 365-385.
    Hanson, P., Lu, S.-F., Wang, J.-F., Chen, W., Kenyon, L., Tan, C.-W., and Yang, R.-Y. (2016). Conventional and molecular marker-assisted selection and pyramiding of genes for multiple disease resistance in tomato. Scientia Horticulturae, (201): 346-354.
    Hartz, T. (2009). Drip Irrigation and Fertigation Management of Processing Tomato. Vegetable Research and Information Centre, 1-11.
    Hassan, O., and Chang, T. (2017). Chitosan for Eco-friendly Control of Plant Disease. Asian Journal of Plant Pathology, 11(2), 53-70.
    Hernández, J., Bonachela, S., Granados, M. R., López, J. C., Magán, J. J., and Montero, J. I. (2017). Microclimate and agronomical effects of internal impermeable screens in an unheated Mediterranean greenhouse. Bio systems Engineering, 163, 66-77.
    Heuvelink, E., Bakker, M., J., Hogendonk, L, Janse, J., Kaarsemaker, R., C., and Maaswinkel, R., H., M. (2006). Horticultural lighting in the Netherlands: new developments. Acta Horticulturae. 711: 25–34
    Ilic, Z. S., Milenkovic, L., Sunic, L., and Fallik, E. (2015). Effect of coloured shade-nets on plant leaf parameters and tomato fruit quality. Journal of Science Food and Agriculture, 95(13), 2660-2667.
    Jones, J.B., (2013). Instructions for Growing Tomatoes in the Garden and Greenhouse. GroSystems, Anderson, SC, USA.
    Joosten, H., and Clarke, D. (2002). Wise Use of Mires and Peatlands. Jyväskylä, Finland: International Mire Conservation Group and International Peat Society.
    Kang, J. H., Krishna, K., S., Atulba, S. L. S., Jeong, B. R., and Hwang, S. J. (2014). Light intensity and photoperiod influence the growth and development of hydroponically grown leaf lettuce in a closed-type plant factory system. Horticulture, Environment, and Biotechnology, 54(6), 501-509.
    Kang, S., M., Radhakrishnan, R., and Lee, I., J. (2015b). Bacillus amyloliquefaciens subsp. plantarum GR53, a potent biocontrol agent resists Rhizoctonia disease on Chinese cabbage through hormonal and antioxidants regulation. World Journal of Microbiology and Biotechnology. 31, 1517–1527.
    Kesavan, V., and Chaudhary, B. (1977). Screening for resistance to Fusarium wilt of tomato. SABRO Journal of Breeding and genetics 9:51–65
    Kilian, M., Steiner, U., Krebs, B., Junge, H., Schmiedeknecht, G., and Hain, R. (2000). FZB24 R Bacillus subtilis – mode of action of a microbial agent enhancing plant vitality. Pflanzenschutz Nachr Bayer. 53 (1), 72–93.
    Kim, S., J., Hahn E., J., Heo, J., W., and Paek., K., Y. (2004). Effects of LEDs on net photosynthetic rate, growth and leaf stomata of chrysanthemum plantlets in vitro. Scientia Horticulturae, 101: 143–151
    Kima, A. S., Chung, W. G., & Wang, Y. M. (2014). Improving irrigated lowland rice water use efficiency under saturated soil culture for adoption in tropical climate conditions. Water, (Switzerland), 6(9), 2830–2846.
    Kitazaki, K., Fukushima, A., Nakabayashi, R., Okazaki, Y., Kobayashi, M., Mori, T., and Kusano, M. (2018). Metabolic Reprogramming in Leaf Lettuce Grown Under Different Light Quality and Intensity Conditions Using Narrow-Band LEDs. Scientific Reports, 8(1), 7914.
    Kitir, N., Yildirim, E., Şahin, Ü. Turan, M., Ekinci, M., Ors, S., and Ünlü, H. (2018). Peat Use in Horticulture.
    Kittas, C., Karamanis, M., and Katsoulas, N. (2005). Air temperature regime in a forced ventilated greenhouse with rose crop. Energy and Buildings, 37(8), 807-812.
    Knapp, S. (2002). Tobacco to tomatoes: a phylogenetic perspective on fruit diversity in the Solanaceae. Journal of Experimental Botany, 53 (377): 2001-2022.
    Kobryń. J., and Hallmann, E. (2005). The Effect of Nitrogen Fertilization on the Quality of Three Tomato Types Cultivated on Rockwool. Proc. IC on Greensys Eds. Acta Horticulturae. 691.
    Kozai, T., Niu, G., H., and Takagaki, M. (2015). Plant Factory: An Indoor Vertical Farming System for Efficient Quality Food Production. Academic Amsterdam, 3–399.
    Laurence, M. H., Summerell, B., A., Burgess, L., W., and Liew, E., C. (2014). Genealogical concordance phylogenetic species recognition in the Fusarium oxysporum species complex. Fungal Biology, 118(4), 374-384.
    Li, P., Cao, Z., Wu, Z., Wang, X., and Li, X. (2016). The Effect and Action Mechanisms of Oligo chitosan on Control of Stem Dry Rot of Zanthoxylum bungeanum. International Journal of Molecular Science, 17 (7), 1044.
    Li, Y., Wen X., Li L., and Song M., (2014). The effect of root-zone temperature on temperature difference between leaf and air in tomato plants. Acta Horticulturae, 1107, 251-256.
    Liao, Y., Suzuki, K., Yu, W., Zhuang, D., Takai, Y., Ogasawara, R., and Fukui, H. (2014). Night Break Effect of LED Light with Different Wavelengths on Floral Bud Differentiation of Chrysanthemum morifolium Ramat ‘Jimba’ and ‘Iwa No Hakusen’. Environmental Control in Biology, 52(1), 45-50.
    Linnaeusc. (1753). Species plantarum. Stockholm
    Liu, H., Duan, A., Li, F., Sun, J., Wang, Y., and Sun, C. (2013). Drip Irrigation Scheduling for Tomato Grown in Solar Greenhouse Based on Pan Evaporation in North China Plain. Journal of Integrative Agriculture,12(3): 520-531
    Londra, P., Paraskevopoulou, A., and Psychogiou, M. (2018). Hydrological Behavior of Peat- and Coir-Based Substrates and Their Effect on Begonia Growth. Water, 10(6).
    Loures, J., L. (2001). Estabelecimento e avaliação do sistema de produção denominado Fito, em estufa ecampo. Ph.D. Thesis. Universidade Federal de Viçosa, Viçosa, Brazil. pp.109
    Lu, N, Nukaya, T., Kamimura, T., Zhang,D., Kurimoto, I., and Takagaki, M. (2015). Control of vapour pressure deficit (VPD) in greenhouse enhanced tomato growth and productivity during the winter season. Scientia Horticulturae. 197, 17-23.
    Manasa, S., M., Suresha, G., J., Vasudeva, K., R., Krishna, H., C., Jayappa, J., Ugalat, J., and Dayamani, K., J. (2018). Influence of modified atmosphere package on quality of cherry tomato (Solanum lycopersicum var. cerasiforme) fruits. International Journal of Chemical Studies; 6(6): 138-143.
    Marcelis, L., F., M., Broekhuijsen, A., G., M., Nijs, E., M., F., M., and Raaphorst, M.G.M. (2006). Quantification of the growth response of light quantity of greenhouse grown crops. Acta Horticulturae (9) 711.
    Marcelis, L., F., M., Broekhuijsen, A., G., M., Nijs, E., M., F., M., and Raaphorst, M.G.M. (2006). Quantification of the growth response of light quantity of greenhouse grown crops. Acta Horticulturae (9) 711.
    Martı, ´ R., Rosello´ S., and Cebolla-cornejo, J. (2016). Tomato as a source of carotenoids and polyphenols targeted to cancer prevention. Cancers 8(6):58
    Martin, P., N., Gent M., P., N., and Short, M., R. (2012) Effect on yield and quality of a simple system to recycle nutrient solution to greenhouse tomato. Horticulture Science, 47, 11, 1641-1645.
    Masfufah, A., Supriyanto, A., and Surtiningsih, T. (2012). Effect of bio fertilizer on various fertilizer doses and different planting media on the growth and productivity of tomato plants. Journal Ilmiah Biology, 3(1), 1-11.
    McCree KJ (1972). The action spectrum, absorptance and quantum yield of photosynthesis in crop plants. Agricultural Meteorology, 9: 191-216.
    McGovern, R., J. (2015). Management of tomato diseases caused by Fusarium oxysporum. Crop Protection, 73, 78-92.
    Monci F, García-Andrés S, Sánchez F, Moriones E, Espí E, and Salmerón A, (2004). Tomato yellow leaf curl disease control with UV-absorbing plastic covers in commercial plastic houses of southern Spain. Acta Horticulturae, 633: 537-542.
    Morrow, R., C. (2008). LED lighting in horticulture. Journal of the American Society for Horticulture Science,43:1947–1950
    Moslem, S., Hashem, K., B., Mehdi, A., and Mohammad, M. (2017). Optimizing Growing Media for Enhancement to Vegetative Growth, Yield and Fruit Quality of Greenhouse Tomato Production in Soilless Culture System, World Journal of Agricultural Sciences, 13 (2): 82-89.
    Muneer, S., Kim, E. J., Park, J. S., and Lee, J. H. (2014). Influence of green, red and blue light emitting diodes on multiprotein complex proteins and photosynthetic activity under different light intensities in lettuce leaves (Lactuca sativa L.). International Journal Molecular Science, 15(3), 4657-4670.
    Nagalakshmi, S., Nandakumar, N., Palanisamy, D., and Sreenarayanan V., V. (2001). Naturally ventilated polyhouse for vegetable cultivation. South Indian Horticulture, 49 (Special), pp: 345-346.
    Newton, P., Sahraoui, R., and Economakis, C. (1999). The influence of air temperature on truss weight of tomatoes. Acta Horticulturae, 507, 43–49.
    Niazi, A., Manzoor, S., Asari, S., Bejai, S., Meijer, J., and Bongcam-Rudloff, E. (2014). Genome analysis of Bacillus amyloliquefaciens Subsp. plantarum UCMB5113: a rhizobacterium that improves plant growth and stress management. Public library of Science One, 9(8), e104651.
    Nichols, M. (2013). Coir: Sustainable Growing Media. Available online: http://cocopeatcompany.com/report/ 1475602985.pdf (accessed on 7 June 2019).
    Nowicki, M., El˙zbieta, U., Kozik, and Foolad, M., R. (2013). Late Blight of Tomato. Translational Genomics for Crop Breeding, Volume I: Biotic Stress, First Edition. Edited by Rajeev K. Varshney and Roberto Tuberosa. John Wiley & Sons, Inc.
    Ochigbo, A. A., and Harris, G. P. (2015). Effects of film plastic cover on the growth and yield of bush tomatoes grown in a bed system. Journal of Horticultural Science, 64(1), 61-68.
    Onuma, K. and Nakagaki, S. (1982). The growth of vegetable crops and establishment of insect and mite pests in a plastic greenhouse treated to exclude near UV radiation. (1) The growth of pepper and cucumber. Bull. Ibaraki-Ken Horticulture. Exp. Sta. 10, 31-38.
    Page, S. E., Rieley, J. O., Shotyk, W., and Weiss, D. (1999). Interdependence of peat and vegetation in a tropical peat swamp forest. Philosophical Transactions of the Royal Society of London Biological Sciences, 354(1391), 1885-1897.
    Pandey, V.K., Dwivedi, S.K., Pandey, A., and Sharma, H.G. (2004). Low cost polyhouse technology for vegetable cultivation in Chhattisgarh Region. Plant Archives, 4 (2), pp: 295-301
    Papaioannou, C., Katsoulas, N., Maletsika, P., Siomos, A., and Kittas, C. (2012). Effects of a UV-absorbing greenhouse covering film on tomato yield and quality. Spanish Journal of Agricultural Research, 10(4).
    Park, K., C., and Chang, T., H. (2012). Effect of chitosan on microbial community in soils planted with cucumber under protected cultivation. Korean Journal of Horticultural Science and Technology. 30: 261-269.
    Parvej, M., Khan, M. and Awal, M., (2010). Phenological Development and Production Potentials of Tomato under Polyhouse Climate. Journal of Agricultural Sciences, 5(1), pp.19–31.
    Patil, R., H., Parameshwarareddy, R., Angadi, S., S., and Biradar, M., S. (2018). Water productivity of tomato as influenced by drip irrigation levels and substrates. Journal of Pharmacognosy and Photochemistry, 7(2): 1343-1346
    Paul, N. D., Jacobson, R. J., Taylor, A., Wargent, J. J., and Moore, J. P. (2005). The use of wavelength-selective plastic cladding materials in horticulture: understanding of crop and fungal responses through the assessment of biological spectral weighting functions. Photochem Photobiology, 81(5), 1052-1060.
    Pem, D., and Jeewon, R. (2015). Fruit and Vegetable Intake: Benefits and Progress of Nutrition Education Interventions- Narrative Review Article. Iran Journal of Public Health, Vol. 44, (10) pp.1309-1321
    Peralta I.E and Spooner D (2007). History, origin and early cultivation of tomato (Solanaceae). Genetic improvement of Solanaceous crops Vol. 2. Enfield. Nueva Hampshire: Science Publishers; pp. 1-27
    Premachandra, W. T., S., D., Borgemeister, C., Maiss, E., Knierim, D., and Poehling, H.M. (2005). Ceratothripoides claratris, a new vector of a Capsicum chlorosis virus isolate infecting tomato in Thailand. The American Psychopathological Society, (95):659-663.
    Putranta, H., Permatasari, A., K., Sukma, T., A., and Dwandaru, W., S., B. (2019). The Effect of pH, Electrical Conductivity, and Nitrogen (N) in the Soil at Yogyakarta Special Region on Tomato Plant Growth. Technology, Education, Management Journal.8, (3) 860-865.
    Qiao, J., Q, Wu1, H., J., Huo, R., Gao1, X., W., and Borriss, R. (2014). Stimulation of plant growth and biocontrol by Bacillus amyloliquefaciens subsp. plantarum FZB42 engineered for improved action. Chemical and Biological Technologies in Agriculture 1:12.
    Rahman, M., M., Islam, M., N., Wazed, M., A., Arfin, M., S., and Hossain, M., F., B. (2010). Determination of post-harvest losses and shelf life of tomato as influenced by different types of polythene at refrigerated condition (10ºc). International Journal of Sustainable Crop Production. 5(4):62-65.
    Ramkissoon, A., Francis, J., Bowrin, V., Ramjegathesh, R., Ramsubhag, A., and Jayaraman, J. (2016). Bio efficacy of a chitosan-based elicitor on Alternaria solani and Xanthomonas vesicatoria infections in tomato under tropical conditions. Annals of Applied Biology., 169: 274-283.
    Ramyabharathi, S., A., Meena, B., and Raguchander, T. (2012). Induction of chitinase and b-1, 3- glucanase PR proteins in tomato through liquid formulated Bacillus subtilis EPCO 16 against Fusarium wilt. Journal of Biology and Todays world, 1(1):50–60.
    Randall, L., B., Holbrook, N., M., and Clair, D., A., S. (2004) “Water relations under root chilling in a sensitive and tolerant tomato species,” Plant, Cell and Environment, 27, (8), 971–979.
    Raviv, M., and Antignus, Y. (2004). UV radiation effects on pathogens and insect pests of greenhouse-grown crops. Photochem Photobiol, 79(3): 219-226.
    Rhoades, J. D., and Chanduvi, F. (1999). Soil salinity assessment: Methods and interpretation of electrical conductivity measurements (No. 57). Food & Agriculture Organization.
    Robertson, R., A. (1993). Peat, horticulture and environment. Biodiversity and Conservation.2:541-547
    Rosales, M. A., Cervilla, L. M., Sanchez-Rodriguez, E., Rubio-Wilhelmi Mdel, M., Blasco, B., Rios, J. J., and Ruiz, J. M. (2011). The effect of environmental conditions on nutritional quality of cherry tomato fruits: evaluation of two experimental Mediterranean greenhouses. Journal of the Science of Food Agriculture, 91(1), 152-162.
    Saikia, J.; Baruah, H., K.; and Phookan, D., B. (2001). Off season production of cucumber inside low cost polyhouse. Annals of Biology 17(1): 61-64
    Savvas, D., and Gruda, N. (2018). Application of soilless culture technologies in the modern greenhouse industry – A review. European Journal of Horticultural Science, 83(5), 280-293.
    Schwarz, D., Öztekin, G. B., Tüzel, Y., Brückner, B., and Krumbein, A. (2013). Rootstocks can enhance tomato growth and quality characteristics at low potassium supply. Scientia Horticulturae, 149, 70-79.
    Seker, I. (1999). Studies on the effects of UV-absorbing films on the pollination activity of bumblebees in greenhouse tomatoes. In Summary of Research Projects and Field Experiments in Tomato Crops for I999, pp. 41-53.
    Shamshiri, R. R., Jones, J. W., Thorp, K. R., Ahmad, D., Man, H. C., and Taheri, S. (2018). Review of optimum temperature, humidity, and vapour pressure deficit for microclimate evaluation and control in greenhouse cultivation of tomato: a review. International Agrophysics, 32(2), 287-302.
    Shamshiri, R. R., Jones, J. W., Thorp, K. R., Ahmad, D., Man, H. C., and Taheri, S. (2018). Review of optimum temperature, humidity, and vapour pressure deficit for microclimate evaluation and control in greenhouse cultivation of tomato: a review. International Agrophysics, 32(2), 287-302.
    Singh, V., K., Singh, A., K., Kumar, A. (2017). Disease management of tomato through PGPB: current trends and future perspective. 3 Biotech 7, (4), 255.
    Sjörs, H. (1980). Peat on earth: Multiple use or conservation? AMBIO: A Journal of Human Environment. 9(6):303-308.
    Souza, C., F., Conchesqui, M., E., S., S., Marília B. (2019). Semiautomatic Irrigation Management in Tomato. Engenharia Agrícola, 39, 118-125.
    Spehia, R., S. (2019). Standardization of Soilless Media and Irrigation Schedule for Improving Yield and Quality of Tomato in UV Stabilized Polybags Under Polyhouse. Thesis copy uploaded online.
    Tadesse, T., Nichols, M.A., Hewett, E.W., and Fisher, K.J. (2001). Relative humidity around the fruit influences the mineral composition and incidence of blossom-end rot in sweet pepper fruit. Journal of Horticulture and Forestry, 76, 9-16.
    Tewolde, F., T., Lu, N., Shiina, K., Maruo, T., Takagaki, M., Kozai, T., and Yamori, W. (2016). Nighttime supplemental LED inter-lighting improves growth and yield of single-truss tomatoes by enhancing photosynthesis in both winter and summer. Frontiers in Plant Science, 7, 448–457.
    Toor, R. K., Savage, G. P., and Lister, C. E. (2006). Seasonal variations in the antioxidant composition of greenhouse-grown tomatoes. Journal of Food Composition and Analysis, 19(1), 1-10.
    Trouwborst G., Hogewoning S., W., van Kooten O., Harbinson J., and van Ieperen W. (2016). Plasticity of photosynthesis after the ‘red light syndrome’ in cucumber. Environmental and Experimental Botany, 121: 75-82.
    Van Dam, J., E., G., Martien J., A., Oever, V., D., Teunissen, W., Edwin, Keijsers, E., R., P., and Peralta, A., G. (2003). Process for production of high density/high performance binder less boards from whole coconut husk Part 1: Lignin as intrinsic thermosetting binder resin. Industrial Crops and Products. An International Journal, 19, 207–216
    Vano, I., Matsushima, M., Tang, C., and Inubushi, K. (2011). Effects of peat moss and sawdust compost applications on N2O emission and N leaching in blueberry cultivating soils. Soil Science and Plant Nutrition, 57(2), 348-360.
    Venema, J. H., Posthumus, F., and van Hasselt, P. R. (1999). Impact of Suboptimal Temperature on Growth, Photosynthesis, Leaf Pigments and Carbohydrates of Domestic and High-altitude Wild Lycopersicon Species. Journal of Plant Physiology, 155(6), 711-718.
    Wortman, S. E. (2015). Crop physiological response to nutrient solution electrical conductivity and pH in an ebb-and-flow hydroponic system. Scientia Horticulturae, 194, 34-42.
    Xing, K., X. Zhu, X. Peng and S. Qin, 2015. Chitosan antimicrobial and eliciting properties for pest control in agriculture: A review. Agronomy and Sustainable Development. 35: 569-588.
    Xiong, J., Tian, Y., Wang, J., Liu, W., and Chen, Q. (2017). Comparison of Coconut Coir, Rockwool, and Peat Cultivations for Tomato Production: Nutrient Balance, Plant Growth and Fruit Quality. Frontiers in Plant Science, 8, 1327.
    Yao, XY. Liu XY, Xu, Z., G., and Jiao X., L. (2017). Effects of light intensity on leaf microstructure and growth of rape seedlings cultivated under a combination of red and blue LEDs. Journal of Integrative Agriculture, 16 (1): 97-105.
    Yin, H., Zhao, X., Du, Y. (2010). Oligochitosan: A plant diseases vaccine—A review. Carbohydrate Polymers, 82, (1),1-8.
    Zhou, R., Kong, L., Wu, Z., Rosenqvist, E., Wang, Y., and Zhao, L., (2019). Physiological response of tomatoes at drought, heat and their combination followed by recovery. Physiologia Plantarum 165, 144–154.

    下載圖示
    QR CODE