簡易檢索 / 詳目顯示

研究生: 溫婧暄
Wen, Jing-Xuan
論文名稱: 荷蘭牛擠乳效能與產乳性能相關標記基因探討
Study on Gene Markers Associated with Milkability and Milk Production in Holstein Cattle
指導教授: 張秀鑾
Chang, Hsiu-Luan
學位類別: 碩士
Master
系所名稱: 農學院 - 動物科學與畜產系所
Department of Animal Science
畢業學年度: 108
語文別: 中文
論文頁數: 96
中文關鍵詞: 乳牛擠乳效能產乳性能單核苷酸多態性
外文關鍵詞: Dairy cattle, Milkability, Milk production, Single nucleotide polymorphism
DOI URL: http://doi.org/10.6346/NPUST202000266
相關次數: 點閱:16下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統
  • 乳牛群擠乳效能與產乳性能顯著影響乳牛場生產效率,結合相關標記基因輔助選拔,可有效降低乳牛群非自願性淘汰率與提升選拔效益。本研究旨在建立擠乳效能相關基因,催產素/運載蛋白I基因 (OXT) 與含splA/ryanodine受體結構域之細胞因子信號傳導抑制因子盒1基因 (SPSB1),多態性位點鑑定平台,並綜合評估該兩基因與四個已知產乳相關基因 (CXCR1、LEP、CSN3 與DGAT1)之影響。應用MS-PCR法建立OXT基因型鑑定平台與PCR-RFLP法建立SPSB1基因型鑑定平台。產乳效能資料來自台灣花蓮泌乳牛群圓盤式搾乳機智慧管理系統擠乳紀錄 (包括乳量與擠乳時間) 與該場乳牛群改良 (DHI) 性能資料,並採集369 頭泌乳牛血液,進行DNA萃取與基因型鑑定。運用 SAS 9.4 進行分析,擠乳效能之統計模式包括上述六個基因之基因型、產次、擠乳時段(早晨與晚間)、泌乳階段 (DIMs),以及產次與DIMs交感為固定效應,殘差為逢機效應。DHI性能資料分析模式,除擠乳時段外,餘與擠乳效能分析之統計模式者同。結果顯示,OXT-TT與SPSB1-GG型泌乳牛具有顯著較高單次擠乳量與305天校正脂肪量、較快下乳速率、較短總下乳時間與較低體細胞分數。同時,SPSB1-GG型泌乳牛之305天校正乳量與乳蛋白質率也較高,CXCR1-CC與LEP-CT型者具顯著較高單次擠乳量、較快下乳速率及較短總下乳時間;但前述兩基因多態性對產乳性狀影響不顯著。CSN3-AA型泌乳牛具顯著較高單次擠乳量、305天校正乳量與下乳速率,惟乳蛋白質率則以CSN3-BB型者顯著較高。此外,具DGAT1基因之A等位基因泌乳牛具顯著較高單次擠乳量與下乳速率;但305天校正脂肪量與乳脂肪率,則以DGAT1-KK型者顯著較高。綜合評估本研究探討之各基因多態性對泌乳牛擠乳效能與產乳性狀之影響,建議經非遺傳影響因素 (如產次與飼養管理等環境效應) 校正後,更新用種乳牛 CXCR1-LEP-CSN3-OXT-DGAT1-SPSB1基因之有利組合基因型為CC-CT-AA-TT-AA-GG。

    Improving milkability and milk production of dairy herds that significantly affect production efficiency, combined with marker-assisted selection, can effectively reduce the involuntary culling and thus improve selection efficiency. The aims of this study were to identify polymorphic sites and setup genotyping platform of milking efficacy related maker genes, oxytocin-neurophysin I gene (OXT) and splA/ryanodine receptor domain and SOCS box containing 1 gene (SPSB1), and further comprehensively to evaluate the impact of the two genes and four known milking-related genes (CXCR1, LEP, CSN3, and DGAT1) on milkability and milk production. The polymerase chain reaction-restriction fragment length polymorphism and mutagenically separated polymerase chain reaction techniques were used to establish the genotyping platform with genotype identification. Milking traits evaluated included milkability data and DHI records of a commercial dairy cattle farm in Hualien, Taiwan. Milkability data (single milking yield and time) originated from the smart dairy managing system of rotary milking parlour used in the farm. A total of 369 lactating cows was blood sampled for DNA extraction and genotyping. The data was analyzed using SAS version 9.4 (SAS Institute Inc. 2008). In addition to random residual, the statistical model for milkability traits included the genotypes six genes studied, parity, milking period (morning and evening), days in lactation (DIMs), and parity*DIMs interaction as fixed effects. Also, the same model was employed for the DHI performance data analysis, except milking period excluded from the model. Results showed that cattle with OXT-TT and SPSB1-GG genotypes had more single milking yield (SMY) and 305-2X-ME fat yield, faster milking speed (MS), shorter total milking time (TMT), and lower somatic cell scores. Furthermore, SPSB1-GG genotype cattle showed significantly higher 305-2X-ME milk yield and milk protein percentage. Also, CXCR1-CC and LEP-CT genotypes cattle are favored in term of higher SMY, faster MS, and shorter TMT. But CXCR1 and LEP gene polymorphisms were not related with milk production of dairy cattle. Although CSN3-AA genotype cattle showed significantly higher SMY, 305-2X-ME milk yield, and MS, CSN3-BB genotype cow had higher milk protein percentage. In addition, cow with DGAT1-A allele showed significantly higher SMY and MS, but DGAT1-KK genotype cattle produced higher 305-2X-ME fat yield and milk fat percentage. In conclusion, after non-genetic factors adjustments, cattle with CC-CT-AA-TT-AA-GG genotype combination for CXCR1-LEP-CSN3-OXT-DGAT1-SPSB1 genes would be favorable for milking efficiency promotion in dairy breeding program.

    摘 要 I
    Abstract II
    目 錄 IV
    圖表目錄 VI
    壹、 前言 1
    貳、 文獻回顧 3
    一、擠乳效能相關性狀 3
    (一) 下乳速率相關性狀與體細胞數 3
    (二) 產次、泌乳天數與下乳速率關係 12
    (三) 乳房構型對下乳速率之影響 19
    二、擠乳效能相關候選基因 23
    (一)催產素/運載蛋白I前胜肽原基因 26
    (二)含splA/ryanodine受體結構域之細胞因子信號傳導抑制因子盒1基因 30
    (三)產乳性能相關基因 32
    參、 材料與方法 35
    一、泌乳紀錄 35
    二、全血基因組 DNA 萃取 41
    三、基因序列擴增與基因型鑑定 42
    (一)SPSB1、CSN3、CXCR1與LEP基因聚合酶連鎖反應-限制酶片段長度多態性 42
    (二)OXT與DGAT1基因點突變拆離式聚合酶連鎖反應 46
    四、PCR 產物純化、序列分析比對 49
    五、統計分析 50
    (一)擠乳效能性狀 50
    (二)產乳性能性狀 51
    肆、 結果與討論 53
    一、荷蘭牛候選基因多態性 53
    二、擠乳與產乳性狀敘述統計及顯著性檢定 56
    三、擠乳效能性狀間相關係數估值 62
    四、OXT 基因多態性對荷蘭牛擠乳與產乳性能之影響 64
    五、SPSB1 基因多態性對荷蘭牛擠乳與產乳性能之影響 67
    六、CXCR1 基因多態性對荷蘭牛擠乳與產乳性能之影響 70
    七、LEP 基因多態性對荷蘭牛擠乳與產乳性能之影響 73
    八、CSN3基因多態性對荷蘭牛擠乳與產乳性能之影響 76
    九、DGAT1 基因多態性對荷蘭牛擠乳與產乳性能之影響 79
    十、產次與泌乳階段對擠乳效能相關性狀之影響 82
    伍、 結論 87
    參考文獻 89
    作者簡介 96

    池雙慶。1977。乳牛群改良-性能檢定報表:DHI-101 使用說明。中華民國乳業發展協會。
    梁嘉琳。2012。乳牛 CXCR1、LEP 與 DGAT1 基因多態性與產乳性能相關研究。國立屏東科技大學碩士論文。屏東,台灣。
    Alim, M. A., T. Dong, Y. Xie, X. P. Wu, Y. Zhang, S. Zhang, and D. X. Sun. 2014. Effect of polymorphisms in the CSN3 (k-casein) gene on milk production traits in Chinese Holstein Cattle. Mol. Biol. Rep. 41:7585-7593.
    Boettcher, P. J., J. C. M. Dekkers, and B. W. Kolstad. 1998. Development of an udder health index for sire selection based on somatic cell score, udder conformation, and milking speed. J. Dairy Sci. 81:1157-1168.
    Cases, S., Z. Ping, M. S. Jonathan, S. W. Bryony, D. F. Jo, S. A. Christina, H. Lothar, W. Zena, and Jr. Robert V. Farese. 2004. Development of the mammary gland requires DGAT1 expression in stromal and epithelial tissues. Development 131:3047-3055.
    Chilliard, Y., M. Bonnet, C. Delavaud, Y. Faulconnier, C. Leroux, J. Djiane, and F. Bocquier. 2001. Leptin in ruminants. Gene expression in adipose tissue and mammary gland, and regulation of plasma concentration. Domestic animal Endocrinology 21:271-295.
    Citek, J., M. Brzakova, L. Hanusova, O. Hanus, L. Vecerek, E. Samkova, Z. Krizova, I. Hosticova, T. Kavova, K. Strakova, and L. Hasonova. 2020. Gene polymorphisms influencing on yield, composition and technological properties of milk from Czech Simmental and Holstein cows. Asian-Aust. J. Anim. Sci., Retrieved April 15, 2020, from the World Wide Web: https://doi.org/10.5713/ajas.19.0520
    Cosenza, G., A. Pauciullo, A. Mancusi, D. Nicodemo, R. Di Palo, L. Zicarelli, D. Di Berardino, and L. Ramunno. 2007. Mediterranean river buffalo oxytocin-neurophysin I (OXT) gene: structure, promoter analysis and allele detection. Ital. J. Anim. Sci. 6:303-306.
    Dzięgelewska, Ż., and M. Gajewska. 2018. Stromal-Epithelial Interactions during Mammary Gland Development. Stromal Cells-Structure, Function, and Therapeutic Implications, Retrieved April 20, 2020, from the World Wide Web: http://dx.doi.org/10.5772/intechopen.80405
    Feuermann, Y., S. J. Mabjeesh, L. Niv-Spector, D. Levin, and A. Shamay. 2006. Prolactin affects leptin action in the bovine mammary gland via the mammary fat pad. J. Endocrinol. 191:407-413.
    Galvao, K. N., G. M. Pighetti, S. H. Cheong, D. V. Nydam, and R. O. Gilbert. 2011. Association between interleukin-8 receptor-α (CXCR1) polymorphism and disease incidence, production, reproduction, and survival in Holstein cows. J. Dairy Sci. 94:2083-2091.
    Genc, M., O. Coban, U. Ozenturk and O. Eltas. 2018. Influence of breed and parity on teat and milking characteristics in dairy cattle. Mac Vet Rev. 41:169-176.
    Gimpl, G., and F. Fahrenholz. 2001. The oxytocin receptor system: structure, function, and regulation. Physiol. Rev. 81:629-683.
    Göft, H., J. Duda, A. Dethlefsen, and H. Worstorff. 1994. Untersuchungen zur züchterischen Verwendung der Melkbarkeit beim Rind unter Berücksichtigung von Milchflußkurven. Züchtungskunde 66:23-37.
    Gray, K. A., C. Maltecca, A. Bagnato, M. Dolezal, A. Rossoni, A. B. Samore, and J. P. Cassady. 2012. Estimates of marker effects for measures of milk flow in the Italian brown Swiss dairy cattle population. BMC Vet. Res. 8:199-211.
    Jardim, J. G., B. Guldbrandtsen, M. S. Lund, and G. Sahana. 2017. Association analysis for udder index and milking speed with imputed whole-genome sequence variants in Nordic Holstein cattle. J. Dairy Sci. 101:1-14.
    Kleiber, M. L., and S. M. Singh. 2009. Divergence of the vertebrate sp1A/ryanodine receptor domain and SOCS box-containing (Spsb) gene family and its expression and regulation within the mouse brain. Genomics 93:358-366.
    Lee, D. H., and V. Choudhary. 2005. Study on milkability traits in Holstein cows. Asian-Aust. J. Anim. Sci. 19:309-314.
    Liang, C. L., H. L. Chang, and M. C. Wu. 2012. Joint Evaluation of LEP and DGAT1 Gene Polymorphism on Milking Performances in Holstein Cattle. p.824-826. In: Proceedings of the 15th AAAP Animal Science Congress. November 26-30, 2012. Thailand. Published by Thammasat University, Rangsit Campus. Thailand.
    Liu, S., J. Iaria, R. J. Simpson, and H. J. Zhu. 2018. Ras enhances TGF-β signaling by decreasing cellular protein levels of its type II receptor negative regulator SPSB1. Cell Commun. Signal, Retrieved March 10, 2019, from the World Wind Web : https://doi.org/10.1186/s12964-018-0223-4
    Luttinen, A., and J. Juga. 1997. Genetic relationships between milk yield, somatic cell count, mastitis, milkability and leakage in Finnish dairy cattle population. Interbull Bulletin 15:78-83.
    Mancini, G., E. L. Nicolazzi, A. Valentini, G. Chillemi, P. Ajmone Marsan, E. Santus, and L. Pariset. 2013. Association between single nucleotide polymorphisms (SNPs) and milk production traits in Italian Brown cattle. Livest. Sci. 157:93-99.
    Macias, H., and L. Hinck, 2012. Mammary gland development. Wiley Interdiscip Rev Dev Biol. 1:533-557.
    Mitz C. A., and A. M. Viloria-Petit. 2019. TGF-beta signalling in bovine mammary gland involution and a comparative assessment of MAC-T and BME-UV1 cells as in vitro models for its study. PeerJ. 1:533-557.
    Mohammadi, Y., A. A. Aslaminejad, M. R. Nassiry, and A. E. Koshkoieh. 2013. Allelic polymorphism of K-casein, β-Lactoglobulin and leptin genes and their association with milk production traits in Iranian Holstein cattle. J. Cell and Molecular 5:75-80.
    Neamt, R. I., G. Saplacan, S. Acatincai, L. Toma Cziszter, D. Gavojdian, and D. E. Ilie. 2017. The influence of CSN3 and LGB polymorphisms on milk production and chemical composition in Romanian Simmental cattle. Acta Biochimaca Polonica 64:493-497.
    Ngu, N. T., L. T. Quynh, N. V. Hon, N. V. Nhan, D. V. Khoa, L. T. Hung, and N. H. Xuan. 2015. Influence of Leptin genotypes on milk fat and protein content of crossbred Holstein Friesian x lai sind cows. The Journal of Animal and Plant Sciences 25:304-308.
    Pauciullo, A., G. Cosenza, R. Steri, A. Coletta, L. Jemma, M. Feligini, D. Di Berardino, N. P. P. Macciotta, and L. Ramunno. 2012. An association analysis between OXT genotype and milk yield and flow in Italian Mediterranean river buffalo. J. Anim. Sci. 79:150-156.
    Rachagani, S., and I. D. Gupta. 2008. Bovine kappa-casein gene polymorphism and its association with milk production traits. Genetics and Molecular Biology 31:893-897.
    Rambeaud, M., and G. M. Pighetti. 2007. Differential calcium signaling in dairy cows with specific CXCR1 genotypes potentially related to interleukin-8 receptor functionality. Immunogenetics 59:53-58.
    Ramey, H. R., J. E. Decker, S. D. McKay, M. M. Rolf, R. D. Schnabel , and J. F. Taylor. 2013. Detection of selective sweeps in cattle using genome-wide SNP data. BMC Genomics 14:382.
    Rust, S., H. Funke, and G. Assmann. 1993. Mutagenically separated PCR (MS‐PCR): a highly specific one step procedure for easy mutation detection. Nucleic Acids Res. 21:3623-3629.
    Sandrucci, A., A. Tamburini, L. Bava, and M. Zucali. 2007. Factors affecting milk flow traits in dairy cows: results of a field study. J. Dairy Sci. 90:1159-1167.
    Smith, S. J., S. Cases, D. R. Jensen, H. C. Chen, E. Sande, B. Tow, D. A. Sanan,J. Rabert, R. H. Eckel, and R. V. Farese. 2000. Obesity resistance and multiple mechanisms of triglyceride synthesis in mice lacking Dgat. Nat. Genet. 25:87-90.
    Špehar, M., M. Lučić, M. Štepec, Z. Ivkić, M. Dražić, and K. Potočnik. 2017. Genetic parameters estimation for milking speed in Croatian Holstein cattle. Mljekarstvo 67:33-41.
    Spelman, R. J., C. A. Ford, P. McElhinney, G. C. Gregory, and R. G. Snell. 2002. Characterization of the DGAT1 gene in the New Zealand dairy population. J. Dairy Sci. 85:3514-3517.
    Strapák, P., P. Antalík, and I. Szencziová. 2011. Milkability evaluation of Holstein dairy cows by Lactocorder. J. Agrobiol. 28:139-146.
    Tabares, F. P., J. V. B. Jaramillo, and Z. T. Ruiz-Cortés. 2014. Pharmacological overview of galactogogues. Vet. Med. Int., Retrieved March 10, 2019, from the World Wind Web : http://dx.doi.org/10.1155/2014/602894
    Tancin, V., B. Ipema, P. Hogewerf, and J. Mačuhová. 2006. Sources of variation in milk flow characteristics at udder and quarter levels. J. Dairy Sci. 89:978-988.
    Van Gastelen, S., M. H. P. W. Visker, J. E. Edwards, E. C. Antunes-Fernandes, K. A. Hettinga, S. J. J. Alferink, W. H. Hendriks, H. Bovenhuis, H. Smidt, and J. Dijkstra, 2017. Linseed oil and DGAT1 K232A polymorphism: Effects on methane emission, energy and nitrogen metabolism, lactation performance, ruminal fermentation, and rumen microbial composition of Holstein-Friesian cows. J. Dairy Sci. 100:8939-8957.
    Verbeke, J., M.Van Poucke, L. Peelman, S. Piepers, and S. De Vliegher. 2014. Associations between CXCR1 polymorphisms and pathogen-specific incidence rate of clinical mastitis, test-day somatic cell count, and test-day milk yield. J. Dairy Sci. 97:7927-7939.
    Weiss, D., M. Weinfurtner, and R. M. Bruckmaier. 2004. Teat anatomy and its relationship with quarter and udder milk flow characteristics in dairy cows. J. Dairy Sci. 87:3280-3289.
    Wiggans, G. R., and G. E. Shook, 1987. A lactation measure of somatic cell count. J. Dairy Sci. 70:2666-2672.
    Yamashita K., and T. Kitano. 2013. Molecular evolution of the oxytocin-oxytocin receptor system in eutherians. Mol. Phylogenet. Evol. 67:520-528.
    Youngerman, S. M., A. M. Saxton, S. P. Oliver, and G. M. Pighetti. 2004. Association of CXCR2 polymorphisms with subclinical and clinical mastitis in dairy cattle. J. Dairy Sci. 87:2442-2448.
    Zhang, W. C., J. C. M. Dekkers, G. Banos, and E. B. Burnside. 1994. Adjustment factors and genetic evaluation for somatic cell score and relationships with other traits of Canadian Holsteins. J. Dairy Sci. 77:659-665.
    Zwald, N.R., K.A. Weigel, Y. M. Chang, R. D. Welper, and J. S. Clay, 2005. Genetic evaluation of dairy sires for milking duration using electronically recorded milking times of their daughters. J. Dairy Sci. 88:1192-1198.

    無法下載圖示 校外公開
    2025/07/26
    QR CODE