簡易檢索 / 詳目顯示

研究生: 黃雲萍
Huang, Yun-Ping
論文名稱: 不同前處理對咖啡不同部位抗氧化能力之影響
The effect of antioxidant capacity on different pre-process of different tissues of coffee
指導教授: 林素汝
Lin, Su-Ju
學位類別: 碩士
Master
系所名稱: 農學院 - 農園生產系所
Department of Plant Industry
畢業學年度: 108
語文別: 中文
論文頁數: 83
中文關鍵詞: 咖啡咖啡因綠原酸咖啡副產品抗氧化能力
外文關鍵詞: Coffee, caffeine, chlorogenic acid, coffee by-products, antioxidant capacity
DOI URL: http://doi.org/10.6346/NPUST202000268
相關次數: 點閱:35下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統
  • 咖啡(Coffea spp.)是常綠灌木或小喬木,原產於衣索比亞山區,為茜草科(Rubiaceae)咖啡屬 (Coffea),適合生長於熱帶和亞熱帶地區,特別是在温度18-22 °C最適合生長,是全球消費最廣泛的飲料之一。咖啡漿果經處理獲得咖啡生豆後,會產生咖啡副產品,其副產品即為外果皮、果肉、果膠層、內果殼及銀皮,其中含有豐富的抗氧化成分,如綠原酸、阿魏酸、咖啡酸、芥子酸、山萘酚、槲皮素、菸酸、葫蘆巴鹼、鞣酸和咖啡因等,這些成分經研究具有抗氧化、保肝、抗菌、抗病毒、抗炎和降血脂等作用。本研究以國立屏東科技大學特作實驗田的阿拉比卡咖啡 (C. Arabica)為材料,探討咖啡花及槳果採收後,經過不同的調製前處理,其綠原酸、咖啡因含量與抗氧化能力的變化。結果顯示,2018年採收的咖啡槳果,外果皮以烘箱温度50 °C的綠原酸含量 (336.97 ± 0.02 mg/g)顯著較高,咖啡因含量 (69.22 ± 0.02 mg/g)顯著最低。2019年採收的咖啡生豆、果皮及內果殼,以蜜處理的總酚含量顯著較高;內果殼及烘焙豆的類黃酮含量以水洗法的含量較高;蜜處理的生豆、烘焙豆及果皮的DPPH自由基清除能力較強。在2020年的實驗,70 ℃烘箱乾燥的咖啡花其總酚、類黃酮含量及DPPH自由基清除能力均高於其他的烘箱乾燥。綜合上述,咖啡的抗氧化能力隨著調製過程之不同,而有所差異,咖啡及副產品含有豐富抗氧化成分,可以通過加工提高附加價值。

    Coffee (Coffea spp.) is an evergreen shrub or small tree, native to Ethiopian mountains, it is in Coffea genus of Rubiaceae family, most suitable for growing in tropical and subtropical regions, especially at a temperatures between 18-22 ℃. It is one of the most widely consumed beverages in the world. By processing the coffee berries, green coffee beans will be extracted and some coffee by-products will be obtained. The by-products are the outer peel, pulp, pectin layer, inner husk and silver peel, which are rich in antioxidants such as chlorogenic acid and ferulic acid, caffeic acid, sinapinic acid, kaempferol, quercetin, niacin, trigonelline, tannic acid and caffeine, etc. These components had been proofed to have antioxidizing, hepatoprotective, antibacterial, antiviral, anti-inflammatory and hypolipidemic effects etc. This study uses C. Arabica coffee that belongs to the field of Special-crops-lab of National Pingtung University of Science and Technology as materials, to study the different in content of chlorogenic acid and caffeine and changes in antioxidant capacity. Through different ways of pre-processing coffee flowers and pulp. The results showed that the chlorogenic acid content (336.97 ± 0.02 mg/g) of coffee berries harvested in 2018 were significantly higher by drying at an oven temperature of 50 ℃, and the caffeine content (69.22 ± 0.02 mg/g) was significantly lower. The raw coffee beans, peels and inner husks harvested in 2019, treated with honey process, have significantly higher total phenol content; the inner husks and roasted beans treated with washed process have a higher content in flavonoid; the raw beans, roasted beans and peels treated with honey process have a high DPPH free radical scavenging capacity.In the experiment in 2020, the total phenol, flavonoid content and DPPH free radical scavenging capacity of coffee flowers dried in an oven at 70 ℃ were higher than those dried at other temperatures. In summary, the antioxidant capacity of coffee varies with ways of pre-processing. Coffee and its by-products are rich in antioxidants, and through processing they can be increased effectively.

    摘要 I
    Abstract II
    謝誌 IV
    目錄 V
    圖目錄 VII
    表目錄 IX
    壹、前言 1
    貳、文獻回顧 5
    一、咖啡的起源 5
    二、 咖啡的氣候土宜 5
    三、 咖啡的植株性狀 6
    四、 咖啡漿果構造及化學成分 6
    五、 咖啡採收後的處理技術 11
    六、 咖啡與抗氧化能力 12
    七、 烘焙度 17
    參、材料與方法 18
    一、 植物材料 18
    二、 方法 21
    三、 儀器及藥劑 22
    四、 酚類化合物含量分析 31
    (一) 總酚含量 (Total phenolic content) 分析 31
    (二) 類黃酮含量 (Flavonoids content) 分析 31
    (三) DPPH自由基清除能力 (DPPH free radical scavenging activity) 32
    (四) HPLC之指標成分定量分析 33
    五、 統計分析 36
    肆、結果與討論 37
    一、 咖啡果皮抗氧化與活性成分分析 37
    (一) 咖啡因含量分析 37
    (二) 綠原酸含量分析 38
    (三) 總酚含量分析 38
    (四) 類黃酮含量分析 39
    (五) DPPH自由基清除能力 40
    二、咖啡抗氧化與活性成分分析 41
    (一) 咖啡因含量分析 42
    (二)綠原酸含量分析 44
    (三) 總酚含量分析 46
    (四) 類黃酮含量分析 48
    (五) DPPH自由基清除能力 50
    三、烘焙處理對咖啡抗氧化能力之影響 52
    (一) 咖啡因含量分析 53
    (二)綠原酸含量分析 54
    (三)總酚含量分析 55
    (四)類黃酮含量分析 56
    (五)DPPH自由基清除能力 57
    四、咖啡花抗氧化與活性成分分析 58
    (一)咖啡因含量分析 59
    (二)綠原酸含量分析 60
    (三)總酚含量分析 61
    (四)類黃酮含量分析 62
    (五)DPPH自由基清除能力 63
    伍、結論 64
    參考文獻 67
    作者簡介 83

    田口護。2004。咖啡大全。積木文化。14-15 頁。台北市。台灣。

    官亞歆。2017。不同前處理台灣咖啡豆之綠原酸含量與抗氧化能力。國立屏東科技大學食品科學系碩士論文。屏東縣。台灣。

    張淑芬。楊宏仁。劉禎祺。林明瑩。2011。咖啡栽培管理。行政院農業委員會農業試驗所。台中。

    Akar, Z., M. Kucuk, and H. Dogan. 2017. A new colorimetric DPPH• scavenging activity method with no need for a spectrophotometer applied on synthetic and natural an-tioxidants and medicinal herbs. J. Enzyme Inhib. Medicinal Chem. 32:640-647.

    Akomolafe, S. F., A. J. Akinyemi, O. B. Ogunsuyi, S. I. Oyeleye, G. Oboh, O. O. Adeoyo, and Y. R. Allismith. 2017. Effect of caffeine, caffeic acid and their various combinations on enzymes of cholinergic, monoaminergic and purinergic systems critical to neurodegeneration in rat brain-In vitro. Neuro Toxicol. 62:6-13.

    Alves, R. C., S. Casal, M. R. Alves, and M. B. Oliveira. 2009. Discrimination between arabica and robusta coffee species on the basis of their tocopherol profiles. Food Chem. 114:295-299.

    Ames, J. M., A. Wynne, A. Hofmann, S. Plops, and G. R. Gibson. 1999. The effect of a model melanoidins mixture on faecal bacterial populations in vitro. Brit. J. Nutr. 82:489-495.

    Anderson, K. A. and B. W. Smith 2002. Chemical profiling to differentiate geographic growing origins of coffee. J. Agr. Food Chem. 50:2068-2075.
    Anese, M. and M. C. Nicoli. 2003. Antioxidant properties of ready-to-drink coffee brews. J. Agr. Food Chem. 51:942-946.

    Anese, M., T. De Pilli, R. Massini, and C. R. Lerici. 2000. Oxidative stability of the lipidfraction in roasted coffee. Italian J. Food Sci. 12:457-462.

    Asamenew, G., H. W. Kim, M. K. Lee, S. H. Lee, S. Lee, Y. S. Cha, S. H. Lee, S. M. Yoo, and J. B. Kima. 2019. Comprehensive characterization of hydroxycinnamoyl derivatives in green and roasted coffee beans: A new group of methyl hydroxycinnamoyl quinate. Food Chem. X2:100033.

    Ashihara, H. 2006. Metabolism of alkaloids in coffee plants. Brazilian
    J. Plant Physiol. 18:1-8.

    Ashihara, H. 2008. Trigonelline (N-methylnicotinic acid) biosynthesis and its biological role in plants. Natural Prod. Commun. 3:1423-1428.

    Babova, O., A. Occhipinti, and M. E. Maffei. 2016. Chemical partitioning And antioxidant capacity of green coffee(Coffea arabica and Coffea canephora) of different geographical origin. Phytochemistry 123:33-39.

    Baeza, G., M. Amigo-Benavent, B. Sarria, L. Goya, R. Mateos, and L. Bravo. 2014. Green coffee hydroxycinnamic acids but not caffeine protect human HepG2 cells against oxidative stress. Food Res. Int. 62:1038-1046.

    Bagchi, D., H. Moriyama, and A. Swaroop. 2016. Green coffee bean extract in human health. Boca Raton: CRC Press.

    Bee, S., C. H. J. Brando, G. Brumen, N. Carvalhes, I. Kölling-Speer, K. Speer, and O. G. Vitzthum. 2005. The raw bean. Espresso coffee: Thescience quality. London, UK: Elsevier Academic Press. 87-178.

    Bekalo, S. A. and H. W. Reinhardt. 2010. Fibers of coffee husk and hulls for the production of particleboard. Mater. Struct. 43:1049-1060.

    Belitz, H. D., W. Grosch, and P. Schieberle. 2009. Food chem. (4th ed.). Heidelberg: Springer (Chapter 21).

    Belitz, H. D., W. Grosch, and P. Schieberle. 2009. Coffee, tea, cocoa. Food Chem. Leipzig: Springer. 938-951.

    Berbert, P. A., D. M. Queiroz, E. F. Sousa, M. B. Molina, E. C. Melo, and L. R. D Faroni. 2001. Dielectric properties of parchment coffee. J. Agr. Eng. Res. 80:65-80.

    Bicho, N. C., F. C. Lidon, J. C. Ramalho, and A. E. Leitao. 2013. Quality assessment of Arabica and Robusta green and roasted coffees - a review. Emir. J. Food Agr. 25:945-950.

    Borrelli, R. C., F. Esposito, A. Napolitano, A. Ritieni, and V. Fogliano. 2004. Characterization of a new potential functional ingredient: Coffee silverskin. J. Agr. Food Chem., 52:1338-1343.

    Budryn, G., E. Nebesny,and J. Oracz. 2015. Correlation between the stability of chlorogenic acids, antioxidant activity and acrylamide content in coffee beans roasted in different conditions. Int. J. Food Prop. 18:290-302.

    Buffo, R. A. and C. Cardelli-Freire. 2004. Coffee flavour: An overview. Flavour Fragrance J. 19:99-104.

    Cämmerer, B. and W. Kroh. 2006. Antioxidant activity of coffee brews. Eur. Food Res. Technol. 223:469-474.

    Clarke, R. and O. G. Vitzthum. 2008. Coffee: Recent developments. London: John Wiley & Sons.

    Clifford, M. N. 1999. Chlorogenic acids and other cinnamates – nature, occurrence and dietary burden. J. Sci. Food Agr. 70:362-372.

    Clifford, M. N. and S. Knight. 2004. The cinnamoyl-amino acid conjugates of green robusta coffee beans. Food Chem. 87:457-463.

    Da Silveira-Duarte, S. M., C. M. P. De Abreu, H. Castle de Menezes, M. H. Dos Santos, and C. M. C. Paiva-Gouvea. 2005. Effect of processing and roasting on the antioxidant activity of coffee brews. Cienciae Tecnol. Alimentos. 25:387-393.

    Daglia, M., A. Papetti, C. Gregotti, F. Bertè, and G. Gazzani. 2000. In vitro antioxidant and ex vivo protective activities of green and roasted coffee. J. Agr. Food Chem. 48:1449-1454.

    Davis, A. P., R. Govaerts, D. M. Bridson, and P. Stoffelen. 2006. An annotated taxonomic conspectus of the genus Coffea (Rubiaceae). Bot. J. Linn. Soc. 152:465-512.

    De Bruyn, F., S. J. Zhang, V. Pothakos, J. Torres, C. Lambot, A. V. Moroni, and L. De Vuyst. 2017. Exploring the impacts of postharvest processing on the microbiota and metabolite profiles during green coffee bean production. Appl. Environ. Microbiol. 83:2398-2416.

    Del Castillo, M. D., J. M. Ames, and M. H. Gordon. 2002. Effect of roasting on the antioxidant activity of coffee brews. J. Agr. Food Chem. 50:3698-3703.

    Del Rio, D., A. Stalmach, L. Calani, and A. Crozier. 2010. Bioavailability of coffee chlorogenic acids and green tea flavan-3-ols. Nutrients 2: 820-833.

    Delgado-Andrade, C. and F. J. Morales. 2005. Influence of coffee roasting on the incorporation of phenolic compounds into melanoidins and their relationship with antioxidant activity of the brew. J. Agr. Food Chem. 53:1403-1407.

    Dessalegn, Y., M. T. Labuschagne, G. Osthoff, and L. Herselman. 2008. Genetic diversity and correlation of bean caffeine content with cup quality and green bean physical characteristics in coffee (Coffea Arabica L.) J. Sci. Food Agr. 88:1726-1730.

    Dulsat-Serra, N., B. Quintanilla-Casas, and S. Vichi. 2016. Volatile thiols in coffee: A review on their formation, degradation, assessment and influence on coffee sensory quality. Food Res. Int. 89:982-988.

    Esquivel P. and V. M. Jiménez. Functional properties of coffee and coffee by-products. Food Res. Int. http://dx.doi.org/10.1016/j.foodres.2011.04.026 , in press.

    Fadai, N. T., J. Melrose, C. P. Please, A. Schulman, and R. A. Van Gorden. 2017. A heat and mass transfer study of coffee bean roasting. Int. J. Heat Mass Transf. 104:787-799.

    Fan, L., A. T. Soccol, A. Pandey, and C. R. Soccol. 2003. Cultivation of Pleurotus mushrooms on Brazilian coffee husk and effects of caffeine and tannic acid. Micología Aplicada Int. 15:15-21.

    Farah, A. 2012. Coffee constituents. In Y. -F. Chu (Ed.), Coffee: Emerging health effects and disease prevention. Oxford: Wiley-Blackwell. 21-58.

    Franca, A. S., L. S. Oliveira, J. C. F. Mendonça, and X. A. Silva. 2005. Physical and chemical attributes of defective crude and roasted coffee beans. Food Chem. 90:89-94.

    González-Ríos, O., M. L. Suárez-Quiroz, R. Boulanger, M. Barel, B. Guyot, and J. P. Guiraud. 2007. Impact of “ecological” post-harvest processing on the volatile fraction of coffee beans: I. Green coffee. J. Food Compost. Anal. 20:289-296.

    Heeger, A., A. K. ska-Cagnazzo, E. Cantergiani, and W. Andlauer. 2017. Bioactives of coffee cherry pulp and its utilisation for production of Cascara beverage. Food Chem. 221:969-975.

    Herman, A. and A. P. Herman. 2013. Caffeine’s mechanisms of action and its cosmetic use. Skin Pharmacol. Physiol. 26:8-14.

    ICO. 2017. Coffee production. www.ico.org. (Accessed 1st June 2017)

    Iwai, K., N. Kishimoto, Y. Kakino, K. Mochida, T. Fujita. 2004. In vitro antioxidative effects and tyrosinase inhibitory activities of seven hydroxycinnamoyl derivatives in green coffee beans. J. Agr. Food Chem. 52:4893-4898.

    Joët, T., A. Laffargue, F. Descroix, S. Doulbeau, B. Bertrand, and A. de kochko. 2010. Influence of environmental factors, wet processing and their interactions on the biochemical composition of green Arabica coffee beans. Food Chem. 118:693-701.

    Kandia, S. and A. L. Charles. 2019. Statistical comparative study between the conventional DPPH% spectrophotometric and dropping DPPH% analytical method without spectrophotometer: Evaluation for the advancement of antioxidant activity analysis. Food Chem. 287:338-345.

    Kroyer, G. T., L. Kretschmer, and J. Washuettl, 1989. Antioxidant properties of tea and co ee extracts. Agr. food chem. Consumer. 2:433-437.

    Ky, C. L., P. Barre, and M. Noirot. 2013. Genetic investigations on the caffeine and chlorogenic acid relationship in an interspecific cross between Coffea liberica dewevrei and C. pseudozanguebariae. Tree Genet. Genomes 9:1043-1049.

    Lee, K. G. and T. Shibamoto. 2002. Analysis of volatile components isolated from Hawaiian green coffee beans (Coffea arabica L.). Food Fragrance J. 17:349-351.

    Li, X., C. Ji, Y. Sun, M.Yang, and X. Chu. 2009. Analysis of synthetic antioxidants and preservatives in edible vegetable oil by HPLC/TOF-MS. Food Chem. 113:692-700.

    Lobo, V., A. Patil, A. Phatak, and N. Chandra. 2010. Free radicals, antioxidants and functional foods: Impact on human health. Pharmacognosy Rev. 4:118-126.

    Mazzafera, P. 1991. Trigonelline in coffee. Photochem. 30:2309-2310.

    Mazzafera, P. and M. B. Silvarolla. 2010. Caffeine content variation in single green Arabica coffee seeds. Seed Sci. Res. 20:163-167.

    Melo Pereira G. V., D. P. Carvalho Neto, A. I. M. Júnior, Z. S. Vásquez, A. B. P. Medeiros, L. P. S. Vandenberghe, and C. R. Soccol. 2019. Exploring the impacts of postharvest processing on the aroma formation of coffee beans – A review. Food Chem. 272:441-452.

    Menéndez, J. A., A. Domínguez, Y. Fernández, and J. J. Pis. 2007. Evidence of self- gasification during the microwave-induced pyrolysis of coffee hulls. Energ. Fuels. 21:373-378.

    Murthy P. S. and M. M. Naidu. 2010a. Protease production by Aspergillus oryzae in solid state fermentation utilizing coffee by-products. World Appl. Sci. J. 8:199-205.

    Murthy, P. S. and M. M. Naidu. 2010b. Production and application of xylanase from Peni- cillium sp. utilizing coffee by-products. Food Bioprocess Technol. 5:657-64.

    Murthy, P. S. and M. M. Naidu. 2012. Sustainable management of coffee industry by-products and value addition-A review. Resour. Conserv. Recycl. 66:45-58.

    Murthy, P. S., K. Basavaraj, and R. Naidu. 2001. Journey of Indian coffee quality. J. Indian Coffee. 3:18-21.

    Murthy, P. S., M. R. Manjunatha, G. Sulochannama, and M. Madhava Naidu. 2012. Extraction, charac- terization and bioactivity of coffee anthocyanins. Eur. J. Biol. Sci. 4:13-9.

    Mussatto, S. I., E . M . S. Machado, S. Martins, and J. A. Teixeira. 2011b. Production, composition, and application of coffee and its industrial residues. Food Bioprocess Technol. 4:661-672.

    Naczk, M. and F. Shahidi. 2006. Phenolics in cereals, fruits and vegetables: Occurrence, extraction and analysis. J. Pharm. Biomed. Anal. 41:1523-1542.

    Napolitano, A., V. Fogliano, A. Tafuri, and A. Ritieni. 2007. Natural occurrence of ochratoxin A and antioxidant activities of green and roasted coffees and corresponding byproducts. J. Agr. Food Chem. 55:10499-10504.

    Nicoli, M.C., M. Anese, L. Manzocco, and C.R. Lerici. 1997. Antioxidant properties of coffee brews in relation to the roasting degree. LWT – Food Sci. Technol. 30:292-297.

    Nicoli, M. C., M. Anese, M. T. Parpinel, S. Franceschi, and C. R. Lerici. 1997. Loss and/ or formation of antioxidants during food processing and storage. Cancer Lett. 114:71-74.

    Ogawa, M. 2014. Coffee and hippuric acid. In V. R. Preedy (Ed.). Coffee in health and disease prevention. Acad. Press. 209-215.

    Palmieri, M. G. S., L. T. Cruz, F. S. Bertges, H. M. Húngaro, L. R. Batista, S. S. Silva, M. J. V. Fonseca, M. P. Rodarte, F. M. P. Vilela, and M. P. H. Amaral. 2018. Enhancement of antioxidant properties from green coffee as promising ingredient for food and cosmetic industries. Biocatal. Agric.Biotechnol. 16:43-48.

    Pereira, G. V. M., V. T. Soccol, S. K. Brar, E. Neto, and C. R. Soccol, 2017. Microbial ecology and starter culture technology in coffee processing. Crit. Rev. Food Sci. Nutr. 57:2775-2788.

    Pezzopane, J. R. M., M. J. P. Júnior, R. A. Thomaziello, and M. B. P De Camargo. 2003. Coffee phenological stages evaluation scale. Bragantina. 62:499-503.

    Poisson, L., N. Auzanneau, F. Mestdagh, I. Blank, and T. Davidek. 2017. New insight into the role of sucrose in the generation of α-diketones upon coffee roasting. J. Agr. Food Chem. 66:2422-2431.

    Purseglove, J. W. 1974. Rubiaceae. In J. W. Purseglove (Ed.), Tropical crops dicotyledons. London: The English Language Book Society and Longman Group Ltd. 451-492.

    Ramírez-Coronel, M. A., N. Marnet, V. S. K. Kolli, S. Roussos, S. Ganot, And C. Gurur. 2004. Characterization and estimation of proanthocyanidins and other phenolics in coffee pulp (Coffea Arabica) by thiolysis-high-performance liquid chromatography. J. Agr. Food Chem. 52:1344-1349.

    Ramirez-Martinez, J. R. 1988. Phenolic compounds in Coffee Pulp: quantitative determination by HPLC. J. Sci. Food Agr. 43:135-144.

    Richelle, M., I. Tavazzi, and E. Offord. 2001. Comparison of the antioxidant activity of commonly consumed polyphenolic beverages (coffee, cocoa, and tea) prepared per cup serving. J. Agr. Food Chem. 49:3438-3442.

    Rosenberg, L. 1990. Coffee and tea consumption in relation to the risk of large bowel cancer: A review on epidemiological studies. Cancer Lett. 52:163-171.

    Roussos, M., M. Aquifihuatl, I. Trejo-Hernandez, E. Gaime Perraud, M. Favela, and M. Ramakrishna.1995. Biotechnological management of cof- fee pulp—isolation, screening, characterization, selection of caffeine-degrading fungi and natural microflora present in coffee pulp and husk. Appl. Microbiol. Biotechnol. 42:756-762.

    Rufián-Henares, J. A. and F. J. Morales. 2006. A new application of a commercial microtiter plate-based assay for assessing the antimicrobial activity of Maillard reaction products. Food Res. Int. 39:33-39.

    Saenger, M., E. U. Hartge, J. Werther, T. Ogada, and Z. Siagi. 2001. Combustion of coffee husks. Renew. Energ. 23:103-121.

    Sanchez-Gonzales, I., A. Jimenez-Escrig, and F. Saura-Calixto. 2005. In vitro antioxidant activity of coffee brewed using different procedures (Italian, espresso and filter). Food Chem. 90:133-139.

    Shimada, K., K. Fujikawa, K. Yahara and T. Nakamurea.1992. Antioxidative properties of xanthan on the autoxition of soybean oil in cyclodextrin emulsion. J. Agr. Food Chem. 40:945-948.

    Somporn, C., A. Kamtuo, P. Theerakulpisut, and S. Siriamornpun. 2011. Effects of roasting degree on radical scavenging activity, phenolics and volatile compounds of arabica coffee beans (Coffea arabica L. cv. Catimor). Int. J. Food Sci. Technol. 46:2287-2296.

    Stauder, M., A. Papetti, D. Mascherpa, A. M. Schito, G. Gazzani, C. Pruzzo, and M. Dag lia. 2010. Antiadhesion and antibiofilm activities of high molecular weight coffee components against Streptococcus mutans. J. Agr. Food Chem. 58:11662-11666.

    Stefano P. 2002. The ‘latte revolution’ regulation, markets and consumption in the global coffee chain. World Dev. 30:109-122.

    Steinhart, H., R. Luger, and J. Piost. 2002. Antioxidative effect of coffee melanoidins. Proc. 19th Intl. Sci. Colloquium Coffee. Paris: Association Sci. Int. Café.

    Stintzing, F. C. and R. Carle. 2004. Functional properties of anthocyanins and betalains in plants, food, and in human nutrition. Trends Food Sci. Technol. 15:19-38.

    Sunarharum, W. B., D. J. Williams, and H. E. Smyth. 2014. Complexity of coffee flavor: A compositional and sensory perspective. Food Res. Int. 62:315-325.

    Taga, M. S., E. E. Miller and D. E. Pratt. 1984. China seeds as a source of natural lipid antioxidants. J. Amer. Oil Chem. Soc. 61:928-931.

    Wang, H. Y., H. Qian, and W. R. Yao. 2011. Melanoidins produced by the Maillard reaction: Structure and biological activity. Food Chem. 128:573-584.

    Wang, Y. C., Y. C. Chuang, and H. W. Hsu. 2008. The flavonoid, carotenoid and pectin in peels of citrus cultivated in Taiwan. Food Chem. 106:277-284.

    Wattenberg, L. W. and L. K. T. Lam. 1984. Protective e ects of coffee constitutents on carcinogenesis in experimental animals. Banbury Rpt.17:137-145.

    Wen, X., A. Enokizo, H. Hattori, S. Kobayashi, M. Murata, and S. Homma. 2005. Effect of roasting on properties of the zinc-chelating substance in coffee brews. J. Agr. Food Chem. 53:2684-2689.

    Wintgens, J. N. 2004. Factors influencing the quality of green coffee. Coffee: Growing, processing, sustainable production. Weinheim: Wiley-VCH Verlag GmbH & Co. 789-809.

    無法下載圖示 校外公開
    2025/07/22
    QR CODE