簡易檢索 / 詳目顯示

研究生: 謝勝賢
Hsieh, Sheng-Hsien
論文名稱: 水稻田紋溝灌溉之水分控制與節水效率分析
Analysis of Water Control and Water Saving Efficiency of Paddy Field Rill Irrigation
指導教授: 葉一隆
Yeh, Yi-Lung
學位類別: 博士
Doctor
系所名稱: 工學院 - 土木工程系所
Department of Civil Engineering
畢業學年度: 108
語文別: 中文
論文頁數: 76
中文關鍵詞: 稻作強化栽培體系節水灌溉紋溝灌溉
外文關鍵詞: System of Rice Intensification, Water Saving Irrigation, Rill Irrigation
DOI URL: http://doi.org/10.6346/NPUST202000264
相關次數: 點閱:44下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統
  • 水稻是一種耗水量大的作物,如逢乾旱缺水,水資源越顯彌足珍貴,臺灣水稻灌溉漸採乾濕交替,而水稻田開溝灌溉為另一節水方法。本研究目的為比較水稻田溝灌和漫灌之不同灌溉方法,以建立溝灌與漫灌模式分析,並結合土壤之物理性結構與入滲關係,執行水分控制。試驗場分小田區滲漏計試驗與大田區試驗,滲漏區水稻栽培採用稻作強化體系,植株密度30 cm × 30 cm的少苗疏植,佈置田區開溝及未開溝三重複試驗;大田區使用傳統播種方式,灌溉區分溝灌及漫灌模式。
    本研究所用大田區之土壤入滲率由試驗結果得知西區之基本入滲率為0.0237 mm/hr,東區則為0.0152 mm/hr,土壤屬砂質壤土,經設定土壤水分張力值為20 kPa時,其土壤含水量約為17 %。
    依據小田區滲漏計試驗區試驗條件所建立之溝灌模式模擬結果用水效率為0.40 kg/m3,而實際平均用水效率為0.41 kg/m3;漫灌試區模擬之用水效率為0.32 kg/m3,實際平均用水效率為0.33 kg/m3,由分析可知水稻溝灌獲得較高用水效率。而以期作試驗結果比較,溝灌一期作實際用水效率為0.60 kg/m3,高於二期作實際用水效率0.35 kg/m3,此與歷年農政單位之統計報告,一期作產量高於二期作結果符合。
    一期作溝灌模式於固定根系長與用水量情境時,模擬有效分糵數增加10 %,則模擬用水效率可以增加8 %,顯示水稻生育期間若增加有效分糵數相對可增加用水效率。當一期作溝灌模式固定有效分糵數與用水量時,模擬用水效率與根系長呈顯著正相關,顯示溝灌處理試區根系生長旺盛,有利於根系吸收水分及營養。
    由小田區滲漏計試驗結果顯示溝灌具可靠度,於 107及108年一期作利用大田區進行溝灌與漫灌試驗驗證,由試驗結果顯示兩年度之溝灌較漫灌節水分別為8.3 %及27.3 %,表明水稻溝灌能提高用水效率之目的。另外由t檢定得知稻田開溝及未開溝之差異性,結果顯示開溝之穗長、穗重及稔實率具顯著性差異,而穎花數、稔實粒等均無顯著差異。

    Rice is a crop that consumes very large amounts of water which becomes particularly precious during times of drought and water shortage. In Taiwan, water conservation is aided by alternated wet and dry irrigation, with rill irrigation being another important water-saving method. The purpose of this study is to compare the rill and flooding rice field irrigation methods, conduct a model analysis for the two methods, and implement water control in combination with the relationship between infiltration and the physical structure of the soil. The testing for this study is divided into two separate lysimeter and field sites. The Rice cultivation on both sites adheres to the System of Rice Intensification (SRI), with seedlings planted at a 30 cm×30 cm density over three ditched and un-ditched experiments. On the field test site with clearly distinguished rill irrigation and flooding irrigation, on the other hand, traditional irrigation methods were used.
    In this study, a feasible model of rice rill irrigation was established through experiments, with the analysis of soil infiltration in the field test site showing that the basic infiltration rate of the western and eastern areas were 0.0237 mm/hr and 0.0152 mm/hr respectively. The soil composition was sandy loam. When the soil moisture tension value was set to 20 kPa, the soil moisture content measured at about 17%.
    Based on the established rill irrigation model, the simulated water efficiency is 0.40 kg/m3, while the actual average water efficiency is 0.41 kg/m3. On the simulated flooding irrigation test site, water efficiency measures at 0.32 kg/m3, while the actual average water efficiency is 0.33 kg/m3. The findings illustrate that rill irrigation achieves higher water efficiency. The sampling of the rill irrigation treatment at the lysimeter test site is divided into the spring rice crop and the summer rice crop. Compared with the higher water efficiency of 0.60 kg/m3 for the rill irrigation spring rice crop, the summer rice crop measures at a water efficiency of only 0.35 kg/m3. This is consistent to the statistical reports released by different Ministry of Agriculture divisions over the years that the output of spring rice is higher than summer rice.
    In the spring rice crop on the rill irrigation lysimeter site, when root length and water consumption are fixed, the simulated effective fraction is increased by 10% while the simulated water efficiency is increased by 8%. This shows that increasing the effective fraction during the rice growth period can visibly increase water efficiency. When the spring rice crop rill irrigation pattern fixes the effective number of fraction points and water consumption, the simulated water efficiency is significantly correlated with root length. This shows that the root system grows vigorously in the rill irrigation treatment site, which is beneficial for the root system to absorb water and nutrients.
    The re-regression results of the lysimeter test site showed the reliability of rill irrigation in comparison to flooding irrigation which were carried out in the field test site. In both 2018 and 2019, rill irrigation proved stronger than flooding irrigation with water saving of 8.3% and 27.3% respectively. In addition, the test difference between the rill and flooding rice fields showed that for rill rice fields, the ear length, ear weight, and stubble rate were significant factors, but that there was no significant difference in the number of spikelets and stubble seeds.

    摘要............................................I
    Abstract......................................III
    謝誌...........................................VI
    目錄..........................................VII
    表目錄........................................IIX
    圖目錄..........................................X
    第1章 緒論......................................1
    1.1 研究動機....................................1
    1.2 研究目的....................................2
    1.3 論文架構....................................3
    第2章 文獻回顧..................................5
    2.1 稻作強化栽培體系.............................5
    2.2 水稻節水灌溉................................10
    第3章 研究方法..................................13
    3.1 灌溉試驗設計................................14
    3.2 農藝性狀....................................16
    3.3 雙環入滲試驗及土壤水分張力計之率定............18
    3.4 溝灌與漫灌複迴歸分析.........................21
    第4章 研究區域概述...............................24
    4.1 地理位置與氣候...............................25
    4.2 試驗場概況...................................27
    第5章 結果分析與討論.............................30
    5.1 試驗田區土壤試驗結果.........................30
    5.2 溝灌與漫灌試驗複迴歸分析......................39
    5.3 大田區統計檢定結果............................61
    第6章 結論與建議..................................63
    6.1結論..........................................63
    6.2建議..........................................65
    參考文...........................................66
    附錄一 溝灌ANOVA報表..............................72
    附錄二 溝灌(一期作)線性迴歸模式Pearson correlation.73
    附錄三 溝灌(二期作)線性迴歸模式Pearson correlation.74
    附錄四 溝灌(一期作)及(二期作)模式殘差統計量表.......75
    作者簡介..........................................76

    1.Ndiiri, J.A., Mati, B. M., Home, P. G., Odongo, B., Uphoff, N., 2013, Adoption, Constraints and Economic Returns of Paddy Rice Under the System of Rice Intensification in Mwea, Kenya, Agricultural Water Management, Vol. 129, pp. 44-55.
    2.Benoit, C., Crisanta, B., Abigail J. Domingob., Heathel L. L., Leigh V., 2016, Leaf Emergence, Tillering, Plant Growth, and Yield in Response to Plant Density in a High-Yielding Aerobic Rice Crop, Field Crops Research, 199(Supplement C), pp. 52-64.
    3.李淞義,2018,水稻紋溝灌溉之溝寬對灌溉效益分析,國立屏東科技大學土木工程系碩士論文,屏東。
    4.邱琬容,2015,水稻強化節水灌溉效率分析,國立屏東科技大學土木工程系碩士論文,屏東。
    5.洪啓智,2013,水稻溝灌與漫灌之灌溉效率評估,國立屏東科技大學土木工程系碩士論文,屏東。
    6.行政院農業委員會,2000,強化水稻用水栽培體系可行性評估及其對水資源之影響計畫,台北,第13-142頁。
    7.行政院農業委員會,2020,灌溉原理,台北,第1-257頁。
    8.Willem A. S., Norman U., Amir K., 2002 , A Review of Agricultural Research Issues Raised by the System of Rice Intensification (SRI) fromMadagascar: Opportunities for Improving Farming Systems for Resource-Poor Farmers, Agricultural Systems, Vol. 71, pp. 249–274.
    9.何信賢,1998,乾旱時期毛管水對旱作補給量之推估,國立台灣大學農業工程研究所博士論文,台北。
    10.陳清田,2004,缺水期之灌溉用水有效調配模式,國立台灣大學,生物環境系統工程學研究所博士論文,台北。
    11.Amod K. T., Rajeeb K. M., Rajbir S., Dhiraj U. P., 2015, Enhancing Water and Cropping Productivity Through Integrated System of Rice Intensification (ISRI) with Aquaculture and Horticulture Under Rainfed Conditions, Agricultural Water Management, Vol. 161, pp. 65-76.
    12.張煜權,2016,稻作革命SRI,SRI保育型農業環境學會,臺北。
    13.Thakur, Amod, K., Uphoff, Norman, T., and Stoop, Willem A., 2016, Scientific Underpinnings of the System of Rice Intensification (SRI): What Is Known So Far? Advances in Agronomy, Vol. 135, pp. 147-179.
    14.Ezra Berkhout., Dominic Glover., and Arie Kuyvenhoven., 2015, On-farm Impact of the System of Rice Intensification (SRI): Evidence and knowledge gaps. Agricultural Systems, Vol. 132, pp. 157-166.
    15.Chapagain, Tejendra., Riseman, Andrew., and Yamaji, Eiji., 2011, Assessment of System of Rice Intensification (SRI) and Conventional Practices under Organic and Inorganic Management in Japan. Rice Science, Vol.18, No. 4, pp. 311-320.
    16.Riza, Kanber., Harun, Koksal., Sermet, Onder., Selim, Kapur., Sebahattin, Sahan., 2001, Comparison of Surge and Continuous Furrow Methods for Cotton in the Harran Plain. Agricultural Water Management, Vol. 47, No. 2, pp. 119-135.
    17.L M.A. Latif., M.R. Islam., M.Y. Ali., M.A. Saleque., 2005, Validation of the System of Rice Intensification (SRI) in Bangladesh. Field Crops Research, Vol. 93, No. 2, pp. 281-292.
    18.Agustin. Limon-Ortega., Kenneth, D. Sayre., Rhae, A. Drijber., Charles, A. Francis., 2002, Soil Attributes in a Furrow-Irrigated Bed Planting System in Northwest Mexico, Soil and Tillage Research, Vol. 63, No. 3, pp. 123-132.
    19.Tejendra Chapagai., and Eiji. Yamaji., 2010, The Effects of Irrigation Method, Age of Seedling and Spacing on Crop Performance, Productivity and Water-Wise Rice Production in Japan, Paddy and Water Environment, Vol. 8, No.1, pp. 81-90.
    20.Tsujimoto, Yasuhiro., Horie, Takeshi., Randriamihary, Hamon., Shiraiwa, Tatsuhiko., Homma, Koki., 2009, Soil Management: The Key Factors for Higher Productivity in the Fields Utilizing the System of Rice Intensification (SRI) in the Central Highland of Madagascar. Agricultural Systems, Vol. 100, No.1 , pp. 61-71.
    21.Norman. Uphoff., Vasilia Fasoula., Anas. Iswandi., Amir. Kassam., Amod K. Thakur., 2015, Improving the Phenotypic Expression of Rice Genotypes: Rethinking Intensification for Production Systems and Selection Practices for Rice Breeding. The Crop Journal, Vol. 3, No.3 , pp. 174-189.
    22.Aimrun, W., Mohd, A. M. Sooma., Khalina A., Umar M., 2014, Impact of Mulch on Weed Infestation in System of Rice Intensification (SRI) Farming, Agriculture and Agricultural Science Procedia, Vol. 2, pp. 353-360.
    23.Proyuth, L., Lars S. J., Thilde, B. B., Dominik, R., Andreas de N., 2012, The System of Rice Intensification: Adapted Practices, Reported Outcomes and their Relevance in Cambodia, Agricultural Systems, Vol. 113, pp. 16-27.
    24.Asch, Folkard., Dingkuhn, Michael., Sow, Abdoulaye., Audebert, Alain., 2005, Drought-Induced Changes in Rooting Patterns and Assimilate Partitioning Between Root and Shoot in Upland Rice, Field Crops Research, Vol. 93, No. 2, pp. 223-236.
    25.P. K. Bandyopadhyay., K.C. Singh., K. Mondal., R. Nath., P. K. Ghosh., N. Kumar., P. S. Basu., S. S. Singh., 2016, Effects of Stubble Length of Rice in Mitigating Soil Moisture Stress and on Yield of Lentil (Lens Culinaris Medik) in Rice-Lentil Relay Crop, Agricultural Water Management, Vol. 173, pp. 91-102.
    26.Samara, Martins, Barbosa., Bruno, Montoani, Silva., Geraldo, César, De. Oliveira., Pedro. Antônio. Namorato. Benevenute., Rodrigo, Fonseca, Da. Silvab., Nilton, Curi., Bruno da Silva Moretti., Sérgio, Henrique, Godinho, Silva., Lloyd, Darrell, Norton., Vinícius, Moribe, Pereira., 2020, Deep Furrow and Additional Liming for Coffee Cultivation Under First Year in a Naturally Dense Inceptisol. Geoderma, Vol. 357, pp. 113934.
    27.林賢青,2005,超級稻在不同水分管理條件下的營養、生理和生態特性研究,浙江大學博士論文。
    28.張玉鑽,1963,甘蔗旱地灌溉土壤之水分收支動態研究,台灣糖業試驗所種藝系灌溉排水研究室,台南,第18頁。
    29.丁加麗,2007,控制灌溉水稻水分利用规律及蒸發蒸腾量模擬研究,河海大學博士論文,水利水電工程。
    30.龍旭等,2005,水稻强化栽培的适宜秧龄和栽植密度研究,四川農業大學,第369-373頁。
    31.周明耀,2007,農田水分高效利用理論與管理技術研究,河海大學博士論文,水文學及水資源,第5-151頁。
    32.汪呈因,1955,稻作學,羅印書館,台中市。
    33.Ockerby, S.E., and S. Fukai., 2001. The Management of Rice Grown on Raised Beds with Continuous Furrow Irrigation. Field Crops Research,. Vol. 63, No. 3, pp. 215-226.
    34.張慎鳳,2009,乾濕交替灌溉對水稻生長發育產量與品質的影響,揚州大學碩士論文,作物栽培學與耕作。
    35.Welde, K., and H.L. Gebremariam., 2016, Effect of Different Furrow and Plant Spacing on Yield and Water Use Efficiency of Maize. Agricultural Water Management, Vol. 177, pp. 215-220.
    36.雜作灌溉手冊,1980,台灣省水利局,國立台灣大學農業工程學系,第001-395頁。
    37.Moseki, O., M. Murray-Hudson., and K. Kashe., 2019 , Crop Water and Irrigation Requirements of Jatropha Curcas L. in Semi-Arid Conditions of Botswana: Applying the CROPWAT Model. Agricultural Water Management,. Vol. 225, pp. 105754.
    38.Uphoff, N., A. Kassam., and W. Stoop., 2008, A Critical Assessment of a Desk Study Comparing Crop Production Systems: The Example of the System of Rice Intensification Versus Best Management Practice, Field Crops Research, Vol. 108, No. 1, pp. 109-114.
    39.台北市瑠公農田水利會,2019,水稻田紋溝灌溉之水分控制與節水效率分析,臺北。
    40.楊嘉凌,2009,水稻農藝性狀及榖粒性狀的全互交分析,台中農業改良場研究彙報,第51-58頁。
    41.羅炬等,2012,一個控制水稻株高的遺傳性分析,中國水稻科學,第26卷,第4期,第417-422頁。
    42.黃文江,黃義德,王紀革,2003,水稻旱作對其生長量和經濟產量的影響,乾旱地區農業研究,第21卷,第4期,第15-19頁。
    43.林再發,1990,第一、二期作水稻產量構成要素對產量影響分析,台中區農業改良場研究彙報,第16卷,第17-23頁。
    44.羅正宗,2010,早熟香米新品種「台南13 號」,臺南區農業專訊,第71期,第7頁。
    45.黃秋蘭,2006,水稻新品種介紹,專訊稿件,行政院農業委員會臺東區農業改良場,台東。
    46.林惠玲,陳正倉,2019,統計學方法與運用(四版)下冊,臺北,雙葉書廊有限公司。
    47.田祖武,于鴻福,2002,統計學精要,滄海書局,台中,第582-678頁。
    48.Google 地球,2020,google.com.tw/map/嘉南農田水利會農業灌溉試驗場。
    49.中央氣象局,2019,中央氣象局108年氣候年報,臺北。
    50.行政院農業委員會,2019,Dec版地籍圖ArcMap Version 9.3版。
    51.Manon, Janssen., and Bernd Lennartz., 2009, Water Losses Through Paddy Bunds: Methods, Experimental Data, and Simulation Studies, Journal of Hydrology, Vol. 369, No. 1, pp. 142-153.
    52.台灣農業灌溉協會,2018,利用紋溝強化水稻栽種節水效率試驗,臺南。
    53.李德治,童惠玲,2010多變量分析:專題及論文常用的統計方法,雙葉書廊有限公司,臺北,第109-188頁。
    54.榮泰生,2007,SPSS與研究方法,五南圖書出版股份有限公司,臺北,第443-467頁。
    55.馬秀蘭,吳德邦,2008,統計學-以Microsoft Excel為例,新文京開發出版股份有限公司,臺北,第188-213頁。
    56.鄧家駒,2004,多變量分析,華泰文化事業股份有限公司,臺北,第35-191頁。

    下載圖示
    QR CODE